Lecture 2: Uniform estimates through qpsh envelopes Joint work with H.C.Lu

Vincent Guedj

Institut de Mathématiques de Toulouse

Complex Analysis and Geometry - XXV, CIRM-ICTP, Wednesday, 9 June 2021

Vincent Guedj (IMT)

Uniform estimates through qpsh envelopes

June, 2021 1 / 18

3

590

Let X be a cpct *n*-dim Kähler manifold.

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

590

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

SQ (P

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

If μ is a "nice" probability measure, then $Osc_X(\varphi) \leq C_{\mu}$.

SQ (P

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

If μ is a "nice" probability measure, then $Osc_X(\varphi) \leq C_{\mu}$.

Here $dd^c = i\partial\overline{\partial}$.

June, 2021

SQ (P

2 / 18

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

If μ is a "nice" probability measure, then $Osc_X(\varphi) \leq C_{\mu}$.

Here $dd^c = i\partial\overline{\partial}$. We are going to explain

• properties of $PSH(X, \omega)$ and how to define $(\omega + dd^c \varphi)^n$;

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

If μ is a "nice" probability measure, then $Osc_X(\varphi) \leq C_{\mu}$.

Here $dd^c = i\partial\overline{\partial}$. We are going to explain

- properties of $PSH(X, \omega)$ and how to define $(\omega + dd^c \varphi)^n$;
- how "nice" μ should be;

June, 2021 2 / 18

500

Let X be a cpct *n*-dim Kähler manifold. Let ω be a semi-positive closed (1,1)-form with $\int_X \omega^n =: V > 0$. The goal of Lecture 2 is to show:

Theorem

Assume $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ is a solution to

$$\frac{1}{V}(\omega + dd^c\varphi)^n = \mu.$$

If μ is a "nice" probability measure, then $Osc_X(\varphi) \leq C_{\mu}$.

Here $dd^c = i\partial\overline{\partial}$. We are going to explain

- properties of $PSH(X, \omega)$ and how to define $(\omega + dd^c \varphi)^n$;
- how "nice" μ should be;
- a recent and elementary proof of this fundamental estimate.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

ロ > 《 큔 > 《 돈 > 《 돈 > 돈 ...

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form.

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

• Qpsh functions are loc the sum of a smooth and a psh function.

590

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.

SQ (P

(□) (

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.
- We endow $PSH(X, \omega)$ with the L^1 -topology.

500

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.
- We endow $PSH(X, \omega)$ with the L^1 -topology.
- Sets $PSH_A(X, \omega) := \{ \varphi \in PSH(X, \omega), -A \leq \sup_X \varphi \leq 0 \}$ are cpct.

SQ (P

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.
- We endow $PSH(X, \omega)$ with the L^1 -topology.
- Sets $PSH_A(X, \omega) := \{ \varphi \in PSH(X, \omega), \ -A \leq \sup_X \varphi \leq 0 \}$ are cpct.
- One can approximate any $\varphi \in PSH(X, \omega)$ by a decreasing sequence of bounded (sometimes even smooth [Demailly]) ω -psh functions.

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.
- We endow $PSH(X, \omega)$ with the L^1 -topology.
- Sets $PSH_A(X, \omega) := \{ \varphi \in PSH(X, \omega), \ -A \leq \sup_X \varphi \leq 0 \}$ are cpct.
- One can approximate any φ ∈ PSH(X,ω) by a decreasing sequence of bounded (sometimes even smooth [Demailly]) ω-psh functions.

Example

If P=homog. polyn. deg k, then $k^{-1} \log |P| - \log |z| \in PSH(\mathbb{CP}^n, \omega_{FS})$.

June, 2021 3 / 18

590

Let X be a cpct *n*-dim Kähler manifold, dV_X be a smooth volume form. Let ω be a semi-positive closed (1, 1)-form with $\int_X \omega^n =: V > 0$.

- Qpsh functions are loc the sum of a smooth and a psh function.
- We let $PSH(X, \omega)$ denote the set of quasi-plurisubharmonic functions $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ s.t. $\omega + dd^c \varphi \ge 0$ in the sense of currents.
- We endow $PSH(X, \omega)$ with the L^1 -topology.
- Sets $PSH_A(X, \omega) := \{ \varphi \in PSH(X, \omega), \ -A \leq \sup_X \varphi \leq 0 \}$ are cpct.
- One can approximate any $\varphi \in PSH(X, \omega)$ by a decreasing sequence of bounded (sometimes even smooth [Demailly]) ω -psh functions.

Example

If P=homog. polyn. deg k, then $k^{-1} \log |P| - \log |z| \in PSH(\mathbb{CP}^n, \omega_{FS})$. The set of such functions is dense (L^2 -estimates / Jean-Pierre lectures).

June, 2021 3 / 18

3

SQ (~

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Quasi-psh functions enjoy strong integrability properties:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Quasi-psh functions enjoy strong integrability properties:

• $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Vincent Guedj (IMT)

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Vincent Guedj (IMT)

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);

• more generally if $PSH(X, \omega) \subset L^m(\mu)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の へ ⊙

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);

• more generally if $PSH(X,\omega) \subset L^m(\mu)$ then

 $C(A, m, \mu) := \sup \left\{ \int_X (-u)^m d\mu, \ u \in PSH_A(X, \omega) \right\} < +\infty.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);
- more generally if $PSH(X,\omega) \subset L^m(\mu)$ then
 - $C(A, m, \mu) := \sup \left\{ \int_X (-u)^m d\mu, \ u \in PSH_A(X, \omega) \right\} < +\infty.$

Quasi-psh functions are even "exponentially integrable" wrt dV_X :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);

• more generally if $PSH(X,\omega) \subset L^m(\mu)$ then

$$C(A, m, \mu) := \sup \left\{ \int_X (-u)^m d\mu, \ u \in PSH_A(X, \omega) \right\} < +\infty.$$

Quasi-psh functions are even "exponentially integrable" wrt dV_X :

Theorem (Skoda's uniform integrability)

There exists $\alpha = \alpha(\{\omega\})$ such that for any A > 0,

$$\sup\left\{\int_X e^{-\alpha u} dV_X, \ u \in PSH_A(X, \omega)\right\} < +\infty.$$

June, 2021 4 / 18

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Quasi-psh functions enjoy strong integrability properties:

- $PSH(X, \omega) \subset L^m(dV_X)$ for all $m \ge 1$;
- $\int_X (-u)^m dV_X \leq C(m, A)$ for all $u \in PSH_A(X, \omega)$ (compactness);

• more generally if $PSH(X,\omega) \subset L^m(\mu)$ then

$$C(A, m, \mu) := \sup \left\{ \int_X (-u)^m d\mu, \ u \in PSH_A(X, \omega) \right\} < +\infty.$$

Quasi-psh functions are even "exponentially integrable" wrt dV_X :

Theorem (Skoda's uniform integrability)

There exists
$$\alpha = \alpha(\{\omega\})$$
 such that for any $A > 0$,

$$\sup\left\{\int_X e^{-\alpha u} dV_X, \ u \in PSH_A(X, \omega)\right\} < +\infty.$$

Example

If
$$X \subset \mathbb{CP}^N$$
 has degree d and $\omega = \omega_{FS|X}$ then $\alpha = \frac{1}{nd}$ works.

• If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.

SQ (P

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 .

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume
$$X = \mathbb{CP}^n$$
, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$,

Vincent Guedj (IMT)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X,\omega)$, χ convex & $0 \leq \chi' \leq 1$,

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$, χ convex & $0 \leq \chi' \leq 1$, then $\chi \circ \varphi \in PSH(X, \omega)$:

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$, χ convex & $0 \le \chi' \le 1$, then $\chi \circ \varphi \in PSH(X, \omega)$: $dd^{c}\chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, dd^{c}\varphi$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ● の Q @
Bedford-Taylor theory

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$, χ convex & $0 \leq \chi' \leq 1$, then $\chi \circ \varphi \in PSH(X, \omega)$:

$$dd^{c}\chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, dd^{c}\varphi \\ \geq \chi' \circ \varphi \, (\omega + dd^{c}\varphi) - \chi' \circ \varphi \, \omega$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Bedford-Taylor theory

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$, χ convex & $0 \leq \chi' \leq 1$, then $\chi \circ \varphi \in PSH(X, \omega)$:

$$dd^{c}\chi\circ\varphi = \chi''\circ\varphi\,d\varphi\wedge d^{c}\varphi + \chi'\circ\varphi\,dd^{c}\varphi$$

$$\geq \chi'\circ\varphi\,(\omega+dd^{c}\varphi) - \chi'\circ\varphi\,\omega \geq -\omega.$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Bedford-Taylor theory

- If u is a psh function then $u \star \chi_{\varepsilon}$ is smooth psh and decrease to u.
- If u is a bounded psh function then the Monge-Ampère measures $(dd^{c}u \star \chi_{\varepsilon})^{n}$ weakly converge to a unique measure denoted $(dd^{c}u)^{n}$.
- The Monge-Ampère measure $(\omega + dd^c \varphi)^n$ is well-defined if $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ by using local potentials $\omega = dd^c \rho$.

Example

Assume $X = \mathbb{CP}^n$, $\omega = \omega_{FS}$ and $\varphi[z] = \max_{0 \le j \le n} \log |z_j| - \log ||z||$. Then $(\omega + dd^c \varphi)^n$ is the normalized Lebesgue measure on \mathbb{RP}^n .

• If $\varphi \in PSH(X, \omega)$, χ convex & $0 \leq \chi' \leq 1$, then $\chi \circ \varphi \in PSH(X, \omega)$:

$$dd^{c}\chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, dd^{c}\varphi \\ \geq \chi' \circ \varphi \, (\omega + dd^{c}\varphi) - \chi' \circ \varphi \, \omega \geq -\omega.$$

 \hookrightarrow when $\varphi \sim \log ||z||$ this corresponds to "radial singularities" ...

SQ (P

Measure $(dd^{c}u)^{n}$ well-defined when u has compact singularities [Demailly].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へぐ

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

June, 2021 6 / 18

590

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

• Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.

590

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

- Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.
- $\chi \circ L$ is bounded iff $\chi(-\infty) > -\infty$.

SQ (?

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

- Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.
- $\chi \circ L$ is bounded iff $\chi(-\infty) > -\infty$.
- A direct computation yields

$$\mu = c_n \frac{(\chi' \circ L)^{n-1} \chi'' \circ L}{||z||^{2n}} dV_{eucl}(z).$$

SQ (?

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

- Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.
- $\chi \circ L$ is bounded iff $\chi(-\infty) > -\infty$.
- A direct computation yields

$$\mu = c_n \frac{(\chi' \circ L)^{n-1} \chi'' \circ L}{||z||^{2n}} dV_{eucl}(z).$$

• $PSH(X,\omega) \subset L^m(\mu)$ iff $\int_{-\infty} |t|^m \chi'(t)^{n-1} \chi''(t) dt < +\infty$.

500

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

- Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.
- $\chi \circ L$ is bounded iff $\chi(-\infty) > -\infty$.
- A direct computation yields

$$\mu = c_n \frac{(\chi' \circ L)^{n-1} \chi'' \circ L}{||z||^{2n}} dV_{eucl}(z).$$

- $PSH(X,\omega) \subset L^m(\mu)$ iff $\int_{-\infty} |t|^m \chi'(t)^{n-1} \chi''(t) dt < +\infty$.
- $PSH(X,\omega) \subset L^{n+\varepsilon}(\mu) \Rightarrow \chi'(t) = O(|t|^{-1-\varepsilon/n}) \Rightarrow \chi(-\infty) > -\infty.$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ● の Q @

Measure $(dd^c u)^n$ well-defined when u has compact singularities [Demailly]. Consider measures $\mu = (dd^c \chi \circ L)^n$ with an isolated radial singularity.

- Here χ smooth convex increasing with $\chi'(0) = 0$ and $L(z) = \log ||z||$.
- $\chi \circ L$ is bounded iff $\chi(-\infty) > -\infty$.
- A direct computation yields

$$\mu = c_n \frac{(\chi' \circ L)^{n-1} \chi'' \circ L}{||z||^{2n}} dV_{eucl}(z).$$

- $PSH(X,\omega) \subset L^m(\mu)$ iff $\int_{-\infty} |t|^m \chi'(t)^{n-1} \chi''(t) dt < +\infty$.
- $PSH(X,\omega) \subset L^{n+\varepsilon}(\mu) \Rightarrow \chi'(t) = O(|t|^{-1-\varepsilon/n}) \Rightarrow \chi(-\infty) > -\infty.$
- For $\chi(t) = -\log \circ \log(-t)$ and $n \ge 2$, gets $PSH(X, \omega) \subset L^n(\mu)$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > = □ = □

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Here are basic properties of these envelopes:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Here are basic properties of these envelopes:

• The function P(h) is bounded and ω -psh.

590

7 / 18

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Here are basic properties of these envelopes:

- The function P(h) is bounded and ω -psh.
- If h is smooth, then P(h) is $\mathcal{C}^{1,1}$ -smooth

999

(日) (圖) (문) (문) (문)

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Here are basic properties of these envelopes:

- The function P(h) is bounded and ω -psh.
- If h is smooth, then P(h) is $\mathcal{C}^{1,1}$ -smooth and

$$(\omega + dd^{c}P(h))^{n} = \mathbb{1}_{\{P(h)=h\}}(\omega + dd^{c}h)^{n}.$$

is concentrated in the contact set $C = \{x \in X, P(h)(x) = h(x)\}$.

June, 2021 7 / 18

590

Given $h: X \to \mathbb{R}$ a bounded quasi-continuous function, we set:

Definition

$$P(h) = P_{\omega}(h) := \sup\{u \in PSH(X, \omega), u \leq h\}.$$

Here are basic properties of these envelopes:

- The function P(h) is bounded and ω -psh.
- If h is smooth, then P(h) is $\mathcal{C}^{1,1}$ -smooth and

$$(\omega + dd^{c}P(h))^{n} = \mathbb{1}_{\{P(h)=h\}}(\omega + dd^{c}h)^{n}.$$

is concentrated in the contact set $C = \{x \in X, P(h)(x) = h(x)\}$.

• If h is merely l.s.c. then $(\omega + dd^c P(h))^n$ is still concentrated on C.

SQ (P

◆□▶ ◆圖▶ ★ 필▶ ★ 필▶ - (三)

The following will play a key role in the sequel:

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲三 少へぐ

Vincent Guedj (IMT)

The following will play a key role in the sequel:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$.

590

Vincent Guedj (IMT)

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi =$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^{c}\chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, dd^{c}\varphi$,

500

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^c \varphi + \chi' \circ \varphi \, dd^c \varphi$, hence

 $\omega + dd^{c}\chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, (\omega + dd^{c}\varphi) + (1 - \chi' \circ \varphi) \, \omega$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ ��

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^c \varphi + \chi' \circ \varphi \, dd^c \varphi$, hence

$$\begin{split} \omega + dd^{c}\chi \circ \varphi &= \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, (\omega + dd^{c}\varphi) + (1 - \chi' \circ \varphi) \, \omega \\ &\leq \chi' \circ \varphi \, (\omega + dd^{c}\varphi). \end{split}$$

SQ (P

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^c \varphi + \chi' \circ \varphi \, dd^c \varphi$, hence

$$\begin{split} \omega + dd^{c}\chi \circ \varphi &= \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, (\omega + dd^{c}\varphi) + (1 - \chi' \circ \varphi) \, \omega \\ &\leq \chi' \circ \varphi \, (\omega + dd^{c}\varphi). \end{split}$$

since $\chi' \geq 1$ and $\chi'' \leq 0$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 -

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^c \varphi + \chi' \circ \varphi \, dd^c \varphi$, hence

$$\begin{split} \omega + dd^{c}\chi \circ \varphi &= \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, (\omega + dd^{c}\varphi) + (1 - \chi' \circ \varphi) \, \omega \\ &\leq \chi' \circ \varphi \, (\omega + dd^{c}\varphi). \end{split}$$

since $\chi' \ge 1$ and $\chi'' \le 0$. The conclusion follows.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ ��

The following will play a key role in the sequel:

Lemma

Assume $\chi : \mathbb{R}^- \to \mathbb{R}^-$ is concave increasing with $\chi'(0) \ge 1$. Pick $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that $\sup_X \varphi = 0$. Then

$$(\omega + dd^{c}P(\chi \circ \varphi))^{n} \leq 1_{\{P(\chi \circ \varphi) = \chi \circ \varphi\}} (\chi' \circ \varphi)^{n} (\omega + dd^{c}\varphi)^{n}$$

Proof. (smooth) Note $dd^c \chi \circ \varphi = \chi'' \circ \varphi \, d\varphi \wedge d^c \varphi + \chi' \circ \varphi \, dd^c \varphi$, hence

$$\begin{split} \omega + dd^{c}\chi \circ \varphi &= \chi'' \circ \varphi \, d\varphi \wedge d^{c}\varphi + \chi' \circ \varphi \, (\omega + dd^{c}\varphi) + (1 - \chi' \circ \varphi) \, \omega \\ &\leq \chi' \circ \varphi \, (\omega + dd^{c}\varphi). \end{split}$$

since $\chi' \ge 1$ and $\chi'' \le 0$. The conclusion follows. (For non smooth functions, this requires some extra work). \Box

June, 2021 8 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Precise goal of Lecture 2=proof of the following uniform estimate:

590

Precise goal of Lecture 2=proof of the following uniform estimate:

Theorem (Kolodziej 98, Eyssidieux-G-Zeriahi 08-09, Demailly-Pali 10)

Fix p > 1 and $0 \le f \in L^p(dV_X)$ normalized s.t. $\int_X f dV_X = 1$.

590

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 厘 -

Precise goal of Lecture 2=proof of the following uniform estimate:

Theorem (Kolodziej 98, Eyssidieux-G-Zeriahi 08-09, Demailly-Pali 10)

Fix p > 1 and $0 \le f \in L^p(dV_X)$ normalized s.t. $\int_X fdV_X = 1$. There exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ s.t.

•
$$V^{-1}(\omega + dd^c \varphi)^n = fdV_X$$
 and $\sup_X \varphi = 0$;

(日) (圖) (문) (문) (문)

Precise goal of Lecture 2=proof of the following uniform estimate:

Theorem (Kolodziej 98, Eyssidieux-G-Zeriahi 08-09, Demailly-Pali 10)

Fix p > 1 and $0 \le f \in L^p(dV_X)$ normalized s.t. $\int_X fdV_X = 1$. There exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ s.t.

• $V^{-1}(\omega + dd^c \varphi)^n = fdV_X$ and $\sup_X \varphi = 0$;

•
$$||\varphi||_{L^{\infty}(X)} \leq T = T(||f||_{L^{p}}, A_{p}),$$

where

$$A_p := \sup \left\{ \int_X (-u)^{\frac{(n+1)p}{p-1}} dV_X, \ u \in PSH_0(X, \omega) \right\}.$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Precise goal of Lecture 2=proof of the following uniform estimate:

Theorem (Kolodziej 98, Eyssidieux-G-Zeriahi 08-09, Demailly-Pali 10)

Fix p > 1 and $0 \le f \in L^p(dV_X)$ normalized s.t. $\int_X fdV_X = 1$. There exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ s.t.

• $V^{-1}(\omega + dd^c \varphi)^n = fdV_X$ and $\sup_X \varphi = 0$;

•
$$||\varphi||_{L^{\infty}(X)} \leq T = T(||f||_{L^{p}}, A_{p}),$$

where

$$A_p := \sup \left\{ \int_X (-u)^{\frac{(n+1)p}{p-1}} dV_X, \ u \in PSH_0(X, \omega) \right\}.$$

 \hookrightarrow New and simplified approach using quasi-psh envelopes.

June, 2021 9 / 18

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

More general measures

We shall even treat the case of more general probability measures μ :

590

(日) (圖) (문) (문) (문)
We shall even treat the case of more general probability measures μ :

Theorem (G-Lu 21)

Assume $PSH(X, \omega) \subset L^m(\mu)$ with m > n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

We shall even treat the case of more general probability measures μ :

Theorem (G-Lu 21)

Vincent Guedj (IMT)

Assume $PSH(X, \omega) \subset L^m(\mu)$ with m > n. Then there exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that

•
$$V^{-1}(\omega + dd^{c}\varphi)^{n} = \mu$$
 and $\sup_{X} \varphi = 0$;

590

(日) (圖) (문) (문) (문)

We shall even treat the case of more general probability measures μ :

Theorem (G-Lu 21)

Assume $PSH(X, \omega) \subset L^m(\mu)$ with m > n. Then there exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that

•
$$V^{-1}(\omega + dd^c \varphi)^n = \mu$$
 and $\sup_X \varphi = 0$;

•
$$||\varphi||_{L^{\infty}(X)} \leq T = T(A_m),$$

We shall even treat the case of more general probability measures μ :

Theorem (G-Lu 21)

Assume $PSH(X, \omega) \subset L^m(\mu)$ with m > n. Then there exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that

•
$$V^{-1}(\omega + dd^c \varphi)^n = \mu$$
 and $\sup_X \varphi = 0$;

•
$$||\varphi||_{L^{\infty}(X)} \leq T = T(A_m)$$
,

where T depends on n, m and an upper-bound on

$$A_m := \sup \left\{ \left(\int_X (-u)^m d\mu \right)^{\frac{1}{m}}, \ u \in PSH_0(X, \omega) \right\}$$

June, 2021 10 / 18

590

(日) (圖) (문) (문) (문)

We shall even treat the case of more general probability measures μ :

Theorem (G-Lu 21)

Assume $PSH(X, \omega) \subset L^m(\mu)$ with m > n. Then there exists a unique $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ such that

•
$$V^{-1}(\omega + dd^c \varphi)^n = \mu$$
 and $\sup_X \varphi = 0$;

•
$$||\varphi||_{L^{\infty}(X)} \leq T = T(A_m),$$

where T depends on n, m and an upper-bound on

$$A_m := \sup \left\{ \left(\int_X (-u)^m d\mu \right)^{\frac{1}{m}}, \ u \in PSH_0(X, \omega) \right\}$$

Previous Thm follows from Hölder inequality (with m = n + 1).

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential:

June, 2021 11 / 18

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

June, 2021

11 / 18

• If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

- If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.
- If $n \ge 2$ there exists unbounded φ_{μ} when $PSH(X, \omega) \subset L^{n}(\mu)$.

SQ (P

(日) (圖) (문) (문) (문)

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

- If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.
- If $n \ge 2$ there exists unbounded φ_{μ} when $PSH(X, \omega) \subset L^{n}(\mu)$.
- If $\mu = f dV_X$ with $\int_X f(\log f)^m dV_X < +\infty$, m > n,

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

- If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.
- If $n \ge 2$ there exists unbounded φ_{μ} when $PSH(X, \omega) \subset L^{n}(\mu)$.
- If $\mu = fdV_X$ with $\int_X f(\log f)^m dV_X < +\infty$, m > n, then Hölder-Young inequality and Skoda's theorem ensure that $PSH(X, \omega) \subset L^m(\mu)$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

- If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.
- If $n \ge 2$ there exists unbounded φ_{μ} when $PSH(X, \omega) \subset L^{n}(\mu)$.
- If $\mu = fdV_X$ with $\int_X f(\log f)^m dV_X < +\infty$, m > n, then Hölder-Young inequality and Skoda's theorem ensure that $PSH(X, \omega) \subset L^m(\mu)$.
- Finite entropy (m = 1) does not imply φ_{μ} bounded when $n \ge 2$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Given μ a probability measure, we let $\varphi_{\mu} \in PSH(X, \omega)$ denote its unique Monge-Ampère potential: $V^{-1}(\omega + dd^{c}\varphi_{\mu})^{n} = \mu$, with $\sup_{X} \varphi_{\mu} = 0$.

- If n = 1 then $PSH(X, \omega) \subset L^1(\mu) \iff \varphi_{\mu}$ is bounded.
- If $n \ge 2$ there exists unbounded φ_{μ} when $PSH(X, \omega) \subset L^{n}(\mu)$.
- If $\mu = fdV_X$ with $\int_X f(\log f)^m dV_X < +\infty$, m > n, then Hölder-Young inequality and Skoda's theorem ensure that $PSH(X, \omega) \subset L^m(\mu)$.
- Finite entropy (m = 1) does not imply φ_{μ} bounded when $n \ge 2$.
- If H ⊂ X real analytic hypersurface and μ = (2n − 1)-Hausdorff measure on H, then PSH(X,ω) ⊂ L^m(μ) for any m > 1.

Vincent Guedj (IMT)

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n,

June, 2021 12 / 18

< ロ > < 回 > < 三 > < 三 > < 三 > < ○ < ○

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^c \varphi)^n = \mu$ with $\sup_X \varphi = 0$. Goal=a priori estimate.

June, 2021 12 / 18

Assume $PSH(X, \omega) \subset L^{m}(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^{c}\varphi)^{n} = \mu$ with $\sup_{X} \varphi = 0$. Goal=a priori estimate.

• Plan: show that $\mu(\varphi < -t) = 0$ for $t \ge T_{max} = T(A_m)$.

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^c \varphi)^n = \mu$ with $\sup_X \varphi = 0$. Goal=a priori estimate.

- Plan: show that $\mu(\varphi < -t) = 0$ for $t \ge T_{max} = T(A_m)$.
- We choose below χ concave increasing s.t. $\chi(0) = 0$ and $\chi'(0) \ge 1$.

June, 2021 12 / 18

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^c \varphi)^n = \mu$ with $\sup_X \varphi = 0$. Goal=a priori estimate.

- Plan: show that $\mu(\varphi < -t) = 0$ for $t \ge T_{max} = T(A_m)$.
- We choose below χ concave increasing s.t. $\chi(0) = 0$ and $\chi'(0) \ge 1$.
- Setting $u := P(\chi \circ \varphi)$ we have a good control on $(\omega + dd^c u)^n$.

Vincent Guedj (IMT)

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^c \varphi)^n = \mu$ with $\sup_X \varphi = 0$. Goal=a priori estimate.

- Plan: show that $\mu(\varphi < -t) = 0$ for $t \ge T_{max} = T(A_m)$.
- We choose below χ concave increasing s.t. $\chi(0) = 0$ and $\chi'(0) \ge 1$.
- Setting $u := P(\chi \circ \varphi)$ we have a good control on $(\omega + dd^c u)^n$.
- Naive idea: control from below on $\sup_X u$ provides lower bound for φ .

Assume $PSH(X, \omega) \subset L^m(\mu)$, m > n, and $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$ st $V^{-1}(\omega + dd^c \varphi)^n = \mu$ with $\sup_X \varphi = 0$. Goal=a priori estimate.

- Plan: show that $\mu(\varphi < -t) = 0$ for $t \ge T_{max} = T(A_m)$.
- We choose below χ concave increasing s.t. $\chi(0) = 0$ and $\chi'(0) \ge 1$.
- Setting $u := P(\chi \circ \varphi)$ we have a good control on $(\omega + dd^c u)^n$.
- Naive idea: control from below on $\sup_X u$ provides lower bound for φ .

We fix $0 < \varepsilon << 1$ so that $n < n + 3\varepsilon \leq m$.

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$.

Vincent Guedj (IMT) Uniform es

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ \to \mathbb{R}^+$ is increasing with g(0) = 1 then

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ \to \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

Vincent Guedj (IMT)

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ o \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) \, d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

• We set $g(t) = [\chi'(-t)]^{n+2\varepsilon}$ with $\chi(0) = 0, \chi'(0) = g(0) = 1$

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ o \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

• We set $g(t) = [\chi'(-t)]^{n+2\varepsilon}$ with $\chi(0) = 0, \chi'(0) = g(0) = 1$ and

$$g'(t) = rac{1}{(1+t)^2 \mu(arphi < -t)}$$
 when $t < T_{max}.$

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ o \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

• We set $g(t) = [\chi'(-t)]^{n+2\varepsilon}$ with $\chi(0) = 0, \chi'(0) = g(0) = 1$ and

$$g'(t) = rac{1}{(1+t)^2 \mu(arphi < -t)}$$
 when $t < T_{max}$.

• Thus χ has all the required properties,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ��

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ o \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

• We set $g(t) = [\chi'(-t)]^{n+2\varepsilon}$ with $\chi(0) = 0, \chi'(0) = g(0) = 1$ and

$$g'(t) = rac{1}{(1+t)^2 \mu(arphi < -t)}$$
 when $t < T_{max}.$

• Thus χ has all the required properties, e.g.

$$\int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt \leq \int_0^{+\infty} \frac{dt}{(1+t)^2} = 1.$$

June, 2021 13 / 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ��

We choose χ so that $\int_X (\chi' \circ \varphi)^{n+2\varepsilon} d\mu = B \leq 2$. More precisely:

• Recall that if $g: \mathbb{R}^+ o \mathbb{R}^+$ is increasing with g(0) = 1 then

$$\int_X g \circ (-\varphi) d\mu = \mu(X) + \int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt.$$

• We set $g(t) = [\chi'(-t)]^{n+2\varepsilon}$ with $\chi(0) = 0, \chi'(0) = g(0) = 1$ and

$$g'(t) = rac{1}{(1+t)^2 \mu(arphi < -t)}$$
 when $t < {T_{max}}.$

• Thus χ has all the required properties, e.g.

$$\int_0^{T_{max}} g'(t) \mu(\varphi < -t) dt \leq \int_0^{+\infty} \frac{dt}{(1+t)^2} = 1.$$

• We note for later use that $-\chi(-1) = \int_{-1}^{0} \chi'(t) dt \ge 1$.

SQ (?

Recall that $u = P(\chi \circ \varphi)$.

Vincent Guedj (IMT)

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^c u)^n$.

June, 2021 14 / 18

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲三 少へぐ

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^c u)^n$.

• The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^c u)^n$.

- The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.
- Therefore $\int_X (-u)^{\varepsilon} MA(u) \leq \int_X (-\chi \circ \varphi)^{\varepsilon} (\chi' \circ \varphi)^n d\mu$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^c u)^n$.

- The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.
- Therefore $\int_X (-u)^{\varepsilon} MA(u) \leq \int_X (-\chi \circ \varphi)^{\varepsilon} (\chi' \circ \varphi)^n d\mu$.
- By concavity and $\chi(0) = 0$ we have $|\chi(t)| \leq |t|\chi'(t)$,

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^{c}u)^{n}$.

- The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.
- Therefore $\int_X (-u)^{\varepsilon} MA(u) \leq \int_X (-\chi \circ \varphi)^{\varepsilon} (\chi' \circ \varphi)^n d\mu$.
- By concavity and $\chi(0) = 0$ we have $|\chi(t)| \leq |t|\chi'(t)$, thus

$$\int_{X} (-u)^{\varepsilon} MA(u) \leq \int_{X} (-\varphi)^{\varepsilon} (\chi' \circ \varphi)^{n+\varepsilon} d\mu$$

590

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^{c}u)^{n}$.

- The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.
- Therefore $\int_X (-u)^{\varepsilon} MA(u) \leq \int_X (-\chi \circ \varphi)^{\varepsilon} (\chi' \circ \varphi)^n d\mu$.
- By concavity and $\chi(0) = 0$ we have $|\chi(t)| \leq |t|\chi'(t)$, thus

$$\begin{split} \int_{X} (-u)^{\varepsilon} MA(u) &\leq \int_{X} (-\varphi)^{\varepsilon} (\chi' \circ \varphi)^{n+\varepsilon} d\mu \\ &\leq \left(\int_{X} (-\varphi)^{n+2\varepsilon} d\mu \right)^{\frac{\varepsilon}{n+2\varepsilon}} \left(\int_{X} (\chi' \circ \varphi)^{n+2\varepsilon} d\mu \right)^{\frac{n+\varepsilon}{n+2\varepsilon}} \end{split}$$

June, 2021 14 / 18

590

Recall that $u = P(\chi \circ \varphi)$. We set $MA(u) := V^{-1}(\omega + dd^{c}u)^{n}$.

- The key observation yields $MA(u) \leq 1_{\{u=\chi \circ \varphi\}} (\chi' \circ \varphi)^n \mu$.
- Therefore $\int_X (-u)^{\varepsilon} MA(u) \leq \int_X (-\chi \circ \varphi)^{\varepsilon} (\chi' \circ \varphi)^n d\mu$.
- By concavity and $\chi(0) = 0$ we have $|\chi(t)| \leq |t|\chi'(t)$, thus

$$\begin{split} \int_{X} (-u)^{\varepsilon} MA(u) &\leq \int_{X} (-\varphi)^{\varepsilon} (\chi' \circ \varphi)^{n+\varepsilon} d\mu \\ &\leq \left(\int_{X} (-\varphi)^{n+2\varepsilon} d\mu \right)^{\frac{\varepsilon}{n+2\varepsilon}} \left(\int_{X} (\chi' \circ \varphi)^{n+2\varepsilon} d\mu \right)^{\frac{n+\varepsilon}{n+2\varepsilon}} \\ &\leq 2A_{m}(\mu)^{\varepsilon}. \end{split}$$

June, 2021 14 / 18

SQ (P

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Vincent Guedj (IMT)

We deduce a uniform control on $\sup_X u$:

Vincent Guedj (IMT)

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$
$$\leq \int_{X} (-u)^{\varepsilon} MA(u)$$

Vincent Guedj (IMT)

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$

$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$
$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}$$

• Thus *u* belongs to a compact subset $PSH_A(X, \omega)$, $A = 2^{\frac{1}{\varepsilon}}A_m(\mu)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

15 / 18

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$

$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

Thus u belongs to a compact subset PSH_A(X, ω), A = 2^{1/ε} A_m(μ).
We infer ∫_X(-u)^{n+3ε}dμ ≤ C'_μ.

June, 2021 15 / 18

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$

$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

- Thus *u* belongs to a compact subset $PSH_A(X, \omega)$, $A = 2^{\frac{1}{\varepsilon}}A_m(\mu)$.
- We infer $\int_X (-u)^{n+3\varepsilon} d\mu \leq C'_{\mu}$.
- Now $0 \le -\chi \circ \varphi \le -u$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

June, 2021

15 / 18

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$

$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

- Thus *u* belongs to a compact subset $PSH_A(X, \omega)$, $A = 2^{\frac{1}{\varepsilon}} A_m(\mu)$.
- We infer $\int_X (-u)^{n+3\varepsilon} d\mu \leq C'_{\mu}$. • Now $0 \leq -\chi \circ \varphi \leq -u$ hence $\int_X (-\chi \circ \varphi)^{n+3\varepsilon} d\mu \leq C'_{\mu}$.

June, 2021 15 / 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ��

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$
$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

- Thus *u* belongs to a compact subset $PSH_A(X, \omega)$, $A = 2^{\frac{1}{\varepsilon}}A_m(\mu)$.
- We infer $\int_X (-u)^{n+3\varepsilon} d\mu \leq C'_{\mu}$.
- Now $0 \leq -\chi \circ \varphi \leq -u$ hence $\int_X (-\chi \circ \varphi)^{n+3\varepsilon} d\mu \leq C'_{\mu}$.
- Chebyshev inequality thus yields $\mu(\varphi < -t) \leq \frac{C'_{\mu}}{|\chi(-t)|^{n+3\varepsilon}}$,

June, 2021 15 / 18

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We deduce a uniform control on $\sup_X u$:

$$0 \leq (-\sup_{X} u)^{\varepsilon} = \int_{X} (-\sup_{X} u)^{\varepsilon} MA(u)$$
$$\leq \int_{X} (-u)^{\varepsilon} MA(u) \leq 2A_{m}(\mu)^{\varepsilon}.$$

- Thus *u* belongs to a compact subset $PSH_A(X, \omega)$, $A = 2^{\frac{1}{\varepsilon}}A_m(\mu)$.
- We infer $\int_X (-u)^{n+3arepsilon} d\mu \leq C'_\mu$.
- Now $0 \leq -\chi \circ \varphi \leq -u$ hence $\int_X (-\chi \circ \varphi)^{n+3\varepsilon} d\mu \leq C'_{\mu}$.
- Chebyshev inequality thus yields $\mu(\varphi < -t) \leq \frac{C'_{\mu}}{|\chi(-t)|^{n+3\varepsilon}}$,
- while by our choice $\mu(\varphi < -t) = \frac{1}{(1+t)^2 g'(t)}$.

June, 2021 15 / 18

▲ロト ▲園 ト ▲ 国 ト ▲ 国 - の Q @

We set $h(t) = -\chi(-t)$ so that

We set $h(t) = -\chi(-t)$ so that

• h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$

June, 2021

16 / 18

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$
- $\frac{1}{(1+t)^2g'(t)} = \mu(\varphi < -t) \leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

We set $h(t) = -\chi(-t)$ so that

• h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$

•
$$g(t) = [h'(t)]^{n+2\varepsilon}$$
 so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$

•
$$\frac{1}{(1+t)^2g'(t)}=\mu(arphi<-t)\leq rac{C'_{\mu}}{h(t)^{n+3arepsilon}}.$$

• Multiplying the latter inequality by h', we obtain

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$
- $\frac{1}{(1+t)^2g'(t)} = \mu(\varphi < -t) \leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$
- Multiplying the latter inequality by h', we obtain

 $h'h^{n+3\varepsilon} \leq (n+2\varepsilon)C'_{\mu}(1+t)^2h''(h')^{n+2\varepsilon}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$
- $\frac{1}{(1+t)^2g'(t)} = \mu(\varphi < -t) \leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$
- Multiplying the latter inequality by h', we obtain

 $h'h^{n+3\varepsilon} \leq (n+2\varepsilon)C'_{\mu}(1+t)^2h''(h')^{n+2\varepsilon}.$

• Integrating between 0 and t and using $(1+s)^2 \le (1+t)^2$ yields

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$
- $\frac{1}{(1+t)^2g'(t)} = \mu(\varphi < -t) \leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$
- Multiplying the latter inequality by h', we obtain

 $h'h^{n+3\varepsilon} \leq (n+2\varepsilon)C'_{\mu}(1+t)^2h''(h')^{n+2\varepsilon}.$

• Integrating between 0 and t and using $(1+s)^2 \leq (1+t)^2$ yields

$$\frac{1}{(1+t)^2} \leq (n+3\varepsilon+1)C'_{\mu}\frac{(h')^{n+2\varepsilon+1}}{h^{n+3\varepsilon+1}}$$

June, 2021 16 / 18

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

We set $h(t) = -\chi(-t)$ so that

- h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$
- $g(t) = [h'(t)]^{n+2\varepsilon}$ so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$
- $\frac{1}{(1+t)^2g'(t)} = \mu(\varphi < -t) \leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$
- Multiplying the latter inequality by h', we obtain

$$h'h^{n+3\varepsilon} \leq (n+2\varepsilon)C'_{\mu}(1+t)^2h''(h')^{n+2\varepsilon}.$$

• Integrating between 0 and t and using $(1+s)^2 \le (1+t)^2$ yields

$$\frac{1}{(1+t)^2} \leq (n+3\varepsilon+1)C'_{\mu}\frac{(n-1)^{n+2\varepsilon+2}}{h^{n+3\varepsilon+1}}$$

• Thus $(1+t)^{-lpha} \leq Ch'h^{-eta}$ with 0 < lpha < 1 and eta > 1.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We set $h(t) = -\chi(-t)$ so that

• h convex increasing on $[0, T_{max}[$ with $h(0) = 0, h'(0) = 1, h(1) \ge 1;$

•
$$g(t) = [h'(t)]^{n+2\varepsilon}$$
 so $g' = (n+2\varepsilon)h''(h')^{n+2\varepsilon-1}$

•
$$\frac{1}{(1+t)^2g'(t)}=\mu(\varphi<-t)\leq \frac{C'_{\mu}}{h(t)^{n+3\varepsilon}}.$$

• Multiplying the latter inequality by h', we obtain

$$h'h^{n+3\varepsilon} \leq (n+2\varepsilon)C'_{\mu}(1+t)^2h''(h')^{n+2\varepsilon}.$$

• Integrating between 0 and t and using $(1+s)^2 \le (1+t)^2$ yields

$$\frac{1}{(1+t)^2} \leq (n+3\varepsilon+1)C'_{\mu}\frac{(h')^{n+2\varepsilon+1}}{h^{n+3\varepsilon+1}}$$

- Thus $(1+t)^{-lpha} \leq Ch' h^{-eta}$ with 0 < lpha < 1 and eta > 1.
- Integrate between 1 and T_{max} and use $h(1) \ge 1$ to conclude \Box .

5990

Slight extension of the method allows to

Vincent Guedj (IMT)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● のへで

Slight extension of the method allows to

• treat the case of big cohomology classes

June, 2021

17 / 18

Slight extension of the method allows to

- treat the case of big cohomology classes
- establish stability and continuity of solutions

June, 2021

590

17 / 18

Slight extension of the method allows to

- treat the case of big cohomology classes
- establish stability and continuity of solutions
- handle degenerating families

590

<ロト < 四ト < 臣ト < 臣ト 三臣

Slight extension of the method allows to

- treat the case of big cohomology classes
- establish stability and continuity of solutions
- handle degenerating families
- establish L^{∞} -bounds in the complement of a divisor

June, 2021 17 / 18

王

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Slight extension of the method allows to

- treat the case of big cohomology classes
- establish stability and continuity of solutions
- handle degenerating families
- establish L^{∞} -bounds in the complement of a divisor
- solve MA equations on hermitian manifolds.

June, 2021 17 / 18

3

500

Some references

 S. Kolodziej, *The complex Monge-Ampère equation*, Acta Math. 180 (1998), 69–117.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

References

Some references

 S. Kolodziej, *The complex Monge-Ampère equation*, Acta Math. 180 (1998), 69–117.

 P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639.

590

<ロト < 四ト < 臣ト < 臣ト 三臣

References

Some references

 S. Kolodziej, *The complex Monge-Ampère equation*, Acta Math. 180 (1998), 69–117.

 P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639.

 Z. Blocki, On uniform estimate in Calabi-Yau theorem II, Sci. China Math. 54 (2011), no. 7, 1375-1377.

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

《曰》《卽》《臣》《臣》

Some references

• S. Kolodziej, *The complex Monge-Ampère equation*,

Acta Math. **180** (1998), 69–117.

 P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639.

Z. Blocki,

On uniform estimate in Calabi-Yau theorem II, Sci. China Math. 54 (2011), no. 7, 1375-1377.

 V.Guedj, H.C.Lu, *Quasi-plurisubharmonic envelopes 1, 2, 3*, Preprint (2021).

June, 2021 18 / 18

王