

INSTITUT DE FRANCE Académie des sciences

L^2 extension theorems and applications to algebraic geometry

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes & Académie des Sciences de Paris

Complex Analysis and Geometry – XXV CIRM – ICTP virtual meeting, smr 3601 June 7–11, 2021

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 1/17

< 口 > < 団 > < 臣 > < 臣 >

臣

Second lecture

Second lecture

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L² extension theorems and applications to alg. geometry 2/17

Setup. Let $L \to X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h = h_0 e^{-\varphi}$, φ quasi-psh. Let $\psi \in L^1_{loc}$ such that $\varphi + \psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 3/17

▲□ ▶ ▲ □ ▶ ▲ □ ▶ -

臣

Setup. Let $L \to X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h = h_0 e^{-\varphi}$, φ quasi-psh. Let $\psi \in L^1_{loc}$ such that $\varphi + \psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

For a section $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, the goal is to get an "extension" $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$,

via $\mathcal{I}(h) \rightarrow \mathcal{I}(h)/\mathcal{I}(he^{-\psi}), F \mapsto f,$

with an explicit L^2 estimate of F on X in terms of a suitable L^2 integral of f on the subvariety Y.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 3/17

<- ∃ ► < ∃ ►

Sac

Setup. Let $L \to X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h = h_0 e^{-\varphi}$, φ quasi-psh. Let $\psi \in L^1_{loc}$ such that $\varphi + \psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

For a section $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, the goal is to get an "extension" $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$,

via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi}), \quad F \mapsto f,$

with an explicit L^2 estimate of F on X in terms of a suitable L^2 integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly pseudoconvex (this is weaker than being holomorphically convex). This means that there exists a smooth psh exhaustion γ on X.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 3/17

Setup. Let $L \to X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h = h_0 e^{-\varphi}$, φ quasi-psh. Let $\psi \in L^1_{loc}$ such that $\varphi + \psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

For a section $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, the goal is to get an "extension" $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$,

via $\mathcal{I}(h) \rightarrow \mathcal{I}(h)/\mathcal{I}(he^{-\psi}), F \mapsto f,$

with an explicit L^2 estimate of F on X in terms of a suitable L^2 integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly pseudoconvex (this is weaker than being holomorphically convex). This means that there exists a smooth psh exhaustion γ on X.

We first define the Ohsawa residual measure associated with f. As for f, this will be a measure supported on Y.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 3/17

Given $f \in H^0(U, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, there exists a Stein covering (U_i) of X and liftings $\tilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$ of f on U_i via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$. We obtain in this way a C^{∞} extension $\tilde{f} = \sum \xi_i \tilde{f}_i$ where (ξ_i) is a partition of unity.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 4/17

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

臣

Given $f \in H^0(U, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, there exists a Stein covering (U_i) of X and liftings $\tilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$ of f on U_i via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$. We obtain in this way a C^{∞} extension $\tilde{f} = \sum \xi_i \tilde{f}_i$ where (ξ_i) is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_c(Y)$, $g \ge 0$, and $0 \le \widetilde{g} \in C_c(X)$ extending g, we set $\int_Y g \, dV_Y[f^2, h, \psi] := \inf_{\widetilde{g}} \limsup_{t \to -\infty} \int_{\{t < \psi < t+1\}} \widetilde{g} \, |\widetilde{f}|^2_{\omega,h} e^{-\psi} \, dV_{X,\omega}.$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 4/17

<ロト < 団 > < 国 > < 国 > < 国 > 三 国

Sac

Given $f \in H^0(U, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, there exists a Stein covering (U_i) of X and liftings $\tilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$ of f on U_i via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$. We obtain in this way a C^{∞} extension $\tilde{f} = \sum \xi_i \tilde{f}_i$ where (ξ_i) is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_c(Y)$, $g \ge 0$, and $0 \le \widetilde{g} \in C_c(X)$ extending g, we set $\int_Y g \, dV_Y[f^2, h, \psi] := \inf_{\widetilde{g}} \limsup_{t \to -\infty} \int_{\{t < \psi < t+1\}} \widetilde{g} \, |\widetilde{f}|^2_{\omega,h} e^{-\psi} \, dV_{X,\omega}.$

Proposition

 $dV_Y[f^2, h, \psi]$ is independent of the choice of f as well as of ω , and defines a positive measure on Y (but not necessarily locally finite).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 4/17

Given $f \in H^0(U, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$, there exists a Stein covering (U_i) of X and liftings $\tilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$ of f on U_i via $\mathcal{I}(h) \to \mathcal{I}(h)/\mathcal{I}(he^{-\psi})$. We obtain in this way a C^{∞} extension $\tilde{f} = \sum \xi_i \tilde{f}_i$ where (ξ_i) is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_c(Y)$, $g \ge 0$, and $0 \le \widetilde{g} \in C_c(X)$ extending g, we set $\int_Y g \, dV_Y[f^2, h, \psi] := \inf_{\widetilde{g}} \limsup_{t \to -\infty} \int_{\{t < \psi < t+1\}} \widetilde{g} \, |\widetilde{f}|^2_{\omega,h} e^{-\psi} dV_{X,\omega}.$

Proposition

 $dV_Y[f^2, h, \psi]$ is independent of the choice of f as well as of ω , and defines a positive measure on Y (but not necessarily locally finite).

Proof. When $\delta \tilde{f}_i \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(he^{-\psi}))$, then $|\delta \tilde{f}_i|^2_{\omega,h}e^{-\psi} \in L^1_{\text{loc}}(X)$ and the lim sup $\to 0$ for $\text{Supp}(\tilde{g}) \subset U$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 4/17

 $\mathcal{D} \mathcal{Q} \mathcal{O}$

Example 1. Take $\psi(z) = r \log |s(z)|_{h_E}^2$, where $s \in H^0(X, E)$ and $r = \operatorname{rank}(E)$. Assume that $Y = s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

 $dV_Y[f^2, h, \psi] = c_{n,r} \frac{|f|^2_{\omega,h} dV_{Y,\omega}}{|\Lambda^r(ds)|^2_{\omega,h_E}} \quad \text{on } Y \smallsetminus \{\Lambda^r(ds) = 0\}.$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 5/17

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

臣

Example 1. Take $\psi(z) = r \log |s(z)|_{h_E}^2$, where $s \in H^0(X, E)$ and $r = \operatorname{rank}(E)$. Assume that $Y = s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

$$dV_{Y}[f^{2},h,\psi] = c_{n,r} \frac{|f|_{\omega,h}^{2} dV_{Y,\omega}}{|\Lambda^{r}(ds)|_{\omega,h_{F}}^{2}} \quad \text{on } Y \smallsetminus \{\Lambda^{r}(ds) = 0\}.$$

Proof. Near a regular point z_0 be can pick a holomorphic frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E and coordinates (z_1, \ldots, z_n) such that (e_{λ}) is h-orthornormal and $(\partial/\partial z_j)$ is ω -orthonormal at z_0 , and $s(z) = \sum_{1 \leq j \leq r} \lambda_j z_j e_j$, $\lambda_j \neq 0$. Then $\omega \sim i \sum dz_j \wedge d\overline{z}_j$ and $\psi(z) \sim r \log(|\lambda_1|^2 |z_1|^2 + \ldots + |\lambda_r|^2 |z_r|^2)$. This is an easy calculation of integrals on ellipsoids.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 5/17

・ロト ・ 理 ト ・ 国 ト ・ 国 ト - 三回

Example 1. Take $\psi(z) = r \log |s(z)|_{h_E}^2$, where $s \in H^0(X, E)$ and $r = \operatorname{rank}(E)$. Assume that $Y = s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

1 - 10

$$dV_{Y}[f^{2},h,\psi] = c_{n,r} \frac{|f|_{\omega,h}^{2} dV_{Y,\omega}}{|\Lambda^{r}(ds)|_{\omega,h_{E}}^{2}} \quad \text{on } Y \smallsetminus \{\Lambda^{r}(ds) = 0\}.$$

Proof. Near a regular point z_0 be can pick a holomorphic frame $(e_{\lambda})_{1 \leq \lambda \leq r}$ of E and coordinates (z_1, \ldots, z_n) such that (e_{λ}) is h-orthornormal and $(\partial/\partial z_j)$ is ω -orthonormal at z_0 , and $s(z) = \sum_{1 \leq j \leq r} \lambda_j z_j e_j$, $\lambda_j \neq 0$. Then $\omega \sim i \sum dz_j \wedge d\overline{z}_j$ and $\psi(z) \sim r \log(|\lambda_1|^2 |z_1|^2 + \ldots + |\lambda_r|^2 |z_r|^2)$. This is an easy calculation of integrals on ellipsoids.

Example 2. Take now $\psi(z) = \sum c_j \log |s_{D_j}|_{h_j}^2$ where $D = \sum c_j D_j$ is a simple normal crossing divisor, $c_j > 0$, and h_j is a C^{∞} metric on $\mathcal{O}_X(D_j)$. Also assume $h \in C^{\infty}$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 5/17

÷.

Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing $dV_Y[f^2, h, \psi]$ for $\psi(z) = \sum c_j \log |z_j|^2 + u(z)$, $u \in C^\infty$. However $dV_Y[f^2, h, \psi + u] = e^{-u} dV_Y[f^2, h, \psi]$,

thus we may assume u = 0. At a regular point of $D_j \setminus \bigcup_{k \neq j} D_k$, (and j = 1, say) we apply the Fubini theorem with $z = (z_1, z')$, $z' = (z_2, \ldots, z_n)$. We have to compute limits of the form

 $\lim_{t\to-\infty} \int_{e^t < |z_1|^{2c_1} < e^{t+1}} \frac{\widetilde{g}(z)|f(z)|^2}{|z_1|^{2c_1}} idz_1 \wedge d\overline{z}_1 = \frac{2\pi}{m_1} g(0,z')|\widetilde{h}(0,z')|^2$ when $c_1 = m_1 \in \mathbb{N}^*$ and $\widetilde{f}(z) = z_1^{m_1-1}\widetilde{h}(z)$. However, if $c_j < 1$, we get 0, and in general, if $c_j \notin \mathbb{N}^*$ and $c_j > 1$, we can get only 0 or ∞ values, according to the divisibility of f by $z_i^{m_j-1}$, $m_j = \lfloor c_j \rfloor \in \mathbb{N}^*$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 6/17

Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing $dV_Y[f^2, h, \psi]$ for $\psi(z) = \sum c_i \log |z_i|^2 + u(z)$, $u \in C^\infty$. However $dV_{Y}[f^{2}, h, \psi + u] = e^{-u} dV_{Y}[f^{2}, h, \psi],$

thus we may assume u = 0. At a regular point of $D_j \setminus \bigcup_{k \neq j} D_k$, (and j = 1, say) we apply the Fubini theorem with $z = (z_1, z')$, $z' = (z_2, \ldots, z_n)$. We have to compute limits of the form

 $\lim_{t \to -\infty} \int_{e^t < |z_1|^{2c_1} < e^{t+1}} \frac{\widetilde{g}(z)|f(z)|^2}{|z_1|^{2c_1}} \, idz_1 \wedge d\overline{z}_1 = \frac{2\pi}{m_1} \, g(0,z')|\widetilde{h}(0,z')|^2$ when $c_1 = m_1 \in \mathbb{N}^*$ and $\widetilde{f}(z) = z_1^{m_1-1}\widetilde{h}(z)$. However, if $c_j < 1$, we get 0, and in general, if $c_j \notin \mathbb{N}^*$ and $c_j > 1$, we can get only 0 or ∞ values, according to the divisibility of f by $z_i^{m_j-1}$, $m_j = \lfloor c_j \rfloor \in \mathbb{N}^*$. As a consequence, we can capture an interesting (i.e. locally finite, non zero) residual measure $dV_Y[f^2, h, \psi]$ only in the case where one of the coefficients c_i is an integer.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 6/17

E → E → Q @

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z)$, $g_j \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L² extension theorems and applications to alg. geometry 7/17

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ - 三 三

SAR

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z)$, $g_j \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$. Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases. Assume without loss of generality that c = 1.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 7/17

▲□▶ ▲ □▶ ▲ □▶ □ □

SOR

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z)$, $g_j \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$. Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases. Assume without loss of generality that c = 1. By Hironaka, we know that there exists a composition of blow-ups

 $\mu: \widetilde{X} \to X$ such that the pull-back ideal $\mu^*(g_j) = (g_j \circ \mu)$ is an invertible ideal sheaf $\mathcal{O}_{\widetilde{X}}(-\sum m_j D_j)$ associated with a simple normal crossing divisor.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 7/17

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Э

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z), g_j \in \mathcal{O}_X(V), u \in C^{\infty}(V)$. Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases.

Assume without loss of generality that c = 1. By Hironaka, we know that there exists a composition of blow-ups $\mu : \widetilde{X} \to X$ such that the pull-back ideal $\mu^*(g_j) = (g_j \circ \mu)$ is an

invertible ideal sheaf $\mathcal{O}_{\widetilde{X}}(-\sum m_j D_j)$ associated with a simple normal crossing divisor. The direct image formula implies

 $\mathcal{I}(e^{-s\psi}) = \mu_*(K_{\widetilde{X}/X} \otimes \mathcal{I}(e^{-s\psi\circ\mu})) = \mu_*\mathcal{O}_{\widetilde{X}}\left(\sum (a_j - \lfloor sm_j \rfloor)D_j\right)$ where $K_{\widetilde{X}/X} = \mathcal{O}_{\widetilde{X}}(\sum a_j D_j).$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 7/17

<ロト < 団 > < 国 > < 国 > < 国 > 三 国

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z)$, $g_j \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$. Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases. Assume without loss of generality that c = 1.

By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \to X$ such that the pull-back ideal $\mu^*(g_j) = (g_j \circ \mu)$ is an invertible ideal sheaf $\mathcal{O}_{\widetilde{X}}(-\sum m_j D_j)$ associated with a simple normal crossing divisor. The direct image formula implies

 $\mathcal{I}(e^{-s\psi}) = \mu_*(K_{\widetilde{X}/X} \otimes \mathcal{I}(e^{-s\psi \circ \mu})) = \mu_*\mathcal{O}_{\widetilde{X}}\Big(\sum (a_j - \lfloor sm_j \rfloor)D_j\Big)$

where $K_{\widetilde{X}/X} = \mathcal{O}_{\widetilde{X}}(\sum a_j D_j)$. This implies that $\mathcal{I}(e^{-s\psi})$ "jumps" precisely for a discrete sequence of rational numbers $0 = s_0 < s_1 < \ldots < s_k < \ldots$ such that $s_k m_j \in \mathbb{N}$ for some j.

- (I) ()

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 7/17

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z) = c \log \sum |g_j(z)|^2 + u(z)$, $g_j \in \mathcal{O}_X(V)$, $u \in C^{\infty}(V)$. Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}(e^{-s\psi})$ when $s \in \mathbb{R}_+$, which decrease as s increases. Assume without loss of generality that c = 1.

By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \to X$ such that the pull-back ideal $\mu^*(g_j) = (g_j \circ \mu)$ is an invertible ideal sheaf $\mathcal{O}_{\widetilde{X}}(-\sum m_j D_j)$ associated with a simple normal crossing divisor. The direct image formula implies

$$\mathcal{I}(e^{-s\psi}) = \mu_*(K_{\widetilde{X}/X} \otimes \mathcal{I}(e^{-s\psi\circ\mu})) = \mu_*\mathcal{O}_{\widetilde{X}}\Big(\sum (a_j - \lfloor sm_j \rfloor)D_j\Big)$$

where $K_{\widetilde{X}/X} = \mathcal{O}_{\widetilde{X}}(\sum a_j D_j)$. This implies that $\mathcal{I}(e^{-s\psi})$ "jumps" precisely for a discrete sequence of rational numbers $0 = s_0 < s_1 < \ldots < s_k < \ldots$ such that $s_k m_j \in \mathbb{N}$ for some j. For $f \in \mathcal{I}(e^{-s_{k-1}\psi})$, the measure $dV_Y[f^2, h, s_k\psi]$ will be interesting.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L² extension theorems and applications to alg. geometry

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 8/17

< ロ > < 団 > < 豆 > < 豆 > 、

æ

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}'_{\psi}(h)_x \subset \mathcal{I}(h)_x$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_x$ associated with $f = \tilde{f} \mod \mathcal{I}(he^{-\psi})_x$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})_x$, for which $dV[f^2, h, \psi]$ is locally finite near x on Y.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 8/17

Э

SOR

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}'_{\psi}(h)_x \subset \mathcal{I}(h)_x$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_x$ associated with $f = \tilde{f} \mod \mathcal{I}(he^{-\psi})_x$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})_x$, for which $dV[f^2, h, \psi]$ is locally finite near x on Y. Clearly, $\mathcal{I}(he^{-\psi}) \subset \mathcal{I}'_{\psi}(h) \subset \mathcal{I}(h)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 8/17

- 4 目 - 4 日 - 4 日 - 1

SOR

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}'_{\psi}(h)_x \subset \mathcal{I}(h)_x$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_x$ associated with $f = \tilde{f} \mod \mathcal{I}(he^{-\psi})_x$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})_x$, for which $dV[f^2, h, \psi]$ is locally finite near x on Y. Clearly, $\mathcal{I}(he^{-\psi}) \subset \mathcal{I}'_{\psi}(h) \subset \mathcal{I}(h)$.

Typical case of application. Assume that $h = e^{-\varphi}$ and ψ have analytic singularities, and that $s_k = 1$ is one of jumping values for $s \mapsto \mathcal{I}(e^{-s\psi})$ (case of log canonical singularities: $s_1 = 1$).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 8/17

SOG

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_Y = \mathcal{I}(he^{-\psi}) : \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}'_{\psi}(h)_x \subset \mathcal{I}(h)_x$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_x$ associated with $f = \tilde{f} \mod \mathcal{I}(he^{-\psi})_x$ in $\mathcal{I}(h)/\mathcal{I}(he^{-\psi})_x$, for which $dV[f^2, h, \psi]$ is locally finite near x on Y. Clearly, $\mathcal{I}(he^{-\psi}) \subset \mathcal{I}'_{\psi}(h) \subset \mathcal{I}(h)$.

Typical case of application. Assume that $h = e^{-\varphi}$ and ψ have analytic singularities, and that $s_k = 1$ is one of jumping values for $s \mapsto \mathcal{I}(e^{-s\psi})$ (case of log canonical singularities: $s_1 = 1$).

Then $\mathcal{I}'_{\psi}(h) \subset \mathcal{I}(he^{-s_{k-1}\psi})$ on X, and $\mathcal{I}'_{\psi}(h) = \mathcal{I}(he^{-s_{k-1}\psi})$ on a Zariski open subset $X_0 = X \setminus Z$, $Z \subsetneq Y$ (however, the ideals may differ on Z).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 8/17

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in]0,1[$ and $A = \sup_{X} \psi \in]-\infty, +\infty]$. We consider functions $\rho : [-\infty, A] \to \mathbb{R}^*_+$, such as

 $\rho(u) = 1 - (A + 1 + \alpha^{-1/2} - u)^{-1},$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty.$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 9/17

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

臣

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in]0,1[$ and $A = \sup_{X} \psi \in]-\infty, +\infty]$. We consider functions $\rho : [-\infty, A] \to \mathbb{R}^*_+$, such as

 $\rho(u) = 1 - (A + 1 + \alpha^{-1/2} - u)^{-1},$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty.$

We assume moreover that

$$\int_t^A \rho(u) \, du + \frac{\rho(A)}{\alpha} \leq \frac{\rho(t)^2}{|\rho'(t)|} \quad \text{for all } t \in]-\infty, A].$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 9/17

▲□ ▶ ▲ □ ▶ ▲ □ ▶ -

臣

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in]0,1[$ and $A = \sup_{X} \psi \in]-\infty, +\infty]$. We consider functions $\rho : [-\infty, A] \to \mathbb{R}^*_+$, such as

 $\rho(u) = 1 - (A + 1 + \alpha^{-1/2} - u)^{-1},$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty.$

We assume moreover that

$$\int_t^A \rho(u) \, du + \frac{\rho(A)}{\alpha} \leq \frac{\rho(t)^2}{|\rho'(t)|} \quad \text{for all } t \in]-\infty, A].$$

The L^2 estimates will involve integrals of the form $\int_X |F|^2_{\omega,h} e^{-\psi} |\rho'(\psi)| \, dV_{X,\omega}$, where $|\rho'(\psi)| = (C - \psi)^{-2}$ in the above example, so that $e^{-\psi} |\rho'(\psi)|$ is locally sommable when ψ has log canonical singularities.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 9/17

Sar

General L^2 extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h = h_0 e^{-\varphi}$, $h_0 \in C^{\infty}$, φ quasi-psh on X, and $\psi \in L^1_{loc}(X)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 10/17

General L^2 extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h = h_0 e^{-\varphi}$, $h_0 \in C^{\infty}$, φ quasi-psh on X, and $\psi \in L^1_{loc}(X)$. Assume $\exists \alpha > 0$ constant such that

 $\Theta_{L,h} + (1 + \nu \alpha)i\partial \overline{\partial}\psi \ge 0 \quad \text{on } X, \quad \nu = 0, 1.$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 10/17

General L^2 extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h = h_0 e^{-\varphi}$, $h_0 \in C^{\infty}$, φ quasi-psh on X, and $\psi \in L^1_{loc}(X)$. Assume $\exists \alpha > 0$ constant such that

$$\Theta_{L,h} + (1 +
u lpha) i \partial \overline{\partial} \psi \geq 0 \quad \text{on } X, \quad
u = 0, 1.$$

Then, for every $f \in H^0(Y, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}'_{\psi}(h)/\mathcal{I}(he^{-\psi}))$ s.t.

 $\int_{\mathbf{Y}} dV_{\mathbf{Y}}[f^2, h, \psi] < +\infty,$

there exists $F \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}'_{\psi}(h)$ that is mapped to f by the morphism $\mathcal{I}'_{\psi}(h) \to \mathcal{I}'_{\psi}(h)/\mathcal{I}(he^{-\psi})$, such that

$$\int_{X} |F|^{2}_{\omega,h} e^{-\psi} |\rho'(\psi)| \, dV_{X,\omega} \leq \rho(-\infty) \int_{Y} dV_{Y}[f^{2},h,\psi]$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 10/17

Every section $f \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$ admits a C^{∞} lifting

 $\widetilde{f} = \sum \xi_i \widetilde{f_i}, \ \widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$

by means of a Stein covering (U_i) of X and a partition of unity (ξ_i) subordinate to (U_i) .

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 11/17

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ |

臣

Every section $f \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$ admits a C^{∞} lifting

 $\widetilde{f} = \sum \xi_i \widetilde{f_i}, \quad \widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$

by means of a Stein covering (U_i) of X and a partition of unity (ξ_i) subordinate to (U_i) .

Since $\sum \overline{\partial} \xi_i = 0$, we have $\overline{\partial} \widetilde{f} = \sum \overline{\partial} \xi_i (\widetilde{f}_i - \widetilde{f}_j)$ on U_j , and since $\widetilde{f}_i - \widetilde{f}_j$ has coefficients in $\mathcal{I}(he^{-\psi})$, we see that $\overline{\partial} \widetilde{f}$ is valued in $\mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(he^{-\psi}) \otimes_{\mathcal{O}_X} C^{\infty}$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 11/17

- ∢ ⊒ →

SQA

Every section $f \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$ admits a C^{∞} lifting

 $\widetilde{f} = \sum \xi_i \widetilde{f_i}, \quad \widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$

by means of a Stein covering (U_i) of X and a partition of unity (ξ_i) subordinate to (U_i) .

Since $\sum \overline{\partial} \xi_i = 0$, we have $\overline{\partial} \widetilde{f} = \sum \overline{\partial} \xi_i (\widetilde{f}_i - \widetilde{f}_j)$ on U_j , and since $\widetilde{f}_i - \widetilde{f}_j$ has coefficients in $\mathcal{I}(he^{-\psi})$, we see that $\overline{\partial} \widetilde{f}$ is valued in

 $\mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(he^{-\psi}) \otimes_{\mathcal{O}_X} C^{\infty}.$

As X is assumed to be weakly pseudoconvex, we can consider $X_c = \{z \in X ; \gamma(z) < c\} \Subset X, \forall c \in \mathbb{R}, \text{ and get by compactness}$

 $\int_{X_c} |\overline{\partial}\widetilde{f}|^2_{\omega,h} e^{-\psi} dV_{X,\omega} < +\infty.$

San

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 11/17

Every section $f \in H^0(X, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h)/\mathcal{I}(he^{-\psi}))$ admits a C^{∞} lifting

 $\widetilde{f} = \sum \xi_i \widetilde{f_i}, \ \widetilde{f_i} \in H^0(U_i, \mathcal{O}_X(K_X \otimes L) \otimes \mathcal{I}(h))$

by means of a Stein covering (U_i) of X and a partition of unity (ξ_i) subordinate to (U_i) .

Since $\sum \overline{\partial} \xi_i = 0$, we have $\overline{\partial} \widetilde{f} = \sum \overline{\partial} \xi_i (\widetilde{f}_i - \widetilde{f}_j)$ on U_j , and since $\widetilde{f}_i - \widetilde{f}_j$ has coefficients in $\mathcal{I}(he^{-\psi})$, we see that $\overline{\partial} \widetilde{f}$ is valued in

 $\mathcal{O}_X(\mathsf{K}_X\otimes \mathsf{L})\otimes\mathcal{I}(he^{-\psi})\otimes_{\mathcal{O}_X}\mathsf{C}^\infty.$

As X is assumed to be weakly pseudoconvex, we can consider $X_c = \{z \in X ; \gamma(z) < c\} \Subset X, \forall c \in \mathbb{R}, \text{ and get by compactness}$

 $\int_{X} |\overline{\partial}\widetilde{f}|^{2}_{\omega,h} e^{-\psi} dV_{X,\omega} < +\infty.$

It will be enough to get estimates on X_c , and then let $c \to +\infty$. J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 11/17

(2) Solving the $\overline{\partial}$ equation

The next idea is to truncate \tilde{f} by multiplying \tilde{f} with a cut-off function $\theta(\psi - t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 12/17

< □ >

E

∍►

(2) Solving the $\overline{\partial}$ equation

The next idea is to truncate \tilde{f} by multiplying \tilde{f} with a cut-off function $\theta(\psi - t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$. $\{x \in X \mid t < \psi(x) < t+1\}$ $\psi(x) < t+1\}$ $\psi(x) < t+1$ $\psi(x)$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 12/17

Sar

(2) Solving the $\overline{\partial}$ equation

The next idea is to truncate \tilde{f} by multiplying \tilde{f} with a cut-off function $\theta(\psi - t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$. $\{x \in X \mid t < \psi(x) < t+1\}$

We next solve the approximate $\overline{\partial}$ -equation

$$(*) \qquad \overline{\partial} u_{t,\varepsilon} = v_t + w_{t,\varepsilon}$$

with $v_t := \overline{\partial}(\theta(\psi - t) \cdot \widetilde{f}) = \theta(\psi - t) \cdot \overline{\partial}\widetilde{f} + \theta'(\psi - t)\overline{\partial}\psi \wedge \widetilde{f}$.

It the weights ψ and φ of $h = h_0 e^{-\varphi}$ are not smooth, we use regularizations $\varphi_{\delta} \downarrow \varphi$, $\psi_{\delta} \downarrow \psi$ and complete Kähler metrics $\omega_{\delta} \downarrow \omega$ on $X \smallsetminus Z_{\delta}$. (We omit details here).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 12/17

The existence theorem with twisting factors $\eta_{t,\varepsilon}$, $\lambda_{t,\varepsilon}$ yields

$$\begin{split} \int_{X_{c}} (\eta_{t,\varepsilon} + \lambda_{t,\varepsilon})^{-1} |u_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_{c}} |w_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} \\ & \leq 4 \int_{X_{c} \cap \{\psi < t+1\}} |\overline{\partial}\widetilde{f}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{\omega} \\ & + 4 \int_{X_{c} \cap \{t < \psi < t+1\}} \langle (B_{t} + \varepsilon \operatorname{Id})^{-1} \overline{\partial}\psi \wedge \widetilde{f}, \overline{\partial}\psi \wedge \widetilde{f} \rangle_{\omega,h_{0}} e^{-\varphi - \psi}. \end{split}$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 13/17

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

< 🗆 🕨

E.

The existence theorem with twisting factors $\eta_{t,\varepsilon}$, $\lambda_{t,\varepsilon}$ yields $\int_{X_c} (\eta_{t,\varepsilon} + \lambda_{t,\varepsilon})^{-1} |u_{t,\varepsilon}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_c} |w_{t,\varepsilon}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{X,\omega}$ $\leq \sqrt{\int_{X_c} |\overline{\partial}\widetilde{f}|^2} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_c} |w_{t,\varepsilon}|^2_{\omega,h_0} e^{-\varphi - \psi} dV_{X,\omega}$

$$\leq 4 \int_{X_c \cap \{\psi < t+1\}} |\partial f|^2_{\omega,h_0} e^{-\varphi - \psi} dV_\omega + 4 \int_{X_c \cap \{t < \psi < t+1\}} \langle (B_t + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_0} e^{-\varphi - \psi}.$$

The first integral in the right hand side tends to 0 as $t \rightarrow -\infty$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 13/17

San

Э

The existence theorem with twisting factors $\eta_{t,\varepsilon}$, $\lambda_{t,\varepsilon}$ yields

$$\begin{split} \int_{X_{c}} (\eta_{t,\varepsilon} + \lambda_{t,\varepsilon})^{-1} |u_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_{c}} |w_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} \\ & \leq 4 \int_{X_{c} \cap \{\psi < t+1\}} |\overline{\partial} \widetilde{f}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{\omega} \\ & + 4 \int_{X_{c} \cap \{t < \psi < t+1\}} \langle (B_{t} + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_{0}} e^{-\varphi - \psi}. \end{split}$$

The first integral in the right hand side tends to 0 as $t \rightarrow -\infty$.

Again, the main point is to choose ad hoc factors η_t , λ_t , and we want here the last integral to converge to a finite limit.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 13/17

< 🗆 🕨

- 4 目 - 4 日 - 4 日 - 1

臣

The existence theorem with twisting factors $\eta_{t,\varepsilon}$, $\lambda_{t,\varepsilon}$ yields

$$\begin{split} \int_{X_{c}} (\eta_{t,\varepsilon} + \lambda_{t,\varepsilon})^{-1} |u_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} + \frac{1}{\varepsilon} \int_{X_{c}} |w_{t,\varepsilon}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{X,\omega} \\ & \leq 4 \int_{X_{c} \cap \{\psi < t+1\}} |\overline{\partial} \widetilde{f}|^{2}_{\omega,h_{0}} e^{-\varphi - \psi} dV_{\omega} \\ & + 4 \int_{X_{c} \cap \{t < \psi < t+1\}} \langle (B_{t} + \varepsilon \operatorname{Id})^{-1} \overline{\partial} \psi \wedge \widetilde{f}, \overline{\partial} \psi \wedge \widetilde{f} \rangle_{\omega,h_{0}} e^{-\varphi - \psi}. \end{split}$$

The first integral in the right hand side tends to 0 as $t \rightarrow -\infty$.

Again, the main point is to choose ad hoc factors η_t , λ_t , and we want here the last integral to converge to a finite limit. One can check that this works with

$$\begin{aligned} \zeta(u) &= \log \frac{\rho(-\infty)}{\rho(u)}, \quad \chi(u) = \frac{\int_{u}^{A} \rho(v) dv + \frac{1}{\alpha \rho(A)}}{\rho(u)}, \quad \beta = \frac{(\chi')^{2}}{\chi \zeta'' - \chi''}, \\ \sigma_{t,\varepsilon}(u) &= \max_{\varepsilon}(u,t), \quad \eta_{t,\varepsilon} = \chi(\sigma_{t,\varepsilon}(\psi)), \quad \lambda_{t,\varepsilon} = \beta(\sigma_{t,\varepsilon}(\psi)). \end{aligned}$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 13/17

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup_X(\psi + 2\log |w|) \leq 0$ and dw does not vanish identically on any branch of $w^{-1}(0)$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 14/17

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup_X(\psi + 2\log |w|) \le 0$ and dw does not vanish identically on any branch of $w^{-1}(0)$.

Denote $Y = w^{-1}(0)$ and $Y_0 = \{x \in Y : dw(x) \neq 0\}$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 14/17

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup_X(\psi + 2\log |w|) \leq 0$ and dw does not vanish identically on any branch of $w^{-1}(0)$.

Denote $Y = w^{-1}(0)$ and $Y_0 = \{x \in Y : dw(x) \neq 0\}$.

Then for any holomorphic (n-1)-form f on Y_0 satisfying

$$\int_{Y_0} \mathrm{e}^{-\varphi - \psi} i^{(n-1)^2} f \wedge \overline{f} < +\infty,$$

there exists a holomorphic *n*-form F on X satisfying $F_{|Y_0|} = dw \wedge f$ and an optimal estimate

$$\int_{X} e^{-\varphi} i^{n^{2}} F \wedge \overline{F} \leq 2\pi \int_{Y_{0}} e^{-\varphi - \psi} i^{(n-1)^{2}} f \wedge \overline{f}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 14/17

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic (1,0) forms on an open Riemann surface Ω which admits a Green function G_{Ω} .

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L² extension theorems and applications to alg. geometry 15/17

臣

- 4 回 ト - 4 回 ト

San

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic (1,0) forms on an open Riemann surface Ω which admits a Green function G_{Ω} .

Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$c_{eta}(z) = \exp \lim_{\xi o z} (G_{\Omega}(\xi, z) - \log |\xi - z|) \ \ ext{on } \Omega.$$

Suita conjecture

 $(c_{\beta}(z))^2 |dz|^2 \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 15/17

臣

《曰》《卽》《臣》《臣》

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic (1,0) forms on an open Riemann surface Ω which admits a Green function G_{Ω} .

Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$c_{eta}(z) = \exp \lim_{\xi o z} (G_{\Omega}(\xi, z) - \log |\xi - z|) \ \ ext{on } \Omega.$$

Suita conjecture

 $(c_{\beta}(z))^2 |dz|^2 \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

Theorem

The Suita conjecture holds true (planar case: Błocki 2013; general case: Guan-Zhou 2014).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 15/17

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic (1,0) forms on an open Riemann surface Ω which admits a Green function G_{Ω} .

Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$c_{eta}(z) = \exp \lim_{\xi o z} (G_{\Omega}(\xi, z) - \log |\xi - z|) \ \ ext{on } \Omega.$$

Suita conjecture

 $(c_{\beta}(z))^2 |dz|^2 \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

Theorem

The Suita conjecture holds true (planar case: Błocki 2013; general case: Guan-Zhou 2014). Moreover (Guan-Zhou 2014), equality holds iff Ω biholomorphic to disc minus a closed polar set.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 15/17

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \ge \delta \omega$ for a smooth (1,1) form $\omega > 0$ and $\delta \ll 1$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 16/17

< 🗆 🕨

< 47 ▶

∢ ⊒ ▶

臣

∃ ⊳

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \ge \delta \omega$ for a smooth (1,1) form $\omega > 0$ and $\delta \ll 1$.

Easy observation

 $\alpha \in \mathcal{E}^{\circ}$ (interior of \mathcal{E}) $\iff \alpha = \{T\}, T = a$ Kähler current. We say that \mathcal{E}° is the cone of big (1, 1)-classes.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 16/17

San

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \ge \delta \omega$ for a smooth (1,1) form $\omega > 0$ and $\delta \ll 1$.

Easy observation

 $\alpha \in \mathcal{E}^{\circ}$ (interior of \mathcal{E}) $\iff \alpha = \{T\}, T = a$ Kähler current. We say that \mathcal{E}° is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written $T = \lim T_m$ where $T_m \in \{T\}$ has analytic singularities & logarithmic poles, i.e. \exists modification $\mu_m : \widetilde{X}_m \to X$ such that $\mu_m^* T_m = [E_m] + \beta_m$, where $E_m \ge 0$ is a \mathbb{Q} -divisor on \widetilde{X}_m with coeff. in $\frac{1}{m}\mathbb{Z}$ and β_m is a Kähler form on \widetilde{X}_m .

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 16/17

00 Q

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \ge \delta \omega$ for a smooth (1,1) form $\omega > 0$ and $\delta \ll 1$.

Easy observation

 $\alpha \in \mathcal{E}^{\circ}$ (interior of \mathcal{E}) $\iff \alpha = \{T\}, T = a$ Kähler current. We say that \mathcal{E}° is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written $T = \lim T_m$ where $T_m \in \{T\}$ has analytic singularities & logarithmic poles, i.e. \exists modification $\mu_m : \widetilde{X}_m \to X$ such that $\mu_m^* T_m = [E_m] + \beta_m$, where $E_m \ge 0$ is a \mathbb{Q} -divisor on \widetilde{X}_m with coeff. in $\frac{1}{m}\mathbb{Z}$ and β_m is a Kähler form on \widetilde{X}_m .

Moreover (Boucksom), $\operatorname{Vol}(\beta_m) = \int_{\widetilde{X}_m} \beta_m^n \to \operatorname{Vol}(\mathcal{T})$ as $m \to +\infty$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 16/17

• Write locally on any coordinate ball $\Omega \subset X$

 $T = i\partial\overline{\partial}\varphi$

for some strictly plurisubharmonic psh potential φ on X.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 17/17

▲□ ▶ ▲ □ ▶ ▲ □ ▶

< 🗆 🕨

E.

• Write locally on any coordinate ball $\Omega \subset X$

$$T=i\partial\overline{\partial}arphi$$

for some strictly plurisubharmonic psh potential φ on X.

• Approximate T on Ω by

$$T_m = i\partial\overline{\partial}\varphi_m$$
, where $\varphi_m(z) = \frac{1}{2m}\log\sum_{\ell}|g_{\ell,m}(z)|^2$

where $(g_{\ell,m})$ is a Hilbert basis of the space

 $\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \, ; \, \|f\|_{m\varphi}^2 := \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 17/17

• Write locally on any coordinate ball $\Omega \subset X$

$$T=i\partial\overline{\partial}arphi$$

for some strictly plurisubharmonic psh potential φ on X.

• Approximate T on Ω by

$$T_m = i\partial\overline{\partial}\varphi_m$$
, where $\varphi_m(z) = \frac{1}{2m}\log\sum_{\ell}|g_{\ell,m}(z)|^2$

where $(g_{\ell,m})$ is a Hilbert basis of the space

 $\mathcal{H}(\Omega, m arphi) = ig\{ f \in \mathcal{O}(\Omega) \ ; \ \|f\|_{m arphi}^2 := \int_{\Omega} |f|^2 e^{-2m arphi} dV < +\infty ig\}.$

• We have
$$\varphi_m(z) = rac{1}{2m} \sup_{\|f\|_{m \varphi} \leq 1} \log |f(z)|^2$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 17/17

• Write locally on any coordinate ball $\Omega \subset X$

$$T=i\partial\overline{\partial}arphi$$

for some strictly plurisubharmonic psh potential φ on X.

• Approximate T on Ω by

$$T_m = i\partial\overline{\partial}\varphi_m$$
, where $\varphi_m(z) = \frac{1}{2m}\log\sum_{\ell}|g_{\ell,m}(z)|^2$

where $(g_{\ell,m})$ is a Hilbert basis of the space

- $\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \, ; \, \|f\|_{m\varphi}^2 := \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$
- We have $\varphi_m(z) = \frac{1}{2m} \sup_{\|f\|_{m\varphi} \leq 1} \log |f(z)|^2$.

The mean value inequality implies

$$|f(z)|^2 \leq \frac{1}{\pi^n r^{2n}/n!} \sup_{B(z,r)} e^{2m\varphi(z)} \Rightarrow \varphi_m(z) \leq \sup_{B(z,r)} \varphi + \frac{n}{m} \log \frac{C}{r}.$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 17/17

Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L^2 extension theorem (extension from a single isolated point) implies that for every $z_0 \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f(z_0) = c e^{m\varphi(z_0)}$ (c > 0 small), such that

$$||f||_{m\varphi}^{2} = \int_{\Omega} |f|^{2} e^{-2m\varphi} dV \le C \int_{\{z_{0}\}} |f|^{2} e^{-2m\varphi} \delta_{z_{0}} = 1$$

for $c = C^{-1/2}$. As a consequence $\varphi_m(z) \ge \varphi(z) + \frac{1}{2m} \log c$.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 18/17

3

SQA

Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L^2 extension theorem (extension from a single isolated point) implies that for every $z_0 \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f(z_0) = c e^{m\varphi(z_0)}$ (c > 0 small), such that

$$||f||_{m\varphi}^{2} = \int_{\Omega} |f|^{2} e^{-2m\varphi} dV \le C \int_{\{z_{0}\}} |f|^{2} e^{-2m\varphi} \delta_{z_{0}} = 1$$

for $c = C^{-1/2}$. As a consequence $\varphi_m(z) \ge \varphi(z) + \frac{1}{2m} \log c$.

• By the above inequalities one easily concludes that the Lelong number at any point $z_0 \in \Omega$ satisfies

$$\nu(\varphi, z_0) - \frac{\pi}{m} \leq \nu(\varphi_m, z_0) \leq \nu(\varphi, z_0).$$

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 18/17

SQA

Use of the pointwise Ohsawa-Takegoshi theorem

• The Ohsawa-Takegoshi L^2 extension theorem (extension from a single isolated point) implies that for every $z_0 \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f(z_0) = c e^{m\varphi(z_0)}$ (c > 0 small), such that

$$||f||_{m\varphi}^{2} = \int_{\Omega} |f|^{2} e^{-2m\varphi} dV \le C \int_{\{z_{0}\}} |f|^{2} e^{-2m\varphi} \delta_{z_{0}} = 1$$

for $c = C^{-1/2}$. As a consequence $\varphi_m(z) \ge \varphi(z) + \frac{1}{2m} \log c$.

• By the above inequalities one easily concludes that the Lelong number at any point $z_0 \in \Omega$ satisfies

$$u(\varphi, z_0) - \frac{n}{m} \leq \nu(\varphi_m, z_0) \leq \nu(\varphi, z_0).$$

This implies Siu's analyticity result for Lelong upper level sets $E_c(T)$.

• The case of a global current $T = \alpha + dd^c \varphi$ is obtained by using a covering of X by balls Ω_j , and gluing the local approximations $\varphi_{j,m}$ of φ into a global one φ_m by a partition of unity.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L^2 extension theorems and applications to alg. geometry 18/17