

L^{2} extension theorems and applications to algebraic geometry

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes \& Académie des Sciences de Paris

Complex Analysis and Geometry - XXV CIRM - ICTP virtual meeting, smr 3601

June 7-11, 2021

Second lecture

Second lecture

Second lecture: extension with optimal L^{2} estimates

Setup. Let $L \rightarrow X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h=h_{0} e^{-\varphi}, \varphi$ quasi-psh. Let $\psi \in L_{\text {loc }}^{1}$ such that $\varphi+\psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Second lecture: extension with optimal L^{2} estimates

Setup. Let $L \rightarrow X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h=h_{0} e^{-\varphi}, \varphi$ quasi-psh. Let $\psi \in L_{\text {loc }}^{1}$ such that $\varphi+\psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.
For a section $f \in H^{0}\left(Y, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, the goal is to get an "extension" $F \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$,

$$
\text { via } \mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right), \quad F \mapsto f,
$$

with an explicit L^{2} estimate of F on X in terms of a suitable L^{2} integral of f on the subvariety Y.

Second lecture: extension with optimal L^{2} estimates

Setup. Let $L \rightarrow X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h=h_{0} e^{-\varphi}, \varphi$ quasi-psh. Let $\psi \in L_{\text {loc }}^{1}$ such that $\varphi+\psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.
For a section $f \in H^{0}\left(Y, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, the goal is to get an "extension" $F \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$,

$$
\operatorname{via} \mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right), \quad F \mapsto f,
$$

with an explicit L^{2} estimate of F on X in terms of a suitable L^{2} integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly pseudoconvex (this is weaker than being holomorphically convex). This means that there exists a smooth psh exhaustion γ on X.

Second lecture: extension with optimal L^{2} estimates

Setup. Let $L \rightarrow X$ be a holomorphic line bundle, equipped with a singular hermitian metric $h=h_{0} e^{-\varphi}, \varphi$ quasi-psh. Let $\psi \in L_{\text {loc }}^{1}$ such that $\varphi+\psi$ is quasi-psh, and $Y \subset X$ the subvariety defined by the conductor ideal $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.
For a section $f \in H^{0}\left(Y, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, the goal is to get an "extension" $F \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$,

$$
\operatorname{via} \mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right), \quad F \mapsto f,
$$

with an explicit L^{2} estimate of F on X in terms of a suitable L^{2} integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly pseudoconvex (this is weaker than being holomorphically convex).
This means that there exists a smooth psh exhaustion γ on X.
We first define the Ohsawa residual measure associated with f.
As for f, this will be a measure supported on Y.

The Ohsawa residual measure

Given $f \in H^{0}\left(U, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, there exists a Stein covering $\left(U_{i}\right)$ of X and liftings $\widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{x}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$ of f on U_{i} via $\mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)$. We obtain in this way a C^{∞} extension $\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}$ where $\left(\xi_{i}\right)$ is a partition of unity.

The Ohsawa residual measure

Given $f \in H^{0}\left(U, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, there exists a Stein covering $\left(U_{i}\right)$ of X and liftings $\widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$ of f on U_{i} via $\mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)$. We obtain in this way a C^{∞} extension $\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}$ where $\left(\xi_{i}\right)$ is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_{c}(Y), g \geq 0$, and $0 \leq \widetilde{g} \in C_{c}(X)$ extending g, we set

$$
\int_{Y} g d V_{Y}\left[f^{2}, h, \psi\right]:=\inf _{\widetilde{g}} \limsup _{t \rightarrow-\infty} \int_{\{t<\psi<t+1\}} \widetilde{g}|\widetilde{f}|_{\omega, h}^{2} e^{-\psi} d V_{X, \omega} .
$$

The Ohsawa residual measure

Given $f \in H^{0}\left(U, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, there exists a Stein covering $\left(U_{i}\right)$ of X and liftings $\widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{x}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$ of f on U_{i} via $\mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)$. We obtain in this way a C^{∞} extension $\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}$ where $\left(\xi_{i}\right)$ is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_{c}(Y), g \geq 0$, and $0 \leq \widetilde{g} \in C_{c}(X)$ extending g, we set

$$
\int_{Y} g d V_{Y}\left[f^{2}, h, \psi\right]:=\inf _{\widetilde{g}} \limsup _{t \rightarrow-\infty} \int_{\{t<\psi<t+1\}} \widetilde{g}|\widetilde{f}|_{\omega, h}^{2} e^{-\psi} d V_{X, \omega} .
$$

Proposition

$d V_{Y}\left[f^{2}, h, \psi\right]$ is independent of the choice of \widetilde{f} as well as of ω, and defines a positive measure on Y (but not necessarily locally finite).

The Ohsawa residual measure

Given $f \in H^{0}\left(U, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$, there exists a Stein covering $\left(U_{i}\right)$ of X and liftings $\widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{x}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)$ of f on U_{i} via $\mathcal{I}(h) \rightarrow \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)$. We obtain in this way a C^{∞} extension $\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}$ where $\left(\xi_{i}\right)$ is a partition of unity.

Definition of the Ohsawa residual measure

For $g \in C_{c}(Y), g \geq 0$, and $0 \leq \widetilde{g} \in C_{c}(X)$ extending g, we set

$$
\int_{Y} g d V_{Y}\left[f^{2}, h, \psi\right]:=\inf _{\widetilde{g}} \limsup _{t \rightarrow-\infty} \int_{\{t<\psi<t+1\}} \widetilde{g}|\widetilde{f}|_{\omega, h}^{2} e^{-\psi} d V_{X, \omega} .
$$

Proposition

$d V_{Y}\left[f^{2}, h, \psi\right]$ is independent of the choice of \tilde{f} as well as of ω, and defines a positive measure on Y (but not necessarily locally finite).
Proof. When $\delta \widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h e^{-\psi}\right)\right)$, then $\left|\delta \widetilde{f}_{i}\right|_{\omega, h}^{2} e^{-\psi} \in L_{\mathrm{loc}}^{1}(X)$ and the $\lim \sup \rightarrow 0$ for $\operatorname{Supp}(\widetilde{g}) \subset U$.

The Ohsawa residual measure (2)

Example 1. Take $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$, where $s \in H^{0}(X, E)$ and $r=\operatorname{rank}(E)$. Assume that $Y=s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

$$
d V_{Y}\left[f^{2}, h, \psi\right]=c_{n, r} \frac{|f|_{\omega, h}^{2} d V_{Y, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}} \text { on } Y \backslash\left\{\Lambda^{r}(d s)=0\right\}
$$

The Ohsawa residual measure (2)

Example 1. Take $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$, where $s \in H^{0}(X, E)$ and $r=\operatorname{rank}(E)$. Assume that $Y=s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

$$
d V_{Y}\left[f^{2}, h, \psi\right]=c_{n, r} \frac{|f|_{\omega, h}^{2} d V_{Y, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}} \text { on } Y \backslash\left\{\Lambda^{r}(d s)=0\right\} .
$$

Proof. Near a regular point z_{0} be can pick a holomorphic frame $\left(e_{\lambda}\right)_{1 \leq \lambda \leq r}$ of E and coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that $\left(e_{\lambda}\right)$ is h-orthornormal and $\left(\partial / \partial z_{j}\right)$ is ω-orthonormal at z_{0}, and $s(z)=\sum_{1 \leq j \leq r} \lambda_{j} z_{j} e_{j}, \lambda_{j} \neq 0$. Then $\omega \sim i \sum d z_{j} \wedge d \bar{z}_{j}$ and $\psi(z) \sim r \log \left(\left|\lambda_{1}\right|^{2}\left|z_{1}\right|^{2}+\ldots+\left|\lambda_{r}\right|^{2}\left|z_{r}\right|^{2}\right)$. This is an easy calculation of integrals on ellipsoids.

The Ohsawa residual measure (2)

Example 1. Take $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$, where $s \in H^{0}(X, E)$ and $r=\operatorname{rank}(E)$. Assume that $Y=s^{-1}(0)$ is of codimension r, that s is generically transverse to 0 on Y and $h \in C^{\infty}$. Then

$$
d V_{Y}\left[f^{2}, h, \psi\right]=c_{n, r} \frac{|f|_{\omega, h}^{2} d V_{Y, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}} \text { on } Y \backslash\left\{\Lambda^{r}(d s)=0\right\} .
$$

Proof. Near a regular point z_{0} be can pick a holomorphic frame $\left(e_{\lambda}\right)_{1 \leq \lambda \leq r}$ of E and coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that $\left(e_{\lambda}\right)$ is h-orthornormal and $\left(\partial / \partial z_{j}\right)$ is ω-orthonormal at z_{0}, and $s(z)=\sum_{1 \leq j \leq r} \lambda_{j} z_{j} e_{j}, \lambda_{j} \neq 0$. Then $\omega \sim i \sum d z_{j} \wedge d \bar{z}_{j}$ and $\psi(z) \sim r \log \left(\left|\lambda_{1}\right|^{2}\left|z_{1}\right|^{2}+\ldots+\left|\lambda_{r}\right|^{2}\left|z_{r}\right|^{2}\right)$. This is an easy calculation of integrals on ellipsoids.
Example 2. Take now $\psi(z)=\sum c_{j} \log \left|s_{D_{j}}\right|_{h_{j}}^{2}$ where $D=\sum c_{j} D_{j}$ is a simple normal crossing divisor, $c_{j}>0$, and h_{j} is a C^{∞} metric on $\mathcal{O}_{X}\left(D_{j}\right)$. Also assume $h \in C^{\infty}$.

Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing $d V_{Y}\left[f^{2}, h, \psi\right]$ for $\psi(z)=\sum c_{j} \log \left|z_{j}\right|^{2}+u(z), u \in C^{\infty}$. However

$$
d V_{Y}\left[f^{2}, h, \psi+u\right]=e^{-u} d V_{Y}\left[f^{2}, h, \psi\right],
$$

thus we may assume $u=0$. At a regular point of $D_{j} \backslash \bigcup_{k \neq j} D_{k}$, (and $j=1$, say) we apply the Fubini theorem with $z=\left(z_{1}, z^{\prime}\right)$, $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)$. We have to compute limits of the form

$$
\lim _{t \rightarrow-\infty} \int_{e^{t}<\left|z_{1}\right|^{c_{1}}<e^{t+1}} \frac{\widetilde{g}(z)|\widetilde{f}(z)|^{2}}{\left|z_{1}\right|^{2 c_{1}}} i d z_{1} \wedge d \bar{z}_{1}=\frac{2 \pi}{m_{1}} g\left(0, z^{\prime}\right)\left|\widetilde{h}\left(0, z^{\prime}\right)\right|^{2}
$$

when $c_{1}=m_{1} \in \mathbb{N}^{*}$ and $\widetilde{f}(z)=z_{1}^{m_{1}-1} \widetilde{h}(z)$. However, if $c_{j}<1$, we get 0 , and in general, if $c_{j} \notin \mathbb{N}^{*}$ and $c_{j}>1$, we can get only 0 or ∞ values, according to the divisibility of f by $z_{j}^{m_{j}-1}, m_{j}=\left\lfloor c_{j}\right\rfloor \in \mathbb{N}^{*}$.

Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing $d V_{Y}\left[f^{2}, h, \psi\right]$ for $\psi(z)=\sum c_{j} \log \left|z_{j}\right|^{2}+u(z), u \in C^{\infty}$. However

$$
d V_{Y}\left[f^{2}, h, \psi+u\right]=e^{-u} d V_{Y}\left[f^{2}, h, \psi\right],
$$

thus we may assume $u=0$. At a regular point of $D_{j} \backslash \bigcup_{k \neq j} D_{k}$, (and $j=1$, say) we apply the Fubini theorem with $z=\left(z_{1}, z^{\prime}\right)$, $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right)$. We have to compute limits of the form

$$
\lim _{t \rightarrow-\infty} \int_{e^{t}<\left.\left|z_{1}\right|\right|^{2 c_{1}}<e^{t+1}} \frac{\widetilde{g}(z)|\widetilde{f}(z)|^{2}}{\left|z_{1}\right|^{2 c_{1}}} i d z_{1} \wedge d \bar{z}_{1}=\frac{2 \pi}{m_{1}} g\left(0, z^{\prime}\right)\left|\widetilde{h}\left(0, z^{\prime}\right)\right|^{2}
$$

when $c_{1}=m_{1} \in \mathbb{N}^{*}$ and $\widetilde{f}(z)=z_{1}^{m_{1}-1} \widetilde{h}(z)$. However, if $c_{j}<1$, we get 0 , and in general, if $c_{j} \notin \mathbb{N}^{*}$ and $c_{j}>1$, we can get only 0 or ∞ values, according to the divisibility of f by $z_{j}^{m_{j}-1}, m_{j}=\left\lfloor c_{j}\right\rfloor \in \mathbb{N}^{*}$.
As a consequence, we can capture an interesting (i.e. locally finite, non zero) residual measure $d V_{Y}\left[f^{2}, h, \psi\right]$ only in the case where one of the coefficients c_{j} is an integer.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}\left(e^{-s \psi}\right)$ when $s \in \mathbb{R}_{+}$, which decrease as s increases. Assume without loss of generality that $c=1$.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}\left(e^{-s \psi}\right)$ when $s \in \mathbb{R}_{+}$, which decrease as s increases. Assume without loss of generality that $c=1$.
By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \rightarrow X$ such that the pull-back ideal $\mu^{*}\left(g_{j}\right)=\left(g_{j} \circ \mu\right)$ is an invertible ideal sheaf $\mathcal{O}_{\tilde{x}}\left(-\sum m_{j} D_{j}\right)$ associated with a simple normal crossing divisor.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}\left(e^{-s \psi}\right)$ when $s \in \mathbb{R}_{+}$, which decrease as s increases. Assume without loss of generality that $c=1$.
By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \rightarrow X$ such that the pull-back ideal $\mu^{*}\left(g_{j}\right)=\left(g_{j} \circ \mu\right)$ is an invertible ideal sheaf $\mathcal{O}_{\tilde{X}}\left(-\sum m_{j} D_{j}\right)$ associated with a simple normal crossing divisor. The direct image formula implies

$$
\mathcal{I}\left(e^{-s \psi}\right)=\mu_{*}\left(K_{\tilde{x} / X} \otimes \mathcal{I}\left(e^{-s \psi \circ \mu}\right)\right)=\mu_{*} \mathcal{O}_{\tilde{X}}\left(\sum\left(a_{j}-\left\lfloor s m_{j}\right\rfloor\right) D_{j}\right)
$$

where $K_{\tilde{x} / X}=\mathcal{O}_{\tilde{x}}\left(\sum a_{j} D_{j}\right)$.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}\left(e^{-s \psi}\right)$ when $s \in \mathbb{R}_{+}$, which decrease as s increases. Assume without loss of generality that $c=1$.
By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \rightarrow X$ such that the pull-back ideal $\mu^{*}\left(g_{j}\right)=\left(g_{j} \circ \mu\right)$ is an invertible ideal sheaf $\mathcal{O}_{\tilde{X}}\left(-\sum m_{j} D_{j}\right)$ associated with a simple normal crossing divisor. The direct image formula implies

$$
\mathcal{I}\left(e^{-s \psi}\right)=\mu_{*}\left(K_{\tilde{x} / X} \otimes \mathcal{I}\left(e^{-s \psi \circ \mu}\right)\right)=\mu_{*} \mathcal{O}_{\tilde{X}}\left(\sum\left(a_{j}-\left\lfloor s m_{j}\right\rfloor\right) D_{j}\right)
$$

where $K_{\tilde{x} / X}=\mathcal{O}_{\tilde{x}}\left(\sum a_{j} D_{j}\right)$. This implies that $\mathcal{I}\left(e^{-s \psi}\right)$ "jumps" precisely for a discrete sequence of rational numbers
$0=s_{0}<s_{1}<\ldots<s_{k}<\ldots$ such that $s_{k} m_{j} \in \mathbb{N}$ for some j.

Ohsawa residual measure for analytic singularities

One general case of interests is when ψ has analytic singularities, i.e. locally $\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+u(z), g_{j} \in \mathcal{O}_{X}(V), u \in C^{\infty}(V)$.

Then, it is interesting to look at the family of multiplier ideal sheaves $\mathcal{I}\left(e^{-s \psi}\right)$ when $s \in \mathbb{R}_{+}$, which decrease as s increases. Assume without loss of generality that $c=1$.
By Hironaka, we know that there exists a composition of blow-ups $\mu: \widetilde{X} \rightarrow X$ such that the pull-back ideal $\mu^{*}\left(g_{j}\right)=\left(g_{j} \circ \mu\right)$ is an invertible ideal sheaf $\mathcal{O}_{\tilde{x}}\left(-\sum m_{j} D_{j}\right)$ associated with a simple normal crossing divisor. The direct image formula implies

$$
\mathcal{I}\left(e^{-s \psi}\right)=\mu_{*}\left(K_{\tilde{x} / X} \otimes \mathcal{I}\left(e^{-s \psi \circ \mu}\right)\right)=\mu_{*} \mathcal{O}_{\tilde{X}}\left(\sum\left(a_{j}-\left\lfloor s m_{j}\right\rfloor\right) D_{j}\right)
$$

where $K_{\tilde{x} / X}=\mathcal{O}_{\tilde{x}}\left(\sum a_{j} D_{j}\right)$. This implies that $\mathcal{I}\left(e^{-s \psi}\right)$ "jumps" precisely for a discrete sequence of rational numbers
$0=s_{0}<s_{1}<\ldots<s_{k}<\ldots$ such that $s_{k} m_{j} \in \mathbb{N}$ for some j.
For $f \in \mathcal{I}\left(e^{-s_{k-1} \psi}\right)$, the measure $d V_{Y}\left[f^{2}, h, s_{k} \psi\right]$ will be interesting.

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}_{\psi}^{\prime}(h)_{x} \subset \mathcal{I}(h)_{x}$ to be the ideal of germs of functions $\widetilde{f} \in \mathcal{I}(h)_{x}$ associated with $f=\widetilde{f} \bmod \mathcal{I}\left(h e^{-\psi}\right)_{x}$ in $\mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)_{x}$, for which $d V\left[f^{2}, h, \psi\right]$ is locally finite near x on Y.

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}_{\psi}^{\prime}(h)_{x} \subset \mathcal{I}(h)_{x}$ to be the ideal of germs of functions $\widetilde{f} \in \mathcal{I}(h)_{x}$ associated with $f=\widetilde{f} \bmod \mathcal{I}\left(h e^{-\psi}\right)_{x}$ in $\mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)_{x}$, for which $d V\left[f^{2}, h, \psi\right]$ is locally finite near x on Y. Clearly, $\mathcal{I}\left(h e^{-\psi}\right) \subset \mathcal{I}_{\psi}^{\prime}(h) \subset \mathcal{I}(h)$.

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}_{\psi}^{\prime}(h)_{x} \subset \mathcal{I}(h)_{x}$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_{x}$ associated with $f=\widetilde{f} \bmod \mathcal{I}\left(h e^{-\psi}\right)_{x}$ in $\mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)_{x}$, for which $d V\left[f^{2}, h, \psi\right]$ is locally finite near x on Y. Clearly, $\mathcal{I}\left(h e^{-\psi}\right) \subset \mathcal{I}_{\psi}^{\prime}(h) \subset \mathcal{I}(h)$.

Typical case of application. Assume that $h=e^{-\varphi}$ and ψ have analytic singularities, and that $s_{k}=1$ is one of jumping values for $s \mapsto \mathcal{I}\left(e^{-s \psi}\right)$ (case of log canonical singularities: $s_{1}=1$).

Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions on the subvariety Y associated with $\mathcal{J}_{Y}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$.

Definition of the restricted multiplier ideal

For $x \in Y$, we define $\mathcal{I}_{\psi}^{\prime}(h)_{x} \subset \mathcal{I}(h)_{x}$ to be the ideal of germs of functions $\tilde{f} \in \mathcal{I}(h)_{x}$ associated with $f=\widetilde{f} \bmod \mathcal{I}\left(h e^{-\psi}\right)_{x}$ in $\mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)_{x}$, for which $d V\left[f^{2}, h, \psi\right]$ is locally finite near x on Y. Clearly, $\mathcal{I}\left(h e^{-\psi}\right) \subset \mathcal{I}_{\psi}^{\prime}(h) \subset \mathcal{I}(h)$.

Typical case of application. Assume that $h=e^{-\varphi}$ and ψ have analytic singularities, and that $s_{k}=1$ is one of jumping values for $s \mapsto \mathcal{I}\left(e^{-s \psi}\right)$ (case of log canonical singularities: $s_{1}=1$).
Then $\mathcal{I}_{\psi}^{\prime}(h) \subset \mathcal{I}\left(h e^{-s_{k-1} \psi}\right)$ on X, and $\mathcal{I}_{\psi}^{\prime}(h)=\mathcal{I}\left(h e^{-s_{k-1} \psi}\right)$ on a Zariski open subset $X_{0}=X \backslash Z, Z \subsetneq Y$ (however, the ideals may differ on Z).

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in] 0,1\left[\right.$ and $\left.\left.A=\sup _{X} \psi \in\right]-\infty,+\infty\right]$. We consider functions $\rho:[-\infty, A] \rightarrow \mathbb{R}_{+}^{*}$, such as

$$
\rho(u)=1-\left(A+1+\alpha^{-1 / 2}-u\right)^{-1}
$$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty$.

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in] 0,1\left[\right.$ and $\left.\left.A=\sup _{X} \psi \in\right]-\infty,+\infty\right]$. We consider functions $\rho:[-\infty, A] \rightarrow \mathbb{R}_{+}^{*}$, such as

$$
\rho(u)=1-\left(A+1+\alpha^{-1 / 2}-u\right)^{-1},
$$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty$.

We assume moreover that

$$
\left.\left.\int_{t}^{A} \rho(u) d u+\frac{\rho(A)}{\alpha} \leq \frac{\rho(t)^{2}}{\left|\rho^{\prime}(t)\right|} \quad \text { for all } t \in\right]-\infty, A\right]
$$

Use of more "flexible" weights

The next issue is that we need special and rather flexible weights. Let $\alpha \in] 0,1\left[\right.$ and $\left.\left.A=\sup _{x} \psi \in\right]-\infty,+\infty\right]$. We consider functions $\rho:[-\infty, A] \rightarrow \mathbb{R}_{+}^{*}$, such as

$$
\rho(u)=1-\left(A+1+\alpha^{-1 / 2}-u\right)^{-1}
$$

that are continuous strictly decreasing, with the property that ρ is concave near $-\infty$.

We assume moreover that

$$
\left.\left.\int_{t}^{A} \rho(u) d u+\frac{\rho(A)}{\alpha} \leq \frac{\rho(t)^{2}}{\left|\rho^{\prime}(t)\right|} \quad \text { for all } t \in\right]-\infty, A\right]
$$

The L^{2} estimates will involve integrals of the form $\int_{X}|F|_{\omega, h}^{2} e^{-\psi}\left|\rho^{\prime}(\psi)\right| d V_{X, \omega}$, where $\left|\rho^{\prime}(\psi)\right|=(C-\psi)^{-2}$ in the above example, so that $e^{-\psi}\left|\rho^{\prime}(\psi)\right|$ is locally sommable when ψ has \log canonical singularities.

General L^{2} extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h=h_{0} e^{-\varphi}$, $h_{0} \in C^{\infty}, \varphi$ quasi-psh on X, and $\psi \in L_{\mathrm{loc}}^{1}(X)$.

General L^{2} extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h=h_{0} e^{-\varphi}$, $h_{0} \in C^{\infty}, \varphi$ quasi-psh on X, and $\psi \in L_{\text {loc }}^{1}(X)$. Assume $\exists \alpha>0$ constant such that

$$
\Theta_{L, h}+(1+\nu \alpha) i \partial \bar{\partial} \psi \geq 0 \quad \text { on } X, \quad \nu=0,1 .
$$

General L^{2} extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle with a hermitian metric $h=h_{0} e^{-\varphi}$, $h_{0} \in C^{\infty}, \varphi$ quasi-psh on X, and $\psi \in L_{\text {loc }}^{1}(X)$. Assume $\exists \alpha>0$ constant such that

$$
\Theta_{L, h}+(1+\nu \alpha) i \partial \bar{\partial} \psi \geq 0 \quad \text { on } X, \quad \nu=0,1 .
$$

Then, for every $f \in H^{0}\left(Y, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}_{\psi}^{\prime}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$ s.t.

$$
\int_{Y} d V_{Y}\left[f^{2}, h, \psi\right]<+\infty
$$

there exists $F \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}_{\psi}^{\prime}(h)\right.$ that is mapped to f by the morphism $\mathcal{I}_{\psi}^{\prime}(h) \rightarrow \mathcal{I}_{\psi}^{\prime}(h) / \mathcal{I}\left(h e^{-\psi}\right)$, such that

$$
\int_{X}|F|_{\omega, h}^{2} e^{-\psi}\left|\rho^{\prime}(\psi)\right| d V_{X, \omega} \leq \rho(-\infty) \int_{Y} d V_{Y}\left[f^{2}, h, \psi\right] .
$$

(1) Construction of a smooth extension

Every section $f \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$ admits a C^{∞} lifting

$$
\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}, \quad \widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)
$$

by means of a Stein covering $\left(U_{i}\right)$ of X and a partition of unity $\left(\xi_{i}\right)$ subordinate to $\left(U_{i}\right)$.

(1) Construction of a smooth extension

Every section $f \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$ admits a C^{∞} lifting

$$
\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}, \quad \widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)
$$

by means of a Stein covering $\left(U_{i}\right)$ of X and a partition of unity $\left(\xi_{i}\right)$ subordinate to $\left(U_{i}\right)$.
Since $\sum \bar{\partial} \xi_{i}=0$, we have $\bar{\partial} \widetilde{f}=\sum \bar{\partial} \xi_{i}\left(\widetilde{f}_{i}-\widetilde{f}_{j}\right)$ on U_{j}, and since $\widetilde{f}_{i}-\widetilde{f}_{j}$ has coefficients in $\mathcal{I}\left(h e^{-\psi}\right)$, we see that $\bar{\partial} \widetilde{f}$ is valued in

$$
\mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h e^{-\psi}\right) \otimes_{\mathcal{O}_{x}} C^{\infty} .
$$

(1) Construction of a smooth extension

Every section $f \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$ admits a C^{∞} lifting

$$
\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}, \quad \widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)
$$

by means of a Stein covering $\left(U_{i}\right)$ of X and a partition of unity $\left(\xi_{i}\right)$ subordinate to $\left(U_{i}\right)$.
Since $\sum \bar{\partial} \xi_{i}=0$, we have $\bar{\partial} \widetilde{f}=\sum \bar{\partial} \xi_{i}\left(\widetilde{f}_{i}-\widetilde{f}_{j}\right)$ on U_{j}, and since $\widetilde{f}_{i}-\widetilde{f}_{j}$ has coefficients in $\mathcal{I}\left(h e^{-\psi}\right)$, we see that $\bar{\partial} \widetilde{f}$ is valued in

$$
\mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h e^{-\psi}\right) \otimes_{\mathcal{O}_{x}} C^{\infty}
$$

As X is assumed to be weakly pseudoconvex, we can consider $X_{c}=\{z \in X ; \gamma(z)<c\} \Subset X, \forall c \in \mathbb{R}$, and get by compactness

$$
\int_{X_{c}} \mid \bar{\partial} \widetilde{f}_{\omega, h}^{2} e^{-\psi} d V_{X, \omega}<+\infty
$$

(1) Construction of a smooth extension

Every section $f \in H^{0}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h) / \mathcal{I}\left(h e^{-\psi}\right)\right)$ admits a C^{∞} lifting

$$
\widetilde{f}=\sum \xi_{i} \widetilde{f}_{i}, \quad \widetilde{f}_{i} \in H^{0}\left(U_{i}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}(h)\right)
$$

by means of a Stein covering $\left(U_{i}\right)$ of X and a partition of unity $\left(\xi_{i}\right)$ subordinate to $\left(U_{i}\right)$.
Since $\sum \bar{\partial} \xi_{i}=0$, we have $\bar{\partial} \widetilde{f}=\sum \bar{\partial} \xi_{i}\left(\widetilde{f}_{i}-\widetilde{f}_{j}\right)$ on U_{j}, and since $\widetilde{f}_{i}-\widetilde{f}_{j}$ has coefficients in $\mathcal{I}\left(h e^{-\psi}\right)$, we see that $\bar{\partial} \widetilde{f}$ is valued in

$$
\mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h e^{-\psi}\right) \otimes_{\mathcal{O}_{x}} C^{\infty}
$$

As X is assumed to be weakly pseudoconvex, we can consider $X_{c}=\{z \in X ; \gamma(z)<c\} \Subset X, \forall c \in \mathbb{R}$, and get by compactness

$$
\int_{X_{c}} \mid \bar{\partial} \widetilde{f}_{\omega, h}^{2} e^{-\psi} d V_{X, \omega}<+\infty
$$

It will be enough to get estimates on X_{c}, and then let $c \rightarrow+\infty$.

(2) Solving the $\bar{\partial}$ equation

The next idea is to truncate \widetilde{f} by multiplying \widetilde{f} with a cut-off function $\theta(\psi-t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$.
$\{x \in X / t<\psi(x)<t+1\}$

(2) Solving the $\bar{\partial}$ equation

The next idea is to truncate \widetilde{f} by multiplying \widetilde{f} with a cut-off function $\theta(\psi-t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$.
$\{x \in X / t<\psi(x)<t+1\}$

We next solve the approximate $\bar{\partial}$-equation
(*) $\quad \bar{\partial} u_{t, \varepsilon}=v_{t}+w_{t, \varepsilon}$
with $v_{t}:=\bar{\partial}(\theta(\psi-t) \cdot \widetilde{f})=\theta(\psi-t) \cdot \bar{\partial} \tilde{f}+\theta^{\prime}(\psi-t) \bar{\partial} \psi \wedge \widetilde{f}$.

(2) Solving the $\bar{\partial}$ equation

The next idea is to truncate \widetilde{f} by multiplying \widetilde{f} with a cut-off function $\theta(\psi-t)$ equal to 1 near $Y \subset \psi^{-1}(-\infty)$.
$\{x \in X / t<\psi(x)<t+1\}$

We next solve the approximate $\bar{\partial}$-equation
(*) $\quad \bar{\partial} u_{t, \varepsilon}=v_{t}+w_{t, \varepsilon}$
with $v_{t}:=\bar{\partial}(\theta(\psi-t) \cdot \widetilde{f})=\theta(\psi-t) \cdot \bar{\partial} \tilde{f}+\theta^{\prime}(\psi-t) \bar{\partial} \psi \wedge \widetilde{f}$.
It the weights ψ and φ of $h=h_{0} e^{-\varphi}$ are not smooth, we use regularizations $\varphi_{\delta} \downarrow \varphi, \psi_{\delta} \downarrow \psi$ and complete Kähler metrics $\omega_{\delta} \downarrow \omega$ on $X \backslash Z_{\delta}$. (We omit details here).

(3) L^{2} estimates for solution and error term

The existence theorem with twisting factors $\eta_{t, \varepsilon}, \lambda_{t, \varepsilon}$ yields

$$
\begin{aligned}
\int_{X_{c}}\left(\eta_{t, \varepsilon}\right. & \left.+\lambda_{t, \varepsilon}\right)^{-1}\left|u_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega}+\frac{1}{\varepsilon} \int_{X_{c}}\left|w_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega} \\
& \leq 4 \int_{X_{c} \cap\{\psi<t+1\}}|\bar{\partial} \widetilde{f}|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{\omega} \\
& +4 \int_{X_{c} \cap\{t<\psi<t+1\}}\left\langle\left(B_{t}+\varepsilon \mathrm{Id}\right)^{-1} \bar{\partial} \psi \wedge \widetilde{f}, \bar{\partial} \psi \wedge \widetilde{f}\right\rangle_{\omega, h_{0}} e^{-\varphi-\psi} .
\end{aligned}
$$

(3) L^{2} estimates for solution and error term

The existence theorem with twisting factors $\eta_{t, \varepsilon}, \lambda_{t, \varepsilon}$ yields

$$
\begin{aligned}
& \int_{X_{c}}\left(\eta_{t, \varepsilon}+\lambda_{t, \varepsilon}\right)^{-1}\left|u_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega}+\frac{1}{\varepsilon} \int_{X_{c}}\left|w_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega} \\
& \leq 4 \int_{X_{c} \cap\{\psi<t+1\}}|\bar{\partial} \widetilde{f}|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{\omega} \\
&+4 \int_{X_{c} \cap\{t<\psi<t+1\}}\left\langle\left(B_{t}+\varepsilon \mathrm{Id}\right)^{-1} \bar{\partial} \psi \wedge \widetilde{f}, \bar{\partial} \psi \wedge \widetilde{f}\right\rangle_{\omega, h_{0}} e^{-\varphi-\psi} .
\end{aligned}
$$

The first integral in the right hand side tends to 0 as $t \rightarrow-\infty$.

(3) L^{2} estimates for solution and error term

The existence theorem with twisting factors $\eta_{t, \varepsilon}, \lambda_{t, \varepsilon}$ yields

$$
\begin{aligned}
& \int_{X_{c}}\left(\eta_{t, \varepsilon}+\lambda_{t, \varepsilon}\right)^{-1}\left|u_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega}+\frac{1}{\varepsilon} \int_{X_{c}}\left|w_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega} \\
& \leq 4 \int_{X_{c} \cap\{\psi<t+1\}}|\bar{\partial} \widetilde{f}|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{\omega} \\
&+4 \int_{X_{c} \cap\{t<\psi<t+1\}}\left\langle\left(B_{t}+\varepsilon \mathrm{Id}\right)^{-1} \bar{\partial} \psi \wedge \widetilde{f}, \bar{\partial} \psi \wedge \widetilde{f}\right\rangle_{\omega, h_{0}} e^{-\varphi-\psi} .
\end{aligned}
$$

The first integral in the right hand side tends to 0 as $t \rightarrow-\infty$.
Again, the main point is to choose ad hoc factors η_{t}, λ_{t}, and we want here the last integral to converge to a finite limit.

(3) L^{2} estimates for solution and error term

The existence theorem with twisting factors $\eta_{t, \varepsilon}, \lambda_{t, \varepsilon}$ yields

$$
\begin{aligned}
& \int_{X_{c}}\left(\eta_{t, \varepsilon}+\lambda_{t, \varepsilon}\right)^{-1}\left|u_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega}+\frac{1}{\varepsilon} \int_{X_{c}}\left|w_{t, \varepsilon}\right|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{X, \omega} \\
& \leq 4 \int_{X_{c} \cap\{\psi<t+1\}}|\bar{\partial} \widetilde{f}|_{\omega, h_{0}}^{2} e^{-\varphi-\psi} d V_{\omega} \\
&+4 \int_{X_{c} \cap\{t<\psi<t+1\}}\left\langle\left(B_{t}+\varepsilon \mathrm{Id}\right)^{-1} \bar{\partial} \psi \wedge \widetilde{f}, \bar{\partial} \psi \wedge \widetilde{f}\right\rangle_{\omega, h_{0}} e^{-\varphi-\psi} .
\end{aligned}
$$

The first integral in the right hand side tends to 0 as $t \rightarrow-\infty$.
Again, the main point is to choose ad hoc factors η_{t}, λ_{t}, and we want here the last integral to converge to a finite limit. One can check that this works with

$$
\begin{aligned}
& \zeta(u)=\log \frac{\rho(-\infty)}{\rho(u)}, \quad \chi(u)=\frac{\int_{u}^{A} \rho(v) d v+\frac{1}{\alpha \rho(A)}}{\rho(u)}, \quad \beta=\frac{\left(\chi^{\prime}\right)^{2}}{\chi \zeta^{\prime \prime}-\chi^{\prime \prime}}, \\
& \sigma_{t, \varepsilon}(u)=\max _{\varepsilon}(u, t), \quad \eta_{t, \varepsilon}=\chi\left(\sigma_{t, \varepsilon}(\psi)\right), \quad \lambda_{t, \varepsilon}=\beta\left(\sigma_{t, \varepsilon}(\psi)\right) .
\end{aligned}
$$

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup _{X}(\psi+2 \log |w|) \leq 0$ and $d w$ does not vanish identically on any branch of $w^{-1}(0)$.

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup _{X}(\psi+2 \log |w|) \leq 0$ and $d w$ does not vanish identically on any branch of $w^{-1}(0)$.
Denote $Y=w^{-1}(0)$ and $Y_{0}=\{x \in Y: d w(x) \neq 0\}$.

Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Theorem

Let X be a Stein manifold of dimension n. Let φ and ψ be plurisubharmonic functions on X. Assume that w is a holomorphic function on X such that $\sup _{X}(\psi+2 \log |w|) \leq 0$ and $d w$ does not vanish identically on any branch of $w^{-1}(0)$.
Denote $Y=w^{-1}(0)$ and $Y_{0}=\{x \in Y: d w(x) \neq 0\}$.
Then for any holomorphic $(n-1)$-form f on Y_{0} satisfying

$$
\int_{Y_{0}} \mathrm{e}^{-\varphi-\psi} i^{(n-1)^{2}} f \wedge \bar{f}<+\infty,
$$

there exists a holomorphic n-form F on X satisfying $F_{\mid Y_{0}}=d w \wedge f$ and an optimal estimate

$$
\int_{X} \mathrm{e}^{-\varphi} i^{n^{2}} F \wedge \bar{F} \leq 2 \pi \int_{Y_{0}} \mathrm{e}^{-\varphi-\psi} i^{(n-1)^{2}} f \wedge \bar{f}
$$

The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic $(1,0)$ forms on an open Riemann surface Ω which admits a Green function G_{Ω}.

The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic $(1,0)$ forms on an open Riemann surface Ω which admits a Green function G_{Ω}.
Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$
c_{\beta}(z)=\exp \lim _{\xi \rightarrow z}\left(G_{\Omega}(\xi, z)-\log |\xi-z|\right) \text { on } \Omega .
$$

Suita conjecture

$\left(c_{\beta}(z)\right)^{2}|d z|^{2} \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic $(1,0)$ forms on an open Riemann surface Ω which admits a Green function G_{Ω}.
Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$
c_{\beta}(z)=\exp \lim _{\xi \rightarrow z}\left(G_{\Omega}(\xi, z)-\log |\xi-z|\right) \text { on } \Omega .
$$

Suita conjecture

$\left(c_{\beta}(z)\right)^{2}|d z|^{2} \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

Theorem

The Suita conjecture holds true (planar case: Błocki 2013; general case: Guan-Zhou 2014).

The Suita conjecture

The Suita conjecture was posed originally on open Riemann surfaces in 1972. The motivation was to answer a question posed by Sario and Oikawa about the relation between the Bergman kernel B_{Ω} for holomorphic $(1,0)$ forms on an open Riemann surface Ω which admits a Green function G_{Ω}.
Recall that the logarithmic capacity $c_{\beta}(z)$ is locally defined by

$$
c_{\beta}(z)=\exp \lim _{\xi \rightarrow z}\left(G_{\Omega}(\xi, z)-\log |\xi-z|\right) \text { on } \Omega .
$$

Suita conjecture

$\left(c_{\beta}(z)\right)^{2}|d z|^{2} \leq \pi B_{\Omega}(z)$, for every $z \in \Omega$.

Theorem

The Suita conjecture holds true (planar case: Błocki 2013; general case: Guan-Zhou 2014). Moreover (Guan-Zhou 2014), equality holds iff Ω biholomorphic to disc minus a closed polar set.

Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \geq \delta \omega$ for a smooth $(1,1)$ form $\omega>0$ and $\delta \ll 1$.

Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \geq \delta \omega$ for a smooth $(1,1)$ form $\omega>0$ and $\delta \ll 1$.

Easy observation

$\alpha \in \mathcal{E}^{\circ}$ (interior of $\left.\mathcal{E}\right) \Longleftrightarrow \alpha=\{T\}, T=$ a Kähler current.
We say that \mathcal{E}° is the cone of $\operatorname{big}(1,1)$-classes.

Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \geq \delta \omega$ for a smooth $(1,1)$ form $\omega>0$ and $\delta \ll 1$.

Easy observation

$\alpha \in \mathcal{E}^{\circ}$ (interior of $\left.\mathcal{E}\right) \Longleftrightarrow \alpha=\{T\}, T=$ a Kähler current. We say that \mathcal{E}° is the cone of big $(1,1)$-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written $T=\lim T_{m}$ where $T_{m} \in\{T\}$ has analytic singularities \& logarithmic poles, i.e. \exists modification $\mu_{m}: \widetilde{X}_{m} \rightarrow X$ such that $\mu_{m}^{\star} T_{m}=\left[E_{m}\right]+\beta_{m}$, where $E_{m} \geq 0$ is a \mathbb{Q}-divisor on \widetilde{X}_{m} with coeff. in $\frac{1}{m} \mathbb{Z}$ and β_{m} is a Kähler form on \widetilde{X}_{m}.

Approximation of currents, Zariski decomposition

Definition

On X compact Kähler, a Kähler current T is a closed (1,1)-current T such that $T \geq \delta \omega$ for a smooth $(1,1)$ form $\omega>0$ and $\delta \ll 1$.

Easy observation

$\alpha \in \mathcal{E}^{\circ}$ (interior of $\left.\mathcal{E}\right) \Longleftrightarrow \alpha=\{T\}, T=$ a Kähler current. We say that \mathcal{E}° is the cone of big $(1,1)$-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kähler current can be written $T=\lim T_{m}$ where $T_{m} \in\{T\}$ has analytic singularities \& logarithmic poles, i.e. \exists modification $\mu_{m}: \widetilde{X}_{m} \rightarrow X$ such that $\mu_{m}^{\star} T_{m}=\left[E_{m}\right]+\beta_{m}$, where $E_{m} \geq 0$ is a \mathbb{Q}-divisor on \widetilde{X}_{m} with coeff. in $\frac{1}{m} \mathbb{Z}$ and β_{m} is a Kähler form on \widetilde{X}_{m}.

Moreover (Boucksom), $\operatorname{Vol}\left(\beta_{m}\right)=\int_{\tilde{X}_{m}} \beta_{m}^{n} \rightarrow \operatorname{Vol}(T)$ as $m \rightarrow+\infty$.

Proof of the analytic Zariski decomposition

- Write locally on any coordinate ball $\Omega \subset X$

$$
T=i \partial \bar{\partial} \varphi
$$

for some strictly plurisubharmonic psh potential φ on X.

Proof of the analytic Zariski decomposition

- Write locally on any coordinate ball $\Omega \subset X$

$$
T=i \partial \bar{\partial} \varphi
$$

for some strictly plurisubharmonic psh potential φ on X.

- Approximate T on Ω by

$$
T_{m}=i \partial \bar{\partial} \varphi_{m}, \quad \text { where } \quad \varphi_{m}(z)=\frac{1}{2 m} \log \sum_{\ell}\left|g_{\ell, m}(z)\right|^{2}
$$

where $\left(g_{\ell, m}\right)$ is a Hilbert basis of the space

$$
\mathcal{H}(\Omega, m \varphi)=\left\{f \in \mathcal{O}(\Omega) ;\|f\|_{m \varphi}^{2}:=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V<+\infty\right\} .
$$

Proof of the analytic Zariski decomposition

- Write locally on any coordinate ball $\Omega \subset X$

$$
T=i \partial \bar{\partial} \varphi
$$

for some strictly plurisubharmonic psh potential φ on X.

- Approximate T on Ω by

$$
T_{m}=i \partial \bar{\partial} \varphi_{m}, \quad \text { where } \quad \varphi_{m}(z)=\frac{1}{2 m} \log \sum_{\ell}\left|g_{\ell, m}(z)\right|^{2}
$$

where $\left(g_{\ell, m}\right)$ is a Hilbert basis of the space

$$
\mathcal{H}(\Omega, m \varphi)=\left\{f \in \mathcal{O}(\Omega) ;\|f\|_{m \varphi}^{2}:=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V<+\infty\right\} .
$$

- We have $\varphi_{m}(z)=\frac{1}{2 m} \sup _{\|f\|_{m \varphi} \leq 1} \log |f(z)|^{2}$.

Proof of the analytic Zariski decomposition

- Write locally on any coordinate ball $\Omega \subset X$

$$
T=i \partial \bar{\partial} \varphi
$$

for some strictly plurisubharmonic psh potential φ on X.

- Approximate T on Ω by

$$
T_{m}=i \partial \bar{\partial} \varphi_{m}, \quad \text { where } \quad \varphi_{m}(z)=\frac{1}{2 m} \log \sum_{\ell}\left|g_{\ell, m}(z)\right|^{2}
$$

where $\left(g_{\ell, m}\right)$ is a Hilbert basis of the space

$$
\mathcal{H}(\Omega, m \varphi)=\left\{f \in \mathcal{O}(\Omega) ;\|f\|_{m \varphi}^{2}:=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V<+\infty\right\} .
$$

- We have $\varphi_{m}(z)=\frac{1}{2 m} \sup _{\|f\|_{m \varphi} \leq 1} \log |f(z)|^{2}$.

The mean value inequality implies

$$
|f(z)|^{2} \leq \frac{1}{\pi^{n} r^{2 n} / n!} \sup _{B(z, r)} e^{2 m \varphi(z)} \Rightarrow \varphi_{m}(z) \leq \sup _{B(z, r)} \varphi+\frac{n}{m} \log \frac{C}{r} .
$$

Use of the pointwise Ohsawa-Takegoshi theorem

- The Ohsawa-Takegoshi L^{2} extension theorem (extension from a single isolated point) implies that for every $z_{0} \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f\left(z_{0}\right)=c e^{m \varphi\left(z_{0}\right)}(c>0$ small $)$, such that

$$
\|f\|_{m \varphi}^{2}=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V \leq C \int_{\left\{z_{0}\right\}}|f|^{2} e^{-2 m \varphi} \delta_{z_{0}}=1
$$

for $c=C^{-1 / 2}$. As a consequence $\varphi_{m}(z) \geq \varphi(z)+\frac{1}{2 m} \log c$.

Use of the pointwise Ohsawa-Takegoshi theorem

- The Ohsawa-Takegoshi L^{2} extension theorem (extension from a single isolated point) implies that for every $z_{0} \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f\left(z_{0}\right)=c e^{m \varphi\left(z_{0}\right)}(c>0$ small $)$, such that

$$
\|f\|_{m \varphi}^{2}=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V \leq C \int_{\left\{z_{0}\right\}}|f|^{2} e^{-2 m \varphi} \delta_{z_{0}}=1
$$

for $c=C^{-1 / 2}$. As a consequence $\varphi_{m}(z) \geq \varphi(z)+\frac{1}{2 m} \log c$.

- By the above inequalities one easily concludes that the Lelong number at any point $z_{0} \in \Omega$ satisfies

$$
\nu\left(\varphi, z_{0}\right)-\frac{n}{m} \leq \nu\left(\varphi_{m}, z_{0}\right) \leq \nu\left(\varphi, z_{0}\right) .
$$

Use of the pointwise Ohsawa-Takegoshi theorem

- The Ohsawa-Takegoshi L^{2} extension theorem (extension from a single isolated point) implies that for every $z_{0} \in \Omega$, there exists $f \in \mathcal{O}(\Omega)$ such that $f\left(z_{0}\right)=c e^{m \varphi\left(z_{0}\right)}(c>0$ small $)$, such that

$$
\|f\|_{m \varphi}^{2}=\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V \leq C \int_{\left\{z_{0}\right\}}|f|^{2} e^{-2 m \varphi} \delta_{z_{0}}=1
$$

for $c=C^{-1 / 2}$. As a consequence $\varphi_{m}(z) \geq \varphi(z)+\frac{1}{2 m} \log c$.

- By the above inequalities one easily concludes that the Lelong number at any point $z_{0} \in \Omega$ satisfies

$$
\nu\left(\varphi, z_{0}\right)-\frac{n}{m} \leq \nu\left(\varphi_{m}, z_{0}\right) \leq \nu\left(\varphi, z_{0}\right) .
$$

This implies Siu's analyticity result for Lelong upper level sets $E_{c}(T)$.

- The case of a global current $T=\alpha+d d^{c} \varphi$ is obtained by using
a covering of X by balls Ω_{j}, and gluing the local approximations $\varphi_{j, m}$ of φ into a global one φ_{m} by a partition of unity.

