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Uniform a priori estimate

L1-a priori bound for DCMAE

Let X be a cpct n-dim Kähler manifold.

Let ! be a semi-positive closed
(1, 1)-form with

R
X !n =: V > 0. The goal of Lecture 2 is to show:

Theorem

Assume ' 2 PSH(X ,!) \ L1(X ) is a solution to

1

V
(! + ddc')n = µ.

If µ is a ”nice”probability measure, then OscX (')  Cµ.

Here ddc = i@@. We are going to explain

properties of PSH(X ,!) and how to define (! + ddc')n;

how ”nice” µ should be;

a recent and elementary proof of this fundamental estimate.
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Quasi-plurisubharmonic envelopes

Quasi-plurisubharmonic functions

Let X be a cpct n-dim Kähler manifold, dVX be a smooth volume form.

Let ! be a semi-positive closed (1, 1)-form with
R
X !n =: V > 0.

Qpsh functions are loc the sum of a smooth and a psh function.

We let PSH(X ,!) denote the set of quasi-plurisubharmonic functions
' : X ! R [ {�1} s.t. ! + ddc' � 0 in the sense of currents.

We endow PSH(X ,!) with the L1-topology.

Sets PSHA(X ,!) := {' 2 PSH(X ,!), �A  supX '  0} are cpct.

One can approximate any ' 2 PSH(X ,!) by a decreasing sequence
of bounded (sometimes even smooth [Demailly]) !-psh functions.

Example

If P=homog. polyn. deg k , then k�1 log |P |� log |z | 2 PSH(CPn,!FS).
The set of such functions is dense (L2-estimates / Jean-Pierre lectures).
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Quasi-plurisubharmonic envelopes

Integrability properties

Quasi-psh functions enjoy strong integrability properties:

PSH(X ,!) ⇢ Lm(dVX ) for all m � 1;R
X (�u)mdVX  C (m,A) for all u 2 PSHA(X ,!) (compactness);
more generally if PSH(X ,!) ⇢ Lm(µ) then

C (A,m, µ) := sup
�R

X (�u)mdµ, u 2 PSHA(X ,!)
 
< +1.

Quasi-psh functions are even ”exponentially integrable” wrt dVX :

Theorem (Skoda’s uniform integrability)

There exists ↵ = ↵({!}) such that for any A > 0,

sup

⇢Z

X
e�↵udVX , u 2 PSHA(X ,!)

�
< +1.

Example

If X ⇢ CPN has degree d and ! = !FS |X then ↵ = 1
nd works.
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Quasi-plurisubharmonic envelopes

Bedford-Taylor theory

If u is a psh function then u ? �" is smooth psh and decrease to u.

If u is a bounded psh function then the Monge-Ampère measures
(ddcu ? �")n weakly converge to a unique measure denoted (ddcu)n.

The Monge-Ampère measure (! + ddc')n is well-defined if
' 2 PSH(X ,!) \ L1(X ) by using local potentials ! = ddc⇢.

Example

Assume X = CPn, ! = !FS and '[z ] = max0jn log |zj |� log ||z ||.
Then (! + ddc')n is the normalized Lebesgue measure on RPn.

If ' 2 PSH(X ,!), � convex & 0  �0  1, then � � ' 2 PSH(X ,!):

ddc� � ' = �00 � ' d' ^ dc'+ �0 � ' ddc'

� �0 � ' (! + ddc')� �0 � '! � �!.

,! when ' ⇠ log ||z || this corresponds to ”radial singularities”...
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Quasi-plurisubharmonic envelopes

Radial singularities

Measure (ddcu)n well-defined when u has compact singularities [Demailly].

Consider measures µ = (ddc� � L)n with an isolated radial singularity.

Here � smooth convex increasing with �0(0) = 0 and L(z) = log ||z ||.
� � L is bounded i↵ �(�1) > �1.

A direct computation yields

µ = cn
(�0 � L)n�1�00 � L

||z ||2n dVeucl(z).

PSH(X ,!) ⇢ Lm(µ) i↵
R
�1 |t|m�0(t)n�1�00(t)dt < +1.

PSH(X ,!) ⇢ Ln+"(µ) ) �0(t) = O(|t|�1�"/n)) �(�1) > �1.

For �(t) = � log � log(�t) and n � 2, gets PSH(X ,!) ⇢ Ln(µ).
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Quasi-plurisubharmonic envelopes

The main tool: !-psh envelopes

Given h : X ! R a bounded quasi-continuous function, we set:

Definition

P(h) = P!(h) := sup{u 2 PSH(X ,!), u  h}.

Here are basic properties of these envelopes:

The function P(h) is bounded and !-psh.

If h is smooth, then P(h) is C1,1-smooth and

(! + ddcP(h))n = 1{P(h)=h}(! + ddch)n.

is concentrated in the contact set C = {x 2 X ,P(h)(x) = h(x)}.
If h is merely l.s.c. then (! + ddcP(h))n is still concentrated on C.
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Quasi-plurisubharmonic envelopes

A key observation

The following will play a key role in the sequel:

Lemma

Assume � : R� ! R� is concave increasing with �0(0) � 1. Pick
' 2 PSH(X ,!) \ L1(X ) such that supX ' = 0. Then

(! + ddcP(� � '))n  1{P(��')=��'}(�
0 � ')n(! + ddc')n.

Proof. (smooth) Note ddc� � ' = �00 � ' d' ^ dc'+ �0 � ' ddc', hence

! + ddc� � ' = �00 � ' d' ^ dc'+ �0 � ' (! + ddc') + (1� �0 � ')!
 �0 � ' (! + ddc').

since �0 � 1 and �00  0. The conclusion follows.

(For non smooth functions, this requires some extra work). ⇤
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Proof. (smooth) Note ddc� � ' = �00 � ' d' ^ dc'+ �0 � ' ddc', hence

! + ddc� � ' = �00 � ' d' ^ dc'+ �0 � ' (! + ddc') + (1� �0 � ')!
 �0 � ' (! + ddc').

since �0 � 1 and �00  0. The conclusion follows.

(For non smooth functions, this requires some extra work). ⇤
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Uniform a priori estimates for DCMAE

The Lp-setting

Precise goal of Lecture 2=proof of the following uniform estimate:

Theorem (Kolodziej 98, Eyssidieux-G-Zeriahi 08-09, Demailly-Pali 10)

Fix p > 1 and 0  f 2 Lp(dVX ) normalized s.t.
R
X fdVX = 1. There exists

a unique ' 2 PSH(X ,!) \ L1(X ) s.t.

V�1(! + ddc')n = fdVX and supX ' = 0;

||'||L1(X )  T = T (||f ||Lp ,Ap),

where

Ap := sup

⇢Z

X
(�u)

(n+1)p
p�1 dVX , u 2 PSH0(X ,!)

�
.

,! New and simplified approach using quasi-psh envelopes.
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Uniform a priori estimates for DCMAE

More general measures

We shall even treat the case of more general probability measures µ:

Theorem (G-Lu 21)

Assume PSH(X ,!) ⇢ Lm(µ) with m > n. Then there exists a unique
' 2 PSH(X ,!) \ L1(X ) such that

V�1(! + ddc')n = µ and supX ' = 0;

||'||L1(X )  T = T (Am),

where T depends on n,m and an upper-bound on

Am := sup

(✓Z

X
(�u)mdµ

◆ 1
m

, u 2 PSH0(X ,!)

)
.

Previous Thm follows from Hölder inequality (with m = n + 1).
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Uniform a priori estimates for DCMAE

Examples

Given µ a probability measure, we let 'µ 2 PSH(X ,!) denote its unique
Monge-Ampère potential:

V�1(! + ddc'µ)n = µ, with supX 'µ = 0.

If n = 1 then PSH(X ,!) ⇢ L1(µ) () 'µ is bounded.

If n � 2 there exists unbounded 'µ when PSH(X ,!) ⇢ Ln(µ).

If µ = fdVX with
R
X f (log f )mdVX < +1, m > n, then Hölder-Young

inequality and Skoda’s theorem ensure that PSH(X ,!) ⇢ Lm(µ).

Finite entropy (m = 1) does not imply 'µ bounded when n � 2.

If H ⇢ X real analytic hypersurface and µ = (2n � 1)-Hausdor↵
measure on H, then PSH(X ,!) ⇢ Lm(µ) for any m > 1.
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Proof of the a priori estimate

The strategy

Assume PSH(X ,!) ⇢ Lm(µ), m > n,

and ' 2 PSH(X ,!) \ L1(X ) st
V�1(! + ddc')n = µ with supX ' = 0. Goal=a priori estimate.

Plan: show that µ(' < �t) = 0 for t � Tmax = T (Am).

We choose below � concave increasing s.t. �(0) = 0 and �0(0) � 1.

Setting u := P(� � ') we have a good control on (! + ddcu)n.

Naive idea: control from below on supX u provides lower bound for '.

We fix 0 < " << 1 so that n < n + 3"  m.
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Proof of the a priori estimate

Choice of the weight

We choose � so that
R
X (�

0 � ')n+2"dµ = B  2.

More precisely:

Recall that if g : R+ ! R+ is increasing with g(0) = 1 then

Z

X
g � (�') dµ = µ(X ) +

Z Tmax

0
g 0(t)µ(' < �t)dt.

We set g(t) = [�0(�t)]n+2" with �(0) = 0,�0(0) = g(0) = 1 and

g 0(t) =
1

(1 + t)2µ(' < �t)
when t < Tmax .

Thus � has all the required properties, e.g.

Z Tmax

0
g 0(t)µ(' < �t)dt 

Z +1

0

dt

(1 + t)2
= 1.

We note for later use that ��(�1) =
R 0
�1 �

0(t)dt � 1.
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Proof of the a priori estimate

Controlling the energy of the projection

Recall that u = P(� � ').

We set MA(u) := V�1(! + ddcu)n.

The key observation yields MA(u)  1{u=��'}(�
0 � ')nµ.

Therefore
R
X (�u)"MA(u) 

R
X (�� � ')"(�0 � ')ndµ.

By concavity and �(0) = 0 we have |�(t)|  |t|�0(t), thus

Z

X
(�u)"MA(u) 

Z

X
(�')"(�0 � ')n+"dµ


✓Z

X
(�')n+2"dµ

◆ "
n+2"

✓Z

X
(�0 � ')n+2"dµ

◆ n+"
n+2"

 2Am(µ)
".
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Proof of the a priori estimate

Uniform integrability of u

We deduce a uniform control on supX u:

0  (� sup
X

u)" =

Z

X
(� sup

X
u)"MA(u)


Z

X
(�u)"MA(u)  2Am(µ)

".

Thus u belongs to a compact subset PSHA(X ,!), A = 2
1
"Am(µ).

We infer
R
X (�u)n+3"dµ  C 0

µ.

Now 0  �� � '  �u hence
R
X (�� � ')n+3"dµ  C 0

µ.

Chebyshev inequality thus yields µ(' < �t)  C 0
µ

|�(�t)|n+3" ,

while by our choice µ(' < �t) = 1
(1+t)2g 0(t) .
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|�(�t)|n+3" ,

while by our choice µ(' < �t) = 1
(1+t)2g 0(t) .
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Proof of the a priori estimate

Conclusion

We set h(t) = ��(�t) so that

h convex increasing on [0,Tmax [ with h(0) = 0, h0(0) = 1, h(1) � 1;

g(t) = [h0(t)]n+2" so g 0 = (n + 2")h00(h0)n+2"�1

1
(1+t)2g 0(t) = µ(' < �t)  C 0

µ

h(t)n+3" .

Multiplying the latter inequality by h0, we obtain

h0hn+3"  (n + 2")C 0
µ(1 + t)2h00(h0)n+2".

Integrating between 0 and t and using (1 + s)2  (1 + t)2 yields

1
(1+t)2  (n + 3"+ 1)C 0

µ
(h0)n+2"+1

hn+3"+1

Thus (1 + t)�↵  Ch0h�� with 0 < ↵ < 1 and � > 1.

Integrate between 1 and Tmax and use h(1) � 1 to conclude ⇤.
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Refinements and extensions

Refinements and extensions

Slight extension of the method allows to

treat the case of big cohomology classes

establish stability and continuity of solutions

handle degenerating families

establish L1-bounds in the complement of a divisor

solve MA equations on hermitian manifolds.
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