Interplays of Complex and Symplectic Geometry Lecture 2: Symplectic Calabi-Yau Problem

Anna Fino

Dipartimento di Matematica Universitá di Torino

CIRM-ICTP Complex Analysis and Geometry - XXV 7-11 June 2021

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

₹

Calibrated almost complex structures

Definition

An almost cx structure J on a symplectic manifold (M^{2n}, Ω) is calibrated by Ω (or Ω is compatible with J) if J is tamed and $\Omega(JX, JY) = \Omega(X, Y), \forall X, Y.$

- If J is calibrated by $\Omega \implies (\Omega, J)$ is an almost-Kähler (AK) structure $\Rightarrow g(X, Y) = \Omega(X, JY)$ is a J-Hermitian metric.
- If J is integrable, then the AK structure (Ω, J, g) is Kähler.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

590

Э

Given a Kähler structure (Ω, J) one can define

 $\mathcal{C}_{\Omega} := \{ \omega \in [\Omega] \mid \omega \text{ is compatible with } J, \ \omega > 0 \}.$

By dd^c -Lemma \Rightarrow

 $\mathcal{C}_{\Omega} := \{ \Omega + dd^{c}u > 0 \mid u \in \mathcal{C}^{\infty}(M, \mathbb{R}) \}.$

The Ricci tensor of the metric g induced by (Ω, J) satisfies

 $Ric(JX, JY) = Ric(X, Y), \quad \forall X, Y.$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

 $\mathcal{O} \mathcal{O} \mathcal{O}$

The Calabi-Yau theorem

$$\rho(X, Y) := Ric(JX, Y) \text{ is the Ricci form of } (\Omega, J).$$

 $\Rightarrow d\rho = 0 \text{ and } [\rho] = 2\pi c_1(M^{2n}, J)$

Theorem (Yau 1978)

Let (M^{2n}, J, Ω) be a compact Kähler manifold and let $\tilde{\rho}$ be a closed (1, 1)-form such that $[\tilde{\rho}] = 2\pi c_1(M^{2n}, J)$. Then there exists a unique Kähler form $\tilde{\Omega} \in C_{\Omega}$ such that $\tilde{\rho}$ is the Ricci form of $(\tilde{\Omega}, J)$.

There has been great interest in extending Yau's Theorem to non-Kähler settings!

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

▲□▶ ▲ □▶ ▲

₽

Symplectic version of the Calabi-Yau theorem

Theorem (Yau, Symplectic version)

 (M^{2n}, J, Ω) compact Kähler manifold and σ a volume form such that $\int_{M^{2n}} \Omega^n = \int_{M^{2n}} \sigma$. Then there exists a unique Kähler form $\tilde{\Omega}$ with $[\tilde{\Omega}] = [\Omega]$ such that $\tilde{\Omega}^n = \sigma \longleftrightarrow CY$ Equation \Leftrightarrow (*) $\begin{cases} (\Omega + d\alpha)^n = e^f \Omega^n \\ d\alpha \text{ is of type}(1, 1) \end{cases}$

 \hookrightarrow complex Monge-Ampere equation $(\Omega + dd^c h)^n = e^f \Omega^n$

 \hookrightarrow Yau's theorem: (*) has always a unique solution h.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

SO C

Symplectic Calabi-Yau problem

Let (M^{2n}, J, Ω, g) be a compact AK manifold with a volume form $\sigma = e^f \Omega^n$ satisfying $\int_{M^{2n}} e^f \Omega^n = \int_{M^{2n}} \Omega^n$. Then

$$\begin{array}{l} \text{CY equation} \longleftrightarrow \left\{ \begin{array}{l} (\Omega + d\alpha)^n = e^f \Omega^n \\ J(d\alpha) = d\alpha \\ d^* \alpha = 0. \end{array} \right. (*)$$

- (*) is elliptic for n = 2 and the solutions are unique [Donaldson];
- (*) is overdetermined for n > 2.

Problem

For which almost Kähler 4-manifolds does (*) have solutions?

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

n a a

Uniqueness of solutions

Proposition (Donaldson)

If n = 2 the symplectic CY problem has a unique solution.

Proof.

Let Ω_1 and Ω_2 be two solutions to the symplectic CY problem. Then

$$\begin{cases} \Omega_1^2 = \Omega_2^2, \\ \Omega_2 = \Omega_1 + d\alpha \end{cases} \implies d\alpha^2 + 2\Omega_1 \wedge d\alpha = 0. \end{cases}$$

Consider $\overline{\Omega} = \Omega_1 + \Omega_2 \hookrightarrow \overline{\Omega}$ is a symplectic form of type (1, 1) and defines a Riemannian metric \tilde{g} .

$$\bar{\Omega} \wedge d\alpha = \mathbf{0} \Longrightarrow d\alpha \in \Lambda^2_+ \Longrightarrow d\alpha = \mathbf{0}.$$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Donaldson's Conjecture

Conjecture

Let (M^4, Ω, J, σ) be a compact sympletic 4-manifold with an almost cpx structure J tamed by Ω and a normalized volume form σ . If $\tilde{\Omega} \in [\Omega]$ is a symplectic form which is calibrated by J and solves the CY equation $\tilde{\Omega}^2 = \sigma$, then there are \mathcal{C}^{∞} a priori bounds on $\tilde{\Omega}$ depending only on Ω, J and σ .

Applications:

- the Symplectic CY theorem holds for compact AK 4-manifolds M with $b_+(M^4) = 1$.
- If $b_+(M^4) = 1$ and $\exists \Omega$ taming J, then $\exists \tilde{\Omega}$ calibrated by J.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

- E - F

Question (Donaldson)

Suppose J is an almost complex structure on a cpt 4-manifold M. If J is tamed by a symplectic form Ω , is there a symplectic form compatible with J?

Remark

The question is true locally for all almost complex 4-manifolds, but this is no longer the case in higher dimensions! (examples by Tomassini; Lejmi; Vezzoni).

Donaldson's question is confirmed when

- $M = \mathbb{CP}^2$ [Gromov; Taubes].
- *J* is integrable [Li, Zhang; Streets, Tian].

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ > < □ >

₽

∃ ▶

Taubes's result

Theorem (Taubes)

Let (M, Ω) be a cpt symplectic 4-manifold with $b_+(M^4) = 1$. A generic Ω -tamed almost cpx structure on M is compatible with a symplectic form $\tilde{\Omega}$ on M. Moreover, the class $[\tilde{\Omega}]$ in $H^2(M, \mathbb{R})$ can be taken to be that of Ω if the latter's class comes from $H^2(M, \mathbb{Q})$.

Remark

• "Generic" means in an open and dense subset of the C^{∞} -Frechét space of Ω -tamed almost cpx structures.

• The new symplectic form $\tilde{\Omega}$ is constructed by integrating over a space of currents that are defined by pseudo-holomorphic curves.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

SQ (~

Sufficient conditions

Theorem (Weinkove)

Let (M^4, J, Ω, g) be a compact AK manifold with $b_+(M^4) = 1$. Then the symplectic CY problem has a solution if $\|N\|_{L^1(g)} < \epsilon$ for ϵ depending only on g and $\|f\|_{C^2(g)}$.

On a AK $(M^4, \Omega, J, g) \exists !$ connection ∇^C (the canonical or Chern connection) such that $\nabla^C J = \nabla^C \Omega = 0$, $\operatorname{Tor}^{1,1}(\nabla^C) = 0$.

Theorem (Tosatti, Weinkove, Yau)

If $\mathcal{R}(g, J) \geq 0$, then the Calabi-Yau problem can be solved for every normalized volume form on (M^4, Ω, J, g) , where $\mathcal{R}(g, J)$ is defined by $\mathcal{R}_{i\bar{j}k\bar{l}} = (\mathcal{R}^C)^j_{ik\bar{l}} + 4N^r_{\bar{l}j}\overline{N^i_{\bar{r}k}}$.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

The CY equation on the Kodaira-Thurston manifold

Remark

The existence result by Tosatti-Weinkove-Yau cannot be applied to the KT manifold $M^4 = (\Gamma \setminus Nil^3) \times S^1$.

$$Nil^{3} = \left\{ \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right), \quad x, y, z \in \mathbb{R} \right\}$$

• M^4 has a global invariant coframe $\{e^i\}$ such that

$$e^1 = dy,$$
 $e^2 = dx,$ $e^3 = dt,$ $e^4 = dz - x dy.$

We will denote $Nil^3 \times \mathbb{R}$ simply by (0, 0, 0, 12).

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< 47 ▶

< □ →

• M^4 is the total space of a T^2 -bundle over \mathbb{T}^2 :

$$T^{2} = S^{1} \times S^{1} \quad \hookrightarrow \quad \Gamma \setminus Nil^{3} \quad \times S^{1}$$
$$\downarrow \pi_{xy}$$
$$\mathbb{T}^{2}_{xy}$$

• M^4 has the Lagrangian (with respect to π_{xy}) AK structure

$$\Omega=e^1\wedge e^4+e^2\wedge e^3,\quad g=\sum_{i=1}^4(e^i)^2,$$

i.e. Ω vanishes on the fibers.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Ξ

Tosatti and Weinkove result

Theorem (Tosatti, Weinkove)

The CY equation on the KT manifold (M^4, J, Ω, g) can be solved for every T^2 -invariant volume form σ .

Argument of the proof:

Writing σ = e^f Ω², for a C[∞] T²-invariant function f, then by the normalization of σ one has ∫_{M⁴} e^f Ω² = ∫_{M⁴} Ω². Every solution Ω̃ = Ω + dα of the CY problem satisfies the following a priori bound on the metric ğ associated to (Ω, J):

$$tr_g \tilde{g} \leq Min_{M^4}\Delta f$$
.

2 The continuity method gives the result.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ ▶ < @ ▶ < 글 ▶

Sar

CY equation on the KT manifold II

Consider the Calabi-Yau equation $(\Omega + d\alpha)^2 = e^f \Omega^2$. Let $\alpha = d^c v - v e^1 = v e^1 + v_x e^3 + v_y e^4$, $v \in C^{\infty}(\mathbb{T}^2)$. Then $d\alpha = v_{xx} e^{23} + v_{xy}(e^{13} + e^{24}) + v_{yy} e^{14}$ and the CY equation $(\Omega + d\alpha)^2 = e^f \Omega^2$ becomes the Monge-Ampère equation

$$(1 + v_{xx})(1 + v_{yy}) - v_{xy}^2 = e^f$$

Theorem (Li)

The Monge-Ampère equation on the standard torus \mathbb{T}^n has always a solution.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

▲ □ ▶ ▲ □ ▶ ▲

Goal: To generalize this argument to other AK structures on T^2 -bundles over \mathbb{T}^2 .

Definition (Thurston)

A geometric 4-manifold is a pair (X, G) where X is a complete, simply-connected Riemannian 4-manifold, G is a group of isometries acting transitively on X that contains a discrete subgroup Γ such that $\Gamma \setminus X$ has finite volume.

> Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Sar

Let $Nil^4 = (0, 13, 0, 12), Sol^3 \times \mathbb{R} = (0, 0, 13, 41).$

Theorem (Ue)

Every orientable T^2 -bundle over a \mathbb{T}^2 is a geometric 4-manifold, where (X, G) is one of the following

 $\begin{array}{ll} (\mathbb{R}^4, SO(4) \ltimes \mathbb{R}^4), & (\textit{Nil}^3 \times \mathbb{R}, \textit{Nil}^3 \times S^1), \\ (\textit{Nil}^4, \textit{Nil}^4), & (\textit{Sol}^3 \times \mathbb{R}, \textit{Sol}^3 \times \mathbb{R}) \end{array}$

and it is infra-solvmanifold, i.e. a smooth quotient $\Gamma \setminus X$ covered by a solvmanifold or equivalently a quotient $\Gamma \setminus X$, where the discrete group Γ contains a lattice $\tilde{\Gamma}$ of X such that $\tilde{\Gamma} \setminus \Gamma$ is finite.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Sa P

Definition

An AK structure (J, Ω, g) on an infra-solvmanifold $M^4 = \Gamma \setminus X$ is called invariant if it is induced by a left-invariant one on X and it is Γ -invariant.

Proposition (F, Li, Salamon, Vezzoni)

On a 4-dimensional infra-solvmanifold $(M^4 = \Gamma \setminus X, J, \Omega, g)$ with an invariant AK structure, the Tosatti-Weinkove-Yau condition $\mathcal{R}(g, J) \geq 0$ is satisfied if and only if (Ω, J) is Kähler.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

▲□▶ ▲□▶ ▲□▶ ▲ □▶

₹

Results on T^2 -bundles over \mathbb{T}^2

Theorem (F, Li, Salamon, Vezzoni / Buzano, F, Vezzoni)

Let $M^4 = \Gamma \setminus X$ be a T^2 -bundle over a \mathbb{T}^2 endowed with an invariant AK structure (J, Ω, g) . Then for every normalized T^2 -invariant volume form $\sigma = e^F \Omega^2$, $F \in C^{\infty}(\mathbb{T}^2)$ the associated CY problem has a unique solution.

Layout of the proof:

- Use the classification of T^2 -bundles over \mathbb{T}^2 ;
- Classify in each case invariant Lagrangian AK structures and invariant non-Lagrangian AK structures;
- Rewrite the problem in terms of a Monge-Ampère equation;
- Show that such an equation has a solution.

SQ (~

Classification of T^2 -bundles over \mathbb{T}^2

By Sakamoto and Fukuhara the diffeomorphism classes of T^2 -bundles over \mathbb{T}^2 are classified in 8 families:

	G	Structure equations of X
<i>i</i>), <i>ii</i>)	$SO(4)\ltimes \mathbb{R}^4$	(0,0,0,0)
iii), iv), v)	$\mathit{Nil}^3 imes S^1$	(0, 0, 0, 12)
vi)	Nil ⁴	(0, 13, 0, 12)
vii), viii)	$\mathit{Sol}^3 imes \mathbb{R}$	(0, 0, 13, 41)

The Lie group G is the geometry type of $\Gamma \setminus X$.

• In the cases different from *iii*) the fibration of M^4 as torus bundle is unique.

• In the case *iii*) one has two fibrations

$$\pi_{xy}: M^4 \longrightarrow \mathbb{T}^2_{xy}, \quad \pi_{yt}: M^4 \longrightarrow \mathbb{T}^2_{yt}.$$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ ▶

▲ □ ▶ ▲ □ ▶ ▲

Theorem (Geiges)

Let $M^4 = \Gamma \setminus X$ be an orientable T^2 -bundle over a \mathbb{T}^2 . Then

- M⁴ has a symplectic form and every class a ∈ H²(M⁴, ℝ) with a² ≠ 0 can be represented by a symplectic form;
- M^4 has a Kähler structure if and only if $X = \mathbb{R}^4$;
- If X = Nil⁴ then every invariant AK structure on M⁴ is Lagrangian;
- If X = Sol³ × ℝ every invariant AK structure on M⁴ is non-Lagrangian.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

I = ►

SQ (~

The Monge-Ampère equation

The following equation covers all cases

$$A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2 e^f,$$

where

$$A_{11}[u] = u_{xx} + B_{11}u_x + C_{11} + Du,$$

$$A_{12}[u] = u_{xy} + B_{12}u_y + C_{12},$$

$$A_{22}[u] = u_{yy} + B_{22}u_y + C_{22}$$

and B_{ij}, C_{ij}, D, E_i are constants.

In the Lagrangian case D = 0.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< □ ▶

▲□ ▶ ▲ □ ▶ ▲

₹

∍►

Solutions to the Monge-Ampère equation

Goal: Show that $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + E_2e^f$ has a solution on \mathbb{T}^2 .

- The first step consists in showing that the solutions to the equation are unique up to a constant.
- We look for a solution u satisfying $\int_{\mathbb{T}^2} u = 0$.
- We apply the continuity method to

 $A_{11}[u]A_{22}[u] - (A_{12}[u])^2 = E_1 + (1-t)E_2 + tE_2e^f, \quad t \in [0,1].$

using a priori estimate

 $\|u\|_{\mathcal{C}^2} \leq 2(B_{11}+1)|B_{22}|e^{2C_{22}}+C_{11}+C_{22}.$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

.∢ ∃ ▶

KT manifold viewed as an S^1 -bundle over a 3-torus

 M^4 is the total space of an S^1 -bundle over \mathbb{T}^3 :

$$T^{2} = S_{z}^{1} \quad \hookrightarrow \quad \Gamma \setminus Nil^{3} \quad \times S_{t}^{1}$$
$$\downarrow \pi$$
$$\mathbb{T}_{xy}^{2} \times S_{t}^{1}$$

Consider the AK structure ($\Omega = e^{13} + e^{42}, g = \sum_{i=1}^4 (e^i)^2$)

Theorem (Buzano, F, Vezzoni)

The CY equation $(\Omega + d\alpha)^2 = e^f \Omega^2$ has a unique solution $\tilde{\Omega} = \Omega + d\alpha$ for every S¹-invariant volume form $\sigma = e^f \Omega^2$ such that $\int_{\mathbb{T}^3} e^f dV = 1$.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Sketch of the proof:

• Step 1 Setting $\alpha = d^{c}u - ue^{1}$, then

$$J(d\alpha) = d\alpha$$

and we reduce the CY problem to a fully nonlinear PDE on the 3-dimensional base torus \mathbb{T}^3

$$(u_{xx}+1)(u_{yy}+u_{tt}+u_t+1)-u_{xy}^2-u_{xt}^2=e^f$$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

▲ □ ▶ ▲ □ ▶ ▲

< □ ▶

590

₹

• Step 2 \mathcal{C}^0 -a priori estimates Let $u \in \mathcal{C}^2_0(\mathbb{T}^3)$ such that

$$(u_{xx}+1)(u_{yy}+u_{tt}+u_t+1)-u_{xy}^2-u_{xt}^2=e^f$$

Then

$$\begin{aligned} |u_{X}| &< 1 \\ \|\nabla |u|^{\frac{p}{2}}\|_{L^{2}}^{2} &\leq \frac{p^{2}}{16} \|u\|_{L^{p}}^{p} + \frac{5p^{3}}{16} \|1 + e^{f}\|_{\mathcal{C}^{0}} \|u\|_{L^{p}}^{p-1} \\ \|u\|_{L^{2}} &\leq \|1 + e^{f}\|_{\mathcal{C}^{0}} \end{aligned}$$

$$\Rightarrow \|u\|_{\mathcal{C}^0} \leq C$$
, where $C = C(\|f\|_{\mathcal{C}^0})$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< ロ > < 四 > < 回 > < 回 > < 回 >

590

æ

• Step 3 First order estimates

Let $u\in\mathcal{C}^4_0(\mathbb{T}^3)$ solving

$$(u_{xx}+1)(u_{yy}+u_{tt}+u_t+1)-u_{xy}^2-u_{xt}^2=e^f,$$

then

 $\|\Delta u\|_{\mathcal{C}^0} \leq C_1(1+\|u\|_{\mathcal{C}^1})$, where $C_1 = C_1(\|f\|_{\mathcal{C}^2})$ $\|u\|_{\mathcal{C}^1} \leq C_2$, where $C_2 = C_2((\|f\|_{\mathcal{C}^2}))$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

-∢ ∃ ▶

• Step 4 $C^{2,\rho}$ estimates

Theorem (Tosatti-Wang-Weikove-Yang)

Let $\tilde{\Omega}$ be the solution of the CY equation on (M^{2n}, Ω, J, g) . Assume that there exist constants $\tilde{C}_0 > 0$ and $0 < \rho_0 < 1$ such that $f \in C^{\rho_0}(M^{2n})$ and $tr\tilde{g} \leq \tilde{C}_0$. Then, there exist two constants $\tilde{C} > 0$ and $0 < \rho < 1$, depending only on M^{2n}, Ω, J, C_0 and $\|f\|_{C^{\rho}}$, such that $\|\tilde{g}\|_{C^{\rho}} \leq \tilde{C}$.

Proposition

If $u \in \mathcal{C}^4_0(\mathbb{T}^3)$ is a solution of

$$(u_{xx}+1)(u_{yy}+u_{tt}+u_t+1)-u_{xy}^2-u_{xt}^2=e^f,$$

then \exists constants $C_3 > 0$ and $\rho > 0$, both depending only on $||f||_{C^2}$, such that $||u||_{C^{2,\rho}} \leq C_3$.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Sar

• Step 5 Continuity method

Let S be the set of $au \in [0,1]$ such that

 $(u_{xx}+1)(u_{yy}+u_{tt}+u_t+1)-u_{xy}^2-u_{xt}^2=1-\tau+\tau e^f$

has a solution in $\mathcal{C}^\infty_0(\mathbb{T}^3)$.

S is non-empty, open and closed in [0, 1].

Then $1 \in S$ and the claim follows.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< ∃ >

New proof of the result by Tosatti and Weinkove

Tosatti and Weinkove have found a simplified proof of the C^0 -priori estimate based on the Aleksandrov-Bakelman-Pucci estimate.

Proposition (Székelyihidi)

Let $0 < r \le 1$ and $v : \overline{B_r}(0) \subset \mathbb{R}^n \to \mathbb{R}$ be a smooth map satisfying $v(0) + \epsilon \le \inf_{\partial B_r(0)} v$, for some $\epsilon > 0$. Then

$$\epsilon^n \leq C_0 \int_P det(D^2 v)$$

where $C_0 = C_0(n)$ and

$$P = \{x \in B_r(0) : |Dv(x)| < \frac{\epsilon}{2}, v(y) \ge v(x) + Dv(x)(y-x), \\ \forall y \in B_r(0)\}.$$

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

Sa P

Let
$$u \in C^{\infty}(\mathbb{T}^3)$$
 such that
 $(u_{xx} + 1)(u_{yy} + u_{tt} + u_t + 1) - u_{xy}^2 - u_{xt}^2 = e^f, \ u \leq 0, \ \min u < -1.$
Let $x_0 \in \mathbb{T}^3$ be such that $\min_{\mathbb{T}^3} u = u(x_0)$ and regard u as a map
 $u : B_r(0) \subset \mathbb{R}^3 \to \mathbb{R}$ with $O \equiv x_0$.
Define $v = u + \frac{\epsilon}{r^2}(x^2 + y^2 + t^2)$. Then

 $\epsilon^3 \leq C_0 \int_P det(D^2 v) \text{ and } det(D^2 v(x)) \leq C, \quad \forall x \in P$

for a uniform C.

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

< 47 ▶

- ∢ ∃ ▶

< □ >

∃ ▶

Ē

Therefore $\epsilon^3 \leq C|P|$ and

$$\|u\|_{\mathcal{C}^0} \leq \frac{C^{1/p}}{\epsilon^{3/p}} \|u\|_{L^p} + 1.$$

On the other hand, $\Delta u + u_t > -2$ which implies that $||u||_{L^p}$ is uniformly bounded and so one gets an L^{∞} bound of u.

Theorem (Tosatti-Weinkove)

Let (Ω, J) be an invariant AK structure on the KT manifold inducing the standard metric $g = \sum_{i=1}^{4} (e^i)^2$. The the CY equation on (M, J, Ω) can be solved for every S¹-invariant normalised volume form σ .

It is possible to generalize the theorem if we assume span $< e_1, e_2, e_3 >$ orthogonal to e_4 .

Anna Fino Interplays of Complex and Symplectic Geometry Lecture 2

SQ Q