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Second lecture: extension with optimal L2 estimates

Setup. Let L ! X be a holomorphic line bundle, equipped with a
singular hermitian metric h = h0e

�', ' quasi-psh. Let  2 L
1
loc

such that '+  is quasi-psh, and Y ⇢ X the subvariety defined by
the conductor ideal JY = I(he� ) : I(h).

For a section f 2 H
0(Y ,OX (KX ⌦ L)⌦ I(h)/I(he� )), the goal is

to get an “extension” F 2 H
0(X ,OX (KX ⌦ L)⌦ I(h)),

via I(h) ! I(h)/I(he� ), F 7! f ,

with an explicit L2 estimate of F on X in terms of a suitable L
2

integral of f on the subvariety Y .

Additionally, it will be convenient to assume that X is weakly
pseudoconvex (this is weaker than being holomorphically convex).
This means that there exists a smooth psh exhaustion � on X .

We first define the Ohsawa residual measure associated with f .
As for f , this will be a measure supported on Y .
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The Ohsawa residual measure

Given f 2 H
0(U ,OX (KX ⌦ L)⌦ I(h)/I(he� )), there exists a Stein

covering (Ui) of X and liftings efi 2 H
0(Ui ,OX (KX ⌦ L)⌦ I(h))

of f on Ui via I(h) ! I(h)/I(he� ). We obtain in this way a C
1

extension ef =
P
⇠iefi where (⇠i) is a partition of unity.

Definition of the Ohsawa residual measure

For g 2 Cc(Y ), g � 0, and 0  eg 2 Cc(X ) extending g , we setZ

Y

g dVY [f
2, h, ] := inf

eg
lim sup
t!�1

Z

{t< <t+1}

eg |ef |2!,he� dVX ,!.

Proposition

dVY [f 2, h, ] is independent of the choice of ef as well as of !, and
defines a positive measure on Y (but not necessarily locally finite).

Proof. When �efi 2 H
0(Ui ,OX (KX ⌦ L)⌦ I(he� )), then

|�efi |2!,he� 2 L
1
loc(X ) and the lim sup ! 0 for Supp(eg) ⇢ U .
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The Ohsawa residual measure (2)

Example 1. Take  (z) = r log |s(z)|2hE , where s 2 H
0(X ,E ) and

r = rank(E ). Assume that Y = s
�1(0) is of codimension r , that

s is generically transverse to 0 on Y and h 2 C
1. Then

dVY [f
2, h, ] = cn,r

|f |2!,h dVY ,!

|⇤r (ds)|2!,hE
on Y r{⇤r (ds) = 0}.

Proof. Near a regular point z0 be can pick a holomorphic frame
(e�)1�r of E and coordinates (z1, . . . , zn) such that (e�) is
h-orthornormal and (@/@zj) is !-orthonormal at z0, and
s(z) =

P
1jr �jzjej , �j 6= 0. Then ! ⇠ i

P
dzj ^ dz j and

 (z) ⇠ r log(|�1|2|z1|2 + . . .+ |�r |2|zr |2). This is an easy
calculation of integrals on ellipsoids.

Example 2. Take now  (z) =
P

cj log |sDj |2hj where D =
P

cjDj

is a simple normal crossing divisor, cj > 0, and hj is a C
1 metric

on OX (Dj). Also assume h 2 C
1.
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Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing
dVY [f 2, h, ] for  (z) =

P
cj log |zj |2 + u(z), u 2 C

1. However

dVY [f
2, h, + u] = e

�u
dVY [f

2, h, ],

thus we may assume u = 0. At a regular point of Dj r
S

k 6=j Dk ,
(and j = 1, say) we apply the Fubini theorem with z = (z1, z 0),
z
0 = (z2, . . . , zn). We have to compute limits of the form

lim
t!�1

Z

et<|z1|2c1<et+1

eg(z)|ef (z)|2
|z1|2c1

idz1 ^ dz1 =
2⇡

m1
g(0, z 0)|eh(0, z 0)|2

when c1 = m1 2 N⇤ and ef (z) = z
m1�1
1

eh(z). However, if cj < 1, we
get 0, and in general, if cj /2 N⇤ and cj > 1, we can get only 0 or 1
values, according to the divisibility of f by z

mj�1
j , mj = bcjc 2 N⇤.

As a consequence, we can capture an interesting (i.e. locally finite,
non zero) residual measure dVY [f 2, h, ] only in the case where
one of the coe�cients cj is an integer.
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Ohsawa residual measure for analytic singularities

One general case of interests is when  has analytic singularities,
i.e. locally  (z) = c log

P
|gj(z)|2 + u(z), gj 2 OX (V ), u 2 C

1(V ).

Then, it is interesting to look at the family of multiplier ideal
sheaves I(e�s ) when s 2 R+, which decrease as s increases.
Assume without loss of generality that c = 1.

By Hironaka, we know that there exists a composition of blow-ups
µ : eX ! X such that the pull-back ideal µ⇤(gj) = (gj � µ) is an
invertible ideal sheaf O eX (�

P
mjDj) associated with a simple

normal crossing divisor. The direct image formula implies

I(e�s ) = µ⇤(K eX/X ⌦ I(e�s  �µ)) = µ⇤O eX

⇣X
(aj � bsmjc)Dj

⌘

where K eX/X = O eX (
P

ajDj). This implies that I(e�s ) “jumps”
precisely for a discrete sequence of rational numbers
0 = s0 < s1 < . . . < sk < . . . such that skmj 2 N for some j .

For f 2 I(e�sk�1 ), the measure dVY [f 2, h, sk ] will be interesting.
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Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions
on the subvariety Y associated with JY = I(he� ) : I(h).

Definition of the restricted multiplier ideal

For x 2 Y , we define I 0

 (h)x ⇢ I(h)x to be the ideal of germs

of functions ef 2 I(h)x associated with f = ef mod I(he� )x in
I(h)/I(he� )x , for which dV [f 2, h, ] is locally finite near x on Y .

Clearly, I(he� ) ⇢ I 0

 (h) ⇢ I(h).

Typical case of application. Assume that h = e
�' and  have

analytic singularities, and that sk = 1 is one of jumping values for
s 7! I(e�s ) (case of log canonical singularities: s1 = 1).

Then I 0

 (h) ⇢ I(he�sk�1 ) on X , and I 0

 (h) = I(he�sk�1 ) on a
Zariski open subset X0 = X rZ , Z ( Y (however, the ideals may
di↵er on Z ).
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Use of more “flexible” weights

The next issue is that we need special and rather flexible weights.
Let ↵ 2 ]0, 1[ and A = sup

X
 2 ]�1,+1]. We consider

functions ⇢ : [�1,A] ! R⇤

+, such as

⇢(u) = 1� (A+ 1 + ↵�1/2 � u)�1,

that are continuous strictly decreasing, with the property that ⇢ is
concave near �1.

We assume moreover that
Z A

t

⇢(u) du +
⇢(A)

↵
 ⇢(t)2

|⇢0(t)| for all t 2 ]�1,A].

The L
2 estimates will involve integrals of the formR

X |F |2!,he� |⇢0( )| dVX ,!, where |⇢0( )| = (C �  )�2 in the above
example, so that e� |⇢0( )| is locally sommable when  has log
canonical singularities.
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General L2 extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X ,!) be a weakly pseudoconvex Kähler manifold, L a
holomorphic line bundle with a hermitian metric h = h0e

�',
h0 2 C

1, ' quasi-psh on X , and  2 L
1
loc(X ).

Assume 9↵ > 0
constant such that

⇥L,h + (1 + ⌫↵)i@@ � 0 on X , ⌫ = 0, 1.

Then, for every f 2 H
0(Y ,OX (KX ⌦ L)⌦ I 0

 (h)/I(he� )) s.t.Z

Y

dVY [f
2, h, ] < +1,

there exists F 2 H
0(X ,OX (KX ⌦ L)⌦ I 0

 (h) that is mapped to f

by the morphism I 0

 (h) ! I 0

 (h)/I(he� ), such that
Z

X

|F |2!,he� |⇢0( )| dVX ,!  ⇢(�1)

Z

Y

dVY [f
2, h, ].
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(1) Construction of a smooth extension

Every section f 2 H
0(X ,OX (KX ⌦ L)⌦ I(h)/I(he� )) admits a

C
1 lifting

ef =
X

⇠i efi , efi 2 H
0
�
Ui ,OX (KX ⌦ L)⌦ I(h)

�

by means of a Stein covering (Ui) of X and a partition of unity (⇠i)
subordinate to (Ui).

Since
P
@⇠i = 0, we have @ef =

P
@⇠i(efi � efj) on Uj , and since

efi � efj has coe�cients in I(he� ), we see that @ef is valued in

OX (KX ⌦ L)⌦ I(he� )⌦OX C
1.

As X is assumed to be weakly pseudoconvex, we can consider
Xc = {z 2 X ; �(z) < c} b X , 8c 2 R, and get by compactnessZ

Xc

|@ef |2!,he� dVX ,! < +1.

It will be enough to get estimates on Xc , and then let c ! +1.
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(2) Solving the @ equation

The next idea is to truncate ef by multiplying ef with a cut-o↵
function ✓( � t) equal to 1 near Y ⇢  �1(�1).

Y

{x2X / t< (x)<t+1}
1

0

✓(s)

1 s

We next solve the approximate @-equation

(⇤) @ut," = vt + wt,"

with vt := @(✓( � t) · ef ) = ✓( � t) · @ef + ✓0( � t)@ ^ ef .
It the weights  and ' of h = h0e

�' are not smooth, we use
regularizations '� # ',  � #  and complete Kähler metrics !� # !
on X rZ�. (We omit details here).
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(3) L2 estimates for solution and error term

The existence theorem with twisting factors ⌘t,", �t," yieldsZ

Xc

(⌘t," + �t,")
�1|ut,"|2!,h0e

�'� 
dVX ,! +

1

"

Z

Xc

|wt,"|2!,h0 e
�'� 

dVX ,!

 4

Z

Xc\{ <t+1}

|@ef |2!,h0 e
�'� 

dV!

+ 4

Z

Xc\{t< <t+1}

h(Bt + " Id)�1@ ^ ef , @ ^ ef i!,h0 e�'� .

The first integral in the right hand side tends to 0 as t ! �1.

Again, the main point is to choose ad hoc factors ⌘t , �t , and we
want here the last integral to converge to a finite limit. One can
check that this works with

⇣(u) = log
⇢(�1)

⇢(u)
, �(u) =

R A
u ⇢(v)dv + 1

↵⇢(A)

⇢(u)
, � =

(�0)2

�⇣ 00 � �00
,

�t,"(u) = max"(u, t), ⌘t," = �(�t,"( )), �t," = �(�t,"( )).
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Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let ' and  be
plurisubharmonic functions on X . Assume that w is a holomorphic
function on X such that supX ( + 2 log |w |)  0 and dw does not
vanish identically on any branch of w�1(0).

Denote Y = w
�1(0) and Y0 = {x 2 Y : dw(x) 6= 0}.

Then for any holomorphic (n � 1)-form f on Y0 satisfyingZ

Y0

e�'� i (n�1)2
f ^ f̄ < +1,

there exists a holomorphic n-form F on X satisfying F|Y0 = dw ^ f

and an optimal estimateZ

X

e�'in
2
F ^ F̄  2⇡

Z

Y0

e�'� i (n�1)2
f ^ f̄ .
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�1(0) and Y0 = {x 2 Y : dw(x) 6= 0}.

Then for any holomorphic (n � 1)-form f on Y0 satisfyingZ

Y0

e�'� i (n�1)2
f ^ f̄ < +1,

there exists a holomorphic n-form F on X satisfying F|Y0 = dw ^ f

and an optimal estimateZ

X

e�'in
2
F ^ F̄  2⇡

Z

Y0

e�'� i (n�1)2
f ^ f̄ .
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann
surfaces in 1972. The motivation was to answer a question posed
by Sario and Oikawa about the relation between the Bergman
kernel B⌦ for holomorphic (1, 0) forms on an open Riemann
surface ⌦ which admits a Green function G⌦.

Recall that the logarithmic capacity c�(z) is locally defined by

c�(z) = exp lim
⇠!z

(G⌦(⇠, z)� log |⇠ � z |) on ⌦.

Suita conjecture

(c�(z))2|dz |2  ⇡B⌦(z), for every z 2 ⌦.

Theorem

The Suita conjecture holds true (planar case: B locki 2013;
general case: Guan-Zhou 2014). Moreover (Guan-Zhou 2014),
equality holds i↵ ⌦ biholomorphic to disc minus a closed polar set.
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Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current
T such that T � �! for a smooth (1, 1) form ! > 0 and � ⌧ 1.

Easy observation

↵ 2 E� (interior of E) () ↵ = {T}, T = a Kähler current.

We say that E� is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written T = limTm where Tm 2 {T}
has analytic singularities & logarithmic poles, i.e. 9 modification
µm : eXm ! X such that µ?mTm = [Em] + �m, where Em � 0 is a
Q-divisor on eXm with coe↵. in 1

mZ and �m is a Kähler form on eXm.

Moreover (Boucksom), Vol(�m) =
R
eXm
�n
m ! Vol(T ) as m ! +1.
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Proof of the analytic Zariski decomposition

• Write locally on any coordinate ball ⌦ ⇢ X

T = i@@'

for some strictly plurisubharmonic psh potential ' on X .

• Approximate T on ⌦ by

Tm = i@@'m, where 'm(z) =
1

2m
log

X

`

|g`,m(z)|2

where (g`,m) is a Hilbert basis of the space

H(⌦,m') =
�
f 2 O(⌦) ; kf k2m' :=

Z

⌦

|f |2e�2m'
dV < +1

 
.

• We have 'm(z) =
1

2m
sup

kf km'1
log |f (z)|2.

The mean value inequality implies

|f (z)|2  1

⇡nr 2n/n!
sup
B(z,r)

e
2m'(z) ) 'm(z)  sup

B(z,r)
'+

n

m
log

C

r
.
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Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L2 extension theorem (extension from a
single isolated point) implies that for every z0 2 ⌦, there exists
f 2 O(⌦) such that f (z0) = c e

m'(z0) (c > 0 small), such that

kf k2m' =

Z

⌦

|f |2e�2m'
dV  C

Z

{z0}

|f |2e�2m'�z0 = 1

for c = C
�1/2. As a consequence 'm(z) � '(z) +

1

2m
log c .

• By the above inequalities one easily concludes that the Lelong
number at any point z0 2 ⌦ satisfies

⌫(', z0)�
n

m
 ⌫('m, z0)  ⌫(', z0).

This implies Siu’s analyticity result for Lelong upper level sets Ec(T ).

• The case of a global current T = ↵ + dd
c' is obtained by using

a covering of X by balls ⌦j , and gluing the local approximations
'j ,m of ' into a global one 'm by a partition of unity.
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