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Second lecture: extension with optimal L? estimates

Setup. Let L — X be a holomorphic line bundle, equipped with a
1

singular hermitian metric h = hpe™%, ¢ quasi-psh. Let ¢ € L .
such that ¢ + v is quasi-psh, and Y C X the subvariety defined by

the conductor ideal Jy = Z(he™?) : Z(h).
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Second lecture: extension with optimal L? estimates

Setup. Let L — X be a holomorphic line bundle, equipped with a
singular hermitian metric h = hpe™ %, ¢ quasi-psh. Let ¢ € Li

such that ¢ + v is quasi-psh, and Y C X the subvariety defined by
the conductor ideal Jy = Z(he™?) : Z(h).

For a section f € H(Y,Ox(Kx ® L) ® Z(h)/Z(he™ ")), the goal is
to get an “extension” F € H%(X,Ox(Kx ® L) ® Z(h)),

via Z(h) — Z(h)/I(he %), F > f,

with an explicit L? estimate of F on X in terms of a suitable [2
integral of f on the subvariety Y.
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via Z(h) — Z(h)/I(he %), F > f,
with an explicit L? estimate of F on X in terms of a suitable [2

integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly
pseudoconvex (this is weaker than being holomorphically convex).
This means that there exists a smooth psh exhaustion v on X,
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Setup. Let L — X be a holomorphic line bundle, equipped with a
singular hermitian metric h = hpe™ %, ¢ quasi-psh. Let ¢ € Li

such that ¢ + v is quasi-psh, and Y C X the subvariety defined by
the conductor ideal Jy = Z(he™?) : Z(h).

For a section f € H(Y,Ox(Kx ® L) ® Z(h)/Z(he™ ")), the goal is
to get an “extension” F € H%(X,Ox(Kx ® L) ® Z(h)),

via Z(h) — Z(h)/I(he %), F > f,
with an explicit L? estimate of F on X in terms of a suitable [2

integral of f on the subvariety Y.

Additionally, it will be convenient to assume that X is weakly
pseudoconvex (this is weaker than being holomorphically convex).
This means that there exists a smooth psh exhaustion v on X,

We first define the Ohsawa residual measure associated with f.
As for f, this will be a measure supported on Y.
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The Ohsawa residual measure

Given f € H(U, Ox(Kx @ L) @ Z(h)/Z(he")), there exists a Stein
covering (U;) of X and liftings f; € H°(U;, Ox(Kx @ L) @ Z(h))

of f on U; via Z(h) — Z(h)/Z(he™"). We obtain in this way a C*
extension f = 5" & where (&) is a partition of unity.
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The Ohsawa residual measure

Given f € H(U, Ox(Kx @ L) @ Z(h)/Z(he")), there exists a Stein
covering (U;) of X and liftings f; € HO(U,-, Ox(Kx ® L) ® Z(h))

of f on U; via Z(h) — Z(h)/Z(he~ ¥). We obtain in this way a C*
extension f = 5" & where (&) is a partition of unity.

Definition of the Ohsawa residual measure

Forg e C.(Y), g >0, and 0 < g € C(X) extending g, we set
/ngy[f2 h, ] := inf ||msup/ g2 e YdVx..
{t<p<t+1} |

g t——00

v
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The Ohsawa residual measure

Given f € H(U, Ox(Kx @ L) @ Z(h)/Z(he")), there exists a Stein
covering (U;) of X and liftings f; € HO(U,-, Ox(Kx ® L) ® Z(h))

of f on U; via Z(h) — Z(h)/Z(he~ ¥). We obtain in this way a C*
extension f = 5" & where (&) is a partition of unity.

Definition of the Ohsawa residual measure
Forg e C.(Y), g >0, and 0 < g € C(X) extending g, we set

/ngy[f2 h, ] := inf ||msup/ g2 e dVx ..
{t<y<t+1}

g t——00

v

Proposition

dViy[f2, h, ] is independent of the choice of f as well as of w, and
defines a positive measure on Y (but not necessarily locally finite).
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Given f € H(U, Ox(Kx @ L) @ Z(h)/Z(he")), there exists a Stein
covering (U;) of X and liftings f; € HO(U,-, Ox(Kx ® L) ® Z(h))

of f on U; via Z(h) — Z(h)/Z(he~ ¥). We obtain in this way a C*
extension f = 5" & where (&) is a partition of unity.

Definition of the Ohsawa residual measure
Forg e C.(Y), g >0, and 0 < g € C(X) extending g, we set

/ngy[f2 h, ] := inf ||msup/ g2 e dVx ..
{t<y<t+1}

g t——00

v

Proposition

dViy[f2, h, ] is independent of the choice of f as well as of w, and
defines a positive measure on Y (but not necessarily locally finite).

PlPof When 6f: € HO(U;, Ox(Kx ® L) ® Z(he=*)), then
0|2 e € L.(X) and the lim sup — 0 for Supp(g) C U.
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The Ohsawa residual measure (2)

Example 1. Take ¢)(z) = rlog|s(z)|;_, where s € H(X, E) and
r = rank(E). Assume that Y = s71(0) is of codimension r, that
s is generically transverse to 0 on Y and h € C*. Then

F12ndVy e

dVy[f?, h, ] = c,,
v | " [A"(ds) E;,hE

on Y ~{A"(ds) = 0}.
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The Ohsawa residual measure (2)

Example 1. Take ¢)(z) = rlog|s(z)|;_, where s € H(X, E) and
r = rank(E). Assume that Y = s71(0) is of codimension r, that
s is generically transverse to 0 on Y and h € C*. Then

fon dVy
" |Ar(ds) E;,hE
Proof. Near a regular point zy be can pick a holomorphic frame
(ex)1<a<r of E and coordinates (z, ..., z,) such that (e)) is
h-orthornormal and (9/0z;) is w-orthonormal at zy, and
s(z) = 2 1<j<, \iZi€, Aj #0. Then w ~ i} dz; A dz; and
Y(z) ~ rlog(|M\i]?|zi]® + ... + |\]?|z-|?). This is an easy
calculation of integrals on ellipsoids.

dVy[f?, h,¢] = ¢ on Y ~{A"(ds) = 0}.
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The Ohsawa residual measure (2)

Example 1. Take ¢)(z) = rlog|s(z)|;_, where s € H(X, E) and
r = rank(E). Assume that Y = s71(0) is of codimension r, that
s is generically transverse to 0 on Y and h € C*. Then

fon dVy
" |Ar(ds) E;,hE
Proof. Near a regular point zy be can pick a holomorphic frame
(ex)1<a<r of E and coordinates (z, ..., z,) such that (e)) is
h-orthornormal and (9/0z;) is w-orthonormal at zy, and
s(z) = 2 1<j<, \iZi€, Aj #0. Then w ~ i} dz; A dz; and
Y(z) ~ rlog(|M\i]?|zi]® + ... + |\]?|z-|?). This is an easy
calculation of integrals on ellipsoids.

dVy[f?, h,¢] = ¢ on Y ~{A"(ds) = 0}.

Example 2. Take now ¢)(z) = > ¢;log|sp.|2 where D =" ¢;D;
j i 1h; L

is a simple normal crossing divisor, ¢; > 0, and h; is a C* metric
on Ox(D;). Also assume h € C*.
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Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing
dVy[f?, h,o] for (z) = 5" ¢ilog|z|? + u(z), u € C*. However

d\/y[fz, h,w + U] =e dVY[fza haw]a

thus we may assume u = 0. At a regular point of D; \ Uk# Dy,
(and j =1, say) we apply the Fubini theorem with z = (z, Z),

Z' = (z,...,2z,). We have to compute limits of the form
2(2)|f(2)]? 2 -
lim / g(2) 2(2)‘ idz A dz; = Z g(0, 2)|h(0, 2')|?
t——0o0 et<|z]_’2cl <et+1 ‘Z]_’ C1 ml

when ¢; = m; € N* and 7(z) = 2™ *h(z). However, if ¢ <1, we
get 0, and in general, if ¢; ¢ N* and ¢; > 1, we can get only 0 or co
values, according to the divisibility of f by zjmj_l, m; = |¢;| € N*.
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Ohsawa residual measure for s.n.c. singularities

By a change of coordinates, we are reduced to computing

dVy[f?, h,o] for (z) = 5" ¢ilog|z|? + u(z), u € C*. However
d\/y[fz, h, w + U] =e " dVY[fza ha w]a

thus we may assume u = 0. At a regular point of D; \ Uk# Dy,

(and j =1, say) we apply the Fubini theorem with z = (z, Z),

Z' = (z,...,2z,). We have to compute limits of the form

5(2)|f(2)]2 2 ~
lim / g(2) 2( W iz, 1 dzy = 25 g(0, 2)[R(0, )2
t——0o0 et<|z]_’2cl <et+1 ‘Z]_’ C1 ml

when ¢; = m; € N* and 7(z) = 2™ *h(z). However, if ¢ <1, we
get 0, and in general, if ¢; ¢ N* and ¢; > 1, we can get only 0 or co
values, according to the divisibility of f by zjmj_l, m; = |¢;| € N*.

As a consequence, we can capture an interesting (i.e. locally finite,

non zero) residual measure dV/y[f2, h, 1] only in the case where
one of the coefficients ¢; is an integer.
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Ohsawa residual measure for analytic singularities

One general case of interests is when v has analytic singularities,
i.e. locally ¥(z) = clog > |gi(2)]? + u(z), g € Ox(V), ue C>(V).
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Ohsawa residual measure for analytic singularities

One general case of interests is when v has analytic singularities,
i.e. locally ¥(z) = clog > |gi(2)]? + u(z), g € Ox(V), ue C>(V).

Then, it is interesting to look at the family of multiplier ideal
sheaves Z(e *¥) when s € R, which decrease as s increases.
Assume without loss of generality that ¢ = 1.
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One general case of interests is when v has analytic singularities,
i.e. locally ¥(z) = clog > |gi(2)]? + u(z), g € Ox(V), ue C>(V).
Then, it is interesting to look at the family of multiplier ideal

sheaves Z(e *¥) when s € R, which decrease as s increases.
Assume without loss of generality that ¢ = 1.

By Hironaka, we know that there exists a composition of blow-ups
p: X — X such that the pull-back ideal 11*(g;) = (gj o 1) is an
invertible ideal sheaf O (— ) _ m;D;) associated with a simple
normal crossing divisor.
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Then, it is interesting to look at the family of multiplier ideal

sheaves Z(e *¥) when s € R, which decrease as s increases.
Assume without loss of generality that ¢ = 1.

By Hironaka, we know that there exists a composition of blow-ups
p: X — X such that the pull-back ideal 11*(g;) = (gj o 1) is an
invertible ideal sheaf O (— ) _ m;D;) associated with a simple
normal crossing divisor. The direct image formula implies

T(e™*") = (K x @ T(e ")) = n.0x (Y (2 — Lsm;)) D)
where Ky = Oz(>_ a;0;).
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By Hironaka, we know that there exists a composition of blow-ups
p: X — X such that the pull-back ideal 11*(g;) = (gj o 1) is an
invertible ideal sheaf O (— ) _ m;D;) associated with a simple
normal crossing divisor. The direct image formula implies

T(e™*") = (K x @ T(e ")) = n.0x (Y (2 — Lsm;)) D)

where Kz, = Oz(3>_ a;D;). This implies that Z(e™*") “jumps"
precisely for a discrete sequence of rational numbers
0=s5y <s <...<58<...such that sym; € N for some .
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Ohsawa residual measure for analytic singularities

One general case of interests is when v has analytic singularities,
i.e. locally ¥(z) = clog > |gi(2)]? + u(z), g € Ox(V), ue C>(V).
Then, it is interesting to look at the family of multiplier ideal

sheaves Z(e *¥) when s € R, which decrease as s increases.
Assume without loss of generality that ¢ = 1.

By Hironaka, we know that there exists a composition of blow-ups
p: X — X such that the pull-back ideal 11*(g;) = (gj o 1) is an
invertible ideal sheaf O (— ) _ m;D;) associated with a simple
normal crossing divisor. The direct image formula implies

T(e™*") = (K x @ T(e ")) = n.0x (Y (2 — Lsm;)) D)

where Kz, = Oz(3>_ a;D;). This implies that Z(e™*") “jumps"
precisely for a discrete sequence of rational numbers
0=s5y <s <...<58<...such that sym; € N for some .

For f € Z(e %), the measure dV/y [f?, h, s,] will be interesting.
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Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions
on the subvariety Y associated with Jy = Z(he %) : Z(h).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L? extension theorems and applications to alg. geometry  8/17




Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions
on the subvariety Y associated with Jy = Z(he %) : Z(h).

Definition of the restricted multiplier ideal

For x € Y, we define Z) (h), C Z(h)x to be the ideal of germs

of functions f € Z(h), associated with f = f mod Z(he ), in
Z(h)/Z(he™?),, for which dV/[f?, h, 4] is locally finite near x on Y.
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on the subvariety Y associated with Jy = Z(he %) : Z(h).
Definition of the restricted multiplier ideal

For x € Y, we define Z) (h), C Z(h)x to be the ideal of germs

of functions f € Z(h), associated with f = f mod Z(he ), in
Z(h)/Z(he™?),, for which dV/[f?, h, 4] is locally finite near x on Y.

Clearly, Z(he™*) C Z/,(h) C Z(h).
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Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions
on the subvariety Y associated with Jy = Z(he %) : Z(h).

Definition of the restricted multiplier ideal

For x € Y, we define Z) (h), C Z(h)x to be the ideal of germs

of functions f € Z(h), associated with f = f mod Z(he ), in
Z(h)/Z(he™?),, for which dV/[f?, h, 4] is locally finite near x on Y.

Clearly, Z(he™*) C Z/,(h) C Z(h).

Typical case of application. Assume that h = e™% and % have
analytic singularities, and that s, = 1 is one of jumping values for
s — Z(e™*%) (case of log canonical singularities: s; = 1).

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L? extension theorems and applications to alg. geometry  8/17




Restricted multiplier ideals

We first have to introduce a suitable sheaf of integrable functions
on the subvariety Y associated with Jy = Z(he %) : Z(h).

Definition of the restricted multiplier ideal

For x € Y, we define Z) (h), C Z(h)x to be the ideal of germs

of functions f € Z(h), associated with f = f mod Z(he ), in
Z(h)/Z(he™?),, for which dV/[f?, h, 4] is locally finite near x on Y.

Clearly, Z(he™*) C Z/,(h) C Z(h).

Typical case of application. Assume that h = e™% and % have
analytic singularities, and that s, = 1 is one of jumping values for
s — Z(e™*%) (case of log canonical singularities: s; = 1).

Then Z/,(h) C Z(he **¥) on X, and Z},(h) = Z(he ***) on a

Zariski open subset Xo = X\ Z, Z C Y (however, the ideals may
differ on Z).
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Use of more “flexible” weights

The next issue is that we need special and rather flexible weights.
Let « € ]0,1[ and A =supv € | — o0, +00]. We consider
X

functions p : [—00, A] = R, such as
p()=1—(A+1+a¥?—u)t

that are continuous strictly decreasing, with the property that p is
concave near —oQ.
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The next issue is that we need special and rather flexible weights.
Let « € ]0,1[ and A =supv € | — o0, +00]. We consider
X

functions p : [—00, A] = R, such as
p()=1—(A+1+a¥?—u)t

that are continuous strictly decreasing, with the property that p is
concave near —oQ.

We assume moreover that

s BA L HP
/tp(u)dqu - S\p’(t)\ for all t €] LA
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Use of more “flexible” weights

The next issue is that we need special and rather flexible weights.
Let « € ]0,1[ and A =supv € | — o0, +00]. We consider
X

functions p : [—00, A] = R, such as
p()=1—(A+1+a¥?—u)t

that are continuous strictly decreasing, with the property that p is
concave near —oQ.

We assume moreover that

A

/ p(u) du + pA) < ()’ forall t €] — o0, Al.

t o 10'(t)]
The L? estimates will involve integrals of the form
I IFI2 ne 10" (¥)] dVx ., where |p/(1)] = (C — 1)~ in the above
example, so that e™¥|p/(¢))| is locally sommable when 1 has log
canonical singularities.
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General L? extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X,w) be a weakly pseudoconvex Kahler manifold, L a
holomorphic line bundle with a hermitian metric h = hge™¥%,
hg € C*, © quasi-psh on X, and ¢ € L (X).
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Let (X,w) be a weakly pseudoconvex Kahler manifold, L a
holomorphic line bundle with a hermitian metric h = hge™¥%,

hg € C*,  quasi-psh on X, and ¢ € L} (X). Assume Ja > 0
constant such that

OLp+ (1+va)idody >0 on X, v=0,1.
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General L? extension theorem

Theorem (X. Zhou-L. Zhu 2019)

Let (X,w) be a weakly pseudoconvex Kahler manifold, L a

holomorphic line bundle with a hermitian metric h = hge™%,
hg € C*, ¢ quasi-psh on X, and ¥ € L{ (X). Assume Ja > 0
constant such that

OLp+ (1+va)idody >0 on X, v=0,1.
Then, for every f € H°(Y,Ox(Kx ® L) ® Z;,(h)/Z(he™")) s.t.
/ dVY[f27 haw] < +09,
y

there exists F € H°(X, Ox(Kx ® L) ® Z;,(h) that is mapped to f
by the morphism Zj,(h) — Z;,(h)/Z(he™"), such that

/ FR e 10 ()] dVx < p(—o0) / dVy [F2, h, o],

loc

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L? extension theorems and applications to alg. geometry 10/17




(1) Construction of a smooth extension

Every section f € H%(X, Ox(Kx ® L) ® Z(h)/Z(he™?)) admits a
C*> lifting
f=> &fi, fie (U, Ox(Kx ® L) ® Z(h))

by means of a Stein covering (U;) of X and a partition of unity (&)
subordinate to (U;).
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(1) Construction of a smooth extension

Every section f € H%(X, Ox(Kx ® L) ® Z(h)/Z(he™?)) admits a
C*> lifting
f=> &fi, fie (U, Ox(Kx ® L) ® Z(h))

by means of a Stein covering (U;) of X and a partition of unity (&)
subordinate to (U;).

Since S°0¢ = 0, we have 9f = 3 9¢;(f; — fi) on U;, and since
f; — f; has coefficients in Z(he™¥), we see that Of is valued in

Ox(KX & L) ®Z(he_w) ®0X C*™.
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(1) Construction of a smooth extension

Every section f € H%(X, Ox(Kx ® L) ® Z(h)/Z(he™?)) admits a
C*> lifting
f=> &fi, fie (U, Ox(Kx ® L) ® Z(h))

by means of a Stein covering (U;) of X and a partition of unity (&)
subordinate to (U;).

Since Zag, — 0, we have Of = 3" 0¢(f — fi) on U;, and since
f — f has coefficients in Z(he™"), we see that Of is valued in

Ox(KX & L) ®Z(he_ ) ®0X C*™.

As X is assumed to be weakly pseudoconvex, we can consider
Xe={ze X; v(z) < c} €X, Vc €R, and get by compactness

/ 0f|2 e " dVx , < +oc.
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Every section f € H%(X, Ox(Kx ® L) ® Z(h)/Z(he™?)) admits a
C*> lifting

f=> &fi, fie (U, Ox(Kx ® L) ® Z(h))
by means of a Stein covering (U;) of X and a partition of unity (&)
subordinate to (U;).
Since S°0¢ = 0, we have 9f = 3 9¢;(f; — E) on U;, and since
f; — f; has coefficients in Z(he™¥), we see that Of is valued in

Ox(KX & L) ®Z(he_w) ®0X C*™.

As X is assumed to be weakly pseudoconvex, we can consider
X.={ze X,; v(z) < c} €X, Vc eR, and get by compactness

/ 0f|2 e " dVx , < +oc.
Xec

It will be enough to get estimates on X., and then let ¢ — +o0.
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(2) Solving the O equation

The next idea is to truncate f by multiplying f with a cut-off
function 6() — t) equal to 1 near Y C ¢~} (—o0).

{xeX / t<ip(x)<t+1}
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(2) Solving the O equation

The next idea is to truncate f by multiplying f with a cut-off
function 6() — t) equal to 1 near Y C ¢~} (—o0).

{xeX / t<ip(x)<t+1}

We next solve the approximate 0-equation

(*) gut,s = V¢ + Wi

with v, == (0 — t)- f) = () — t) - Of + &' (¢ — )W A F.
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(2) Solving the O equation

The next idea is to truncate f by multiplying f with a cut-off
function 6(¢) — t) equal to 1 near Y C ¢ ~}(—00).

{xeX / t<ip(x)<t+1}

We next solve the approximate 0-equation
(*) gut,e = V¢ + Wi
with v, == (0 — t)- f) = () — t) - Of + &' (¢ — )W A F.

It the weights ¢ and ¢ of h = hpe™% are not smooth, we use

regularizations vs | ¢, ¥5 | ¥ and complete Kahler metrics ws | w
on X \ Zs. (We omit details here).
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(3) L? estimates for solution and error term

The existence theorem with twisting factors 7., A:. yields

_ o 1 o
/ (nt,s + )\t,e) 1‘ut,€ (,2u,hoe v ¢dVX,w + g ‘Wt,g c2u,ho e ¥ ¢dVX,w
C XC
< 4 / Of|2 4, e~ VdV,
XcN{y<t+1}

+4 / (Be +£1d) 00 A F, 00 A Fhp e Y.
XcN{t<yp<t+1}
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(3) L? estimates for solution and error term

The existence theorem with twisting factors 7., A:. yields

_ o 1 o
/ (nt,s + )\t,e) 1‘ut,€ (,2u,hoe v ¢dVX,w + g ‘Wt,g (,20,ho e ¥ ¢dVX,w
C XC
< 4 / Of|2 4, e~ VdV,
XcN{y<t+1}

+ 4/ (Be +£1d) 00 A F, 00 A Fhp e Y.
XcN{t<yp<t+1}

The first integral in the right hand side tends to 0 as t — —o0.
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(3) L? estimates for solution and error term

The existence theorem with twisting factors 7., A:. yields

_ o 1 o
/ (nt,s + )\t,e) 1‘ut,€ (,2u,hoe v ¢dVX,w + g ‘Wt,g (,20,ho e ¥ ¢dVX,w
C XC
< 4 / Of|2 4, e~ VdV,
XcN{y<t+1}

+4 / (Be +£1d) 00 A F, 00 A Fhp e Y.
XcN{t<yp<t+1}

The first integral in the right hand side tends to 0 as t — —o0.

Again, the main point is to choose ad hoc factors 7;, A¢, and we
want here the last integral to converge to a finite limit.
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(3) L? estimates for solution and error term

The existence theorem with twisting factors 7., A:. yields

_ 1 o
/(nts_i_)\te) 1‘Ut€whoe 7 ¢dVX,w+g ‘Wt,g i,hoe 7 ¢dVX,w

C XC
< 4/ OF|2 . e7* 7V dV,
XcN{y<t+1}
14 / (Be +£1d) 00 A F, 00 A Fhp e Y.
XcN{t<yp<t+1}

The first integral in the right hand side tends to 0 as t — —o0.

Again, the main point is to choose ad hoc factors 7;, A¢, and we
want here the last integral to converge to a finite limit. One can
check that this works with

p(—o0) f p(V)dv + 2
p(u)

(x')*
XC// _ X//’

, b=
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Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Let X be a Stein manifold of dimension n. Let ¢ and ¢ be
plurisubharmonic functions on X. Assume that w is a holomorphic

function on X such that supy (¢ + 2log |w|) < 0 and dw does not
vanish identically on any branch of w=1(0).
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Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Let X be a Stein manifold of dimension n. Let ¢ and ¢ be
plurisubharmonic functions on X. Assume that w is a holomorphic

function on X such that supy (¢ + 2log |w|) < 0 and dw does not
vanish identically on any branch of w=1(0).

Denote Y = w1(0) and Yy = {x € Y : dw(x) # 0}.
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Extension from hypersurface (Stein case)

In the hypersurface case, one gets the following simpler statement.

Let X be a Stein manifold of dimension n. Let ¢ and ¢ be
plurisubharmonic functions on X. Assume that w is a holomorphic
function on X such that supy (¢ + 2log |w|) < 0 and dw does not
vanish identically on any branch of w=1(0).

Denote Y = w1(0) and Yy = {x € Y : dw(x) # 0}.

Then for any holomorphic (n — 1)-form f on Y; satisfying

/ e =Vi-D2F A F < Joo,
Yo

there exists a holomorphic n-form F on X satisfying Fjy, = dw A f
and an optimal estimate

/ e Pi"FAF < 27‘(’/ e e Vi(n=1%f A F.
X Yo
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann
surfaces in 1972. The motivation was to answer a question posed
by Sario and Oikawa about the relation between the Bergman
kernel Bq for holomorphic (1,0) forms on an open Riemann
surface Q which admits a Green function Gq.
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann
surfaces in 1972. The motivation was to answer a question posed
by Sario and Oikawa about the relation between the Bergman
kernel Bq for holomorphic (1,0) forms on an open Riemann
surface Q which admits a Green function Gq.

Recall that the logarithmic capacity cs(z) is locally defined by
cs(z) = expglim(GQ(f,z) — log |£ — z|) on Q.
—z

Suita conjecture

(cs(2))?|dz]? < wBq(z), for every z € Q.
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann
surfaces in 1972. The motivation was to answer a question posed
by Sario and Oikawa about the relation between the Bergman
kernel Bq for holomorphic (1,0) forms on an open Riemann
surface Q which admits a Green function Gq.

Recall that the logarithmic capacity cs(z) is locally defined by
cs(z) = expglim(GQ(f,z) — log |£ — z|) on Q.
—z
Suita conjecture

(cs(2))?|dz]? < wBq(z), for every z € Q.

The Suita conjecture holds true (planar case: Btocki 2013;
general case: Guan-Zhou 2014).
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The Suita conjecture

The Suita conjecture was posed originally on open Riemann
surfaces in 1972. The motivation was to answer a question posed
by Sario and Oikawa about the relation between the Bergman
kernel Bq for holomorphic (1,0) forms on an open Riemann
surface Q which admits a Green function Gq.

Recall that the logarithmic capacity cs(z) is locally defined by
cs(z) = expglim(GQ(f,z) — log |£ — z|) on Q.
—z
Suita conjecture

(cs(2))?|dz]? < wBq(z), for every z € Q.

The Suita conjecture holds true (planar case: Btocki 2013;
general case: Guan-Zhou 2014). Moreover (Guan-Zhou 2014),
equality holds iff €2 biholomorphic to disc minus a closed polar set.

= -

£
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Approximation of currents, Zariski decomposition

Definition

On X compact Kahler, a Kahler current T is a closed (1,1)-current
T such that T > dw for a smooth (1,1) form w > 0 and § < 1.
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Approximation of currents, Zariski decomposition

Definition
On X compact Kahler, a Kahler current T is a closed (1,1)-current
T such that T > dw for a smooth (1,1) form w > 0 and § < 1.

Easy observation
a € E° (interior of £) <= a ={T}, T = a Kahler current.
We say that £° is the cone of big (1, 1)-classes.
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Approximation of currents, Zariski decomposition

Definition
On X compact Kahler, a Kahler current T is a closed (1,1)-current
T such that T > dw for a smooth (1,1) form w > 0 and § < 1.

Easy observation

a € E° (interior of £) <= «a = {T}, T = a Kahler current.
We say that £° is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kahler current can be written T = lim T,, where T,, € {T}
has analytic singularities & logarithmic poles, i.e. 3 modification
tm : Xm — X such that pu* T, = [En] + Om, where E; > 0is a
Q-divisor on )~<m with coeff. in %Z and (3, is a Kahler form on )~<m.

y
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Approximation of currents, Zariski decomposition

Definition
On X compact Kahler, a Kahler current T is a closed (1,1)-current
T such that T > dw for a smooth (1,1) form w > 0 and § < 1.

Easy observation

a € E° (interior of £) <= «a = {T}, T = a Kahler current.
We say that £° is the cone of big (1, 1)-classes.

Theorem on approximate Zariski decomposition (D, 1992)

Any Kahler current can be written T = lim T,, where T,, € {T}
has analytic singularities & Iogarithmic poles, i.e. 4 modification
tm : Xm — X such that u* T, = [E;n] + Om, where E;, > 0is a

Q-divisor on X with coeff. in mZ and 3., is a Kahler form on X

y

Moreover (Boucksom), Vol(3,) = [ A7, — Vol(T) as m — +oo.
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Proof of the analytic Zariski decomposition

e Write locally on any coordinate ball 2 C X
T = i00y
for some strictly plurisubharmonic psh potential ¢ on X.
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Proof of the analytic Zariski decomposition

e Write locally on any coordinate ball 2 C X
T = i00y
for some strictly plurisubharmonic psh potential ¢ on X.

e Approximate T on €2 by
_ 1
T = i00¢,, wh m(z) = =—| m(2)]?
D where on(2) = 51053 [81(2)
where (gs.m) is a Hilbert basis of the space

H(Q, mp) = {f c O(Q); Hfomp — / [FlPe 2™ dV < —I—oo}.
Q
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Proof of the analytic Zariski decomposition

e Write locally on any coordinate ball 2 C X
T = i00y
for some strictly plurisubharmonic psh potential ¢ on X.

e Approximate T on €2 by
- 1 2
Tm =1000,, where ©,(z)= oy Iog; 180.m(2)]
where (gs.m) is a Hilbert basis of the space
H(Q, mp) = {f c O(Q); Hfomp — / [FlPe 2™ dV < —I—oo}.
Q

1
e We have p,(z) = - ||fiupq log |£(2)]°.

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L? extension theorems and applications to alg. geometry 17/17



Proof of the analytic Zariski decomposition

e Write locally on any coordinate ball 2 C X

T = i00y
for some strictly plurisubharmonic psh potential ¢ on X.
e Approximate T on €2 by

_ 1
Tm= 00 my h m = —| m °
D where on(2) = 51053 [81(2)
where (gs.m) is a Hilbert basis of the space

H(Q, mp) = {f c O(Q); Hfomp — / [FlPe 2™ dV < —I—oo}.
Q

1
e We have ¢,(z) = =— sup log|f(2)]°.
2 || mp<1
The mean value inequality implies
1 C
f(2)]? < ———— sup e?m2) = (2) < sup @+ 7 log —.
whr ”/n! B(z,r) B(z,r) m r
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Use of the pointwise Ohsawa-Takegoshi theorem

e The Ohsawa-Takegoshi L? extension theorem (extension from a
single isolated point) implies that for every zy € 2, there exists
f € O(Q) such that f(z) = ce™®) (¢ > 0 small), such that

IF12, = / F2e=2medy < C / FPe2mes, =1
Q {z0}

1
for c = C71/2. As a consequence ©,,(z) > ¢(z) + 5 log c.
m
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Use of the pointwise Ohsawa-Takegoshi theorem

e The Ohsawa-Takegoshi L? extension theorem (extension from a
single isolated point) implies that for every zy € 2, there exists
f € O(Q) such that f(z) = ce™®) (¢ > 0 small), such that

IF12, = / F2e=2medy < C / FPe2mes, =1
Q {z0}

1
for c = C71/2. As a consequence ©,,(z) > ¢(z) + 5 log c.
m

e By the above inequalities one easily concludes that the Lelong
number at any point z, € €2 satisfies

n
v(p, 20) — p < v(¢m, 20) < (@, 20).
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Use of the pointwise Ohsawa-Takegoshi theorem

e The Ohsawa-Takegoshi L? extension theorem (extension from a

single isolated point) implies that for every zy € 2, there exists
f € O(Q) such that f(z) = ce™®) (¢ > 0 small), such that

IF1, = [ I1FFemdv < C [ |fFetin, =1
Q {z0} {
for c = C71/2. As a consequence ©,,(z) > ¢(z) + 5 log c.
m
e By the above inequalities one easily concludes that the Lelong
number at any point z, € €2 satisfies
n
v(p, 20) — P v(¢m, 20) < v(p, 20).
This implies Siu's analyticity result for Lelong upper level sets E.(T).

e The case of a global current T = o+ dd“yp is obtained by using
a covering of X by balls €2;, and gluing the local approximations
©j.m of ¢ into a global one ¢,, by a partition of unity.
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