Interplays of Complex and Symplectic Geometry Lecture 3: Balanced Metrics and the Hull-Strominger System

Anna Fino

Dipartimento di Matematica Universitá di Torino

CIRM-ICTP Complex Analysis and Geometry - XXV 7-11 June 2021

Balanced metrics

Definition (Michelsohn)

A balanced metric on a complex *n*-manifold is an Hermitian metric ω such that $d(\omega^{n-1}) = 0$.

- A metric is balanced if and only if $\Delta_{\partial} f = \Delta_{\overline{\partial}} f = 2\Delta_d f$ for every $f \in \mathcal{C}^{\infty}(M,\mathbb{C})$ (Gauduchon).
- A compact complex manifold M admits a balanced metric if and only if M carries no positive currents of degree (1,1) which are components of a boundary (Michelsohn).

In particular, Calabi-Eckmann manifolds have no balanced metrics!

Behaviour under modifications

Definition

Let M and N complex manifolds. A modification $f: M \to N$ is a holomorphic map such that \exists a cpx submanifold $Y \subset N$ of codim ≥ 2 and a biholomorphism $f: X \setminus f^{-1}(Y) \to N \setminus Y$ given by restriction.

Theorem (Alessandrini, Bassanelli)

Let $f: M \to N$ be a modification with M and N compact complex manifolds. Then M is balanced if and only if N is balanced.

Every compact complex manifold bimeromorphic to a compact Kähler manifold is balanced \Rightarrow

Moishezon manifolds and complex manifolds in the Fujiki class \mathcal{C} are balanced.

Balanced metrics and conifolds transitions

(Non-Kähler) balanced 3-folds can be constructed via the Clemens-Friedman construction [Fu, Li, Yau]:

Start with a Calabi-Yau 3-fold M with k mutually disjoint smooth rational curves C_j with normal bundles $\cong \mathcal{O}_{\mathbb{CP}^1}(-1) \oplus \mathcal{O}_{\mathbb{CP}^1}(-1)$.

Contracting the k rational curves \hookrightarrow a singular Calabi-Yau 3-fold M_0 with k ordinary double-point singularities p_1, \ldots, p_k :

- $\bullet M \setminus \cup_k \mathcal{C}_k \cong M_0 \setminus \{p_1, \ldots, p_k\}$
- a neighbourhood of p_j in $M_0 \cong$ a neighbourhood of 0 in $\{z_1^2 + z_2^2 + z_3^2 + z_4^4 = 0\} \subset \mathbb{C}^4$.

If $[\mathcal{C}_j] \in H^{2,2}(M,\mathbb{Q})$ satisfy $\sum_j n_j [\mathcal{C}_j] = 0$, with $n_j \neq 0, \forall j$ $\hookrightarrow \exists$ a family M_t over a disk $\Delta \subset \mathbb{C}$ [Friedman, Tian, Kawamata]: $M \to M_0 \dashrightarrow M_t$ (conifold transition) such that

- M_t is a smooth 3-fold for $t \neq 0$ and for t small the local model is $\cong \{z_1^2 + z_2^2 + z_3^2 + z_4^4 = t\} \subset \mathbb{C}^4$;
- the central fibre is isomorphic to M_0 .

Remark (Friedman)

 $\#_k(S^3 \times S^3)$ for any $k \ge 2$ has in this way a cpx structure [contracting enough rational curves s.t. $H^2(M_t, \mathbb{R}) = 0$, for $t \ne 0$].

Theorem (Fu, Li, Yau)

For sufficiently small $t \neq 0$, M_t has a balanced metric.

 $\hookrightarrow \#_k(S^3 \times S^3)$ is balanced!

More examples of balanced manifolds

- The twistor space of a 4-dim oriented anti-self-dual Riemannian manifold always has a balanced metric (Michelsohn; Gauduchon).
- Any left-invariant Hermitian metric on a unimodular complex Lie group is balanced [Abbena, Grassi]

 complex parallelizable manifolds.

If the complex Lie group is semisimple, ω^{n-1} is exact [Yachou].

- A characterization of compact complex homogeneous spaces with invariant volume admitting a balanced metric (in particular $c_1 \neq 0$) [F, Grantcharov, Vezzoni].
- Special classes of compact locally homogeneous spaces $\Gamma \setminus G$ (nilmanifolds or solvmanifolds) with an invariant complex structure.

Interplay with other types of Hermitian metrics

A Hermitian metric which is balanced and puriclosed is Kähler [Alexandrov, Ivanov; Popovici].

Conjecture

Every compact complex manifold admitting a balanced and a pluriclosed metric is Kähler.

The conjecture is true for

- the twistor space of a compact anti-self-dual 4-dim Riemannian manifold [Verbitsky]
- ullet compact complex manifolds in the Fujiki class $\mathcal C$ [Chiose]

- The non-Kähler balanced manifolds constructed by Li, Fu and Yau by using conifold transitions. In particular, $\#_k(S^3 \times S^3)$ $k \ge 2$, since they have no pluriclosed metrics.
- 2-step nilmanifolds with invariant complex structures [F, Vezzoni].
- 6-dim solvmanifolds with invariant complex structures and holomorphically trivial canonical bundle [F, Vezzoni].
- Almost abelian solvmanifolds with invariant complex structures [F, Paradiso].
- Oeljeklaus-Toma (OT) manifolds [Otiman].

Theorem (F, Grantcharov)

A compact Hermitian manifold (M, J, g) with holomorphically trivial canonically bundle whose Bismut Ricci tensor vanishes, must be globally conformally balanced.

 \hookrightarrow counter-example to a conjecture by Gutowski, Ivanov, Papadopolous.

Theorem (F, Grantcharov, Vezzoni)

There exists a compact complex non-Kähler manifold admitting a balanced and an astheno-Kähler metric.

 \hookrightarrow negative answer to a question posed by Székeleyhidi, Tosatti, Weinkove.

Balanced flow

Let (M^{2n}, J, ω_0) be a complex manifold with a balanced metric ω_0 .

Definition (Bedulli, Vezzoni)

A parabolic flow preserving the balanced condition is given by:

$$\partial_t \varphi(t) = i \partial \overline{\partial} *_t (\rho_{\omega(t)}^{\mathsf{C}} \wedge *_t \varphi(t)) + \Delta_{\mathsf{BC}} \varphi(t), \quad \varphi(0) = *_0 \omega_0,$$

where $\rho_{\omega(t)}^{\mathcal{C}}$ is the Ricci form of the Chern connection and

$$\Delta_{BC} = \partial \overline{\partial} \overline{\partial}^* \partial^* + \overline{\partial}^* \partial^* \partial \overline{\partial} + \overline{\partial}^* \partial \partial^* \overline{\partial} + \partial^* \overline{\partial} \overline{\partial}^* \partial + \overline{\partial}^* \overline{\partial} + \partial^* \partial$$

is the Bott-Chern Laplacian.

Short-time existence and uniqueness for compact manifolds [Bedulli, Vezzoni].

Remark

If ω_0 is Kähler, then the flow coincides with the Calabi flow:

$$\begin{cases} \frac{\partial_t \omega(t) = i \partial \overline{\partial} s_{\omega(t)}}{\omega(0) = \omega_0}, & \omega(t) \in \{\omega_0 + i \partial \overline{\partial} u > 0\} \subset [\omega_0] \end{cases}$$

where $s_{\omega(t)}$ is the scalar curvature of $\omega(t)$.

Theorem (F, Paradiso)

Let (G, J, ω_0) be a 6-dim balanced almost abelian Lie group. Then

- the solution $\omega(t)$ to the balanced flow is defined for all positive times (eternal solution);
- Cheeger-Gromov convergence to a Kähler almost abelian Lie group.

The physical motivation of the Hull-Strominger system

• The Hull-Strominger system describes the geometry of compactification of heterotic superstrings with torsion to 4-dimensional Minkowski spacetime.

The geometric objects are a 10-dim Lorentzian manifold M^{10} (product of $\mathbb{R}^{1,3}$ and a compact 6-manifold M^6) and a vector bundle E over $M^6 \hookrightarrow$ reduce all the equations required by superstring theory to geometry of M^6 (and E).

- (Candelas, Horowitz, Strominger, Witten'85) fluxfree compactification: $M^{10} = \mathbb{R}^{1,3} \times M^6$ equipped with a product metric, "embed the gauge into spin connection" $(E = TM^6) \Rightarrow M^6$ must be a Calabi-Yau 3-fold with Kähler Ricci-flat metric (solved by Yau'77)
- (Hull'86, Strominger'86) compactification with flux: $M^{10} = \mathbb{R}^{1,3} \times M^6$ equipped with a warped product metric \Rightarrow Hull-Strominger system, in particular M^6 is a Calabi-Yau 3-fold $(K_{M^6} \cong \mathcal{O}, \text{ not necessarily Kähler}).$

Hull-Strominger System

- M compact 3-dim complex manifold with a nowhere vanishing holomorphic (3,0)-form Ω .
- E complex vector bundle over M with a Hermitian metric H along its fibers and $\alpha' \in \mathbb{R}$ constant (slope parameter).

The Hull-Strominger system, for the Hermitian metric ω on M, is:

- (1) $F_H^{2,0} = F_H^{0,2} = 0$, $F_H \wedge \omega^2 = 0$ (Hermitian-Yang-Mills),
- (2) $d(\|\Omega\|_{\omega} \omega^2) = 0$ (ω is conformally balanced),
- (3) $i\partial \overline{\partial}\omega = \frac{\alpha'}{4}(Tr(R_{\nabla} \wedge R_{\nabla}) Tr(F_H \wedge F_H))$ (Bianchi identity) where F_H, R_{∇} are the curvatures of H and of a metric connection

 ∇ on TM.

Remark

The Hull-Strominger system is a generalization of Ricci-flat metrics on non-Kähler Calabi-Yau 3-folds coupled with Hermitian-Yang-Mills equation!

- $F_H^{2,0} = F_H^{0,2} = 0$, $F_H \wedge \omega^2 = 0$ is the Hermitian-Yang-Mills equation which is equivalent to E being a stable bundle.
- Calabi-Yau manifolds can be viewed as special solutions: take $E=T^{1,0}M$, and $H=\omega$, then the Hull-Strominger system reduces to $i\partial\overline{\partial}\omega=0, d(\|\Omega\|_{\omega}\omega^2)=0$, which imply that ω is Kähler and Ricci-flat.

Link with balanced metrics

The 2nd equation $d(\|\Omega\|_{\omega}\omega^2) = 0$ says that ω is conformally balanced.

Remark

It was originally written as $d^*\omega = i(\overline{\partial} - \partial) \ln(\|\Omega\|_{\omega})$ (the equivalence was proved by Li and Yau).

The Hull-Strominger system can be interpreted as a notion of "canonical metric" for conformally balanced manifolds.

The anomaly cancellation equation

The third equation $i\partial \overline{\partial} \omega = \frac{\alpha'}{4} (Tr(R_{\nabla} \wedge R_{\nabla}) - Tr(F_H \wedge F_H))$ is the anomaly cancellation equation (or Bianchi identity) and couples the two metrics ω and H.

Remark

- It is the main equation accounting for both the novelty and the difficulty in solving the Hull-Strominger system.
- It originates from the famous Green-Schwarz anomaly cancellation mechanism required for the consistency of superstring theory.

Remark

- Since ω may not be Kähler, there is a one-parameter line of natural unitary connections on $T^{1,0}M$ defined by ω , passing through the Chern connection and the Bismut connection.
- From physical perspective one has $\alpha' \geq 0$ with $\alpha' = 0$ corresponding to the Kähler case, but in mathematical literature the case $\alpha' < 0$ is also considered [Phong, Picard, Zhang].

We will consider the case when ∇ is the Chern connection of ω .

Remark

Finding a solution of the Hull-strominger system is a priori not enough to find a supersymmetric classical solution of the theory.

Theorem (Ivanov)

A solution of the Hull-Strominger system satisfies the heterotic equations of motion if and only if the connection ∇ in the anomaly cancellation equation is an instanton.

Known non-Kähler solutions

- The first Non-Kähler solutions have been found by Fu and Yau on a class of toric fibrations over K3 surfaces, constructed by Goldstein and Prokushkin.
- Non-Kähler solutions on Lie groups and their quotients by discrete subgroups [Fernández, Ivanov, Ugarte, Villacampa; Fei, Yau; Grantcharov...].
- New solutions on non-Kähler torus fibrations over K3 surfaces, leading to the first examples of T-dual solutions of the Hull-Strominger system [Garcia-Fernandez].
- Solutions on non-Kähler fibrations $p: M^6 \to \Sigma$ with fiber a compact HK manifold N^4 , where Σ is a compact Riemann surface of genus $g \geq 3$ [Fei, Huang, Picard].

The construction of Goldstein and Prokushkin

Let (S, ω_S) be a K3 surface with Ricci flat Kähler metric ω_S .

• To any pair ω_1, ω_2 of anti-self-dual (1,1)-forms on S such that $[\omega_i] \in H^2(S, \mathbb{Z})$, Goldstein and Prokushkin associated a toric fibration

$$\pi: M \to S$$
,

with a nowhere vanishing holomorphic 3-form $\Omega = \theta \wedge \pi^*(\Omega_S)$, for a (1,0)-form $\theta = \theta_1 + i\theta_2$, where θ_i are connection 1-forms on M such that $d\theta_i = \pi^*\omega_i$.

• The (1, 1)-form

$$\omega_0 = \pi^*(\omega_S) + i\theta \wedge \overline{\theta}$$

is a balanced Hermitian metric on M, i.e. $d\omega_0^2 = 0$.

The Fu -Yau solution

Fu and Yau found a solution of the Hull-Strominger system with M given by the Goldstein-Prokushkin construction, and the following ansatz for the metric on M:

$$\omega_u = \pi^*(e^u \omega_S) + i\theta \wedge \overline{\theta},$$

where u is a function on S. This reduces the Hull-Strominger system to a 2-dim Monge-Ampère equation with gradient terms:

$$i\partial\overline{\partial}(e^{u}-fe^{-u})\wedge\omega+\alpha'i\partial\overline{\partial}u\wedge i\partial\overline{\partial}u+\mu=0,$$

under the ellipticity condition

$$(e^{u} + fe^{-u})\omega + 4\alpha' i\partial \overline{\partial}u > 0,$$

where $f \ge 0$ is a known function, and μ is a (2, 2)-form with average 0.

The Fu-Yau equation

Theorem (Fu, Yau)

Consider the above complex Monge-Ampère equation with the above ellipticity condition. Then there exists a solution $u \in C^{\infty}(S)$ satisfying the above ellipticity condition. In particular, there exists a solution of the Hull-Strominger system with M a toric fibration over the K3 surface S.

A generalization to *n*-dimensions of the Fu-Yau equation has been obtained by Phong, Picard and Zhang.

Extension to torus bundles aver K3 orbifolds

Theorem (F, Grantcharov, Vezzoni)

- S a compact K3 orbifold with a Ricci-flat Kähler form ω_S and orbifold Euler number e(S).
- ω_i , i = 1, 2 anti-self-dual (1, 1)-forms on S s. t. $[\omega_i] \in H^2(S, \mathbb{Z})$ and the total space M of the principal T^2 orbifold bundle $\pi: M \to S$ determined by them is smooth.
- W a stable vector bundle of degree 0 over (S, ω_S) such that

$$\alpha'(e(S) - (c_2(W) - \frac{1}{2}c_1^2(S))) = \frac{1}{4\pi^2} \int_S (\|\omega_1\|^2 + \|\omega_2\|^2)^2 \frac{\omega_S^2}{2}.$$

Then M has a Hermitian structure (M, ω_u) and \exists a metric h along the fibers of W such that $(E = \pi^*W, H = \pi^*(h), M, \omega_u)$ solves the Hull-Strominger system.

Sketch of the proof

- If θ_i are the connection 1-forms with $d\theta_i = \pi^* \omega_i$, then the smooth T^2 -bundle $\pi: M \to S$, determined by ω_i , has a complex structure such that $\theta = \theta_1 + i\theta_2$ is a (1,0)-form and π is a holomorphic projection.
- The Hermitian metric $\omega = \pi^*(\omega_S) + \theta_1 \wedge \theta_2$ on M is balanced if and only if $tr_{\omega_S}\omega_1 = tr_{\omega_S}\omega_2 = 0$.

If we choose ω_1, ω_2 to be harmonic, then this is equivalent to the topological condition $[\omega_S] \cup [\omega_1] = [\omega_S] \cup [\omega_2] = 0$.

- If Ω_S is a holomorphic (2,0)-form on S with $||\Omega_S||_{\omega_S} = const$, then the form $\Omega = \Omega_S \wedge \theta$ is holomorphic with constant norm with respect to ω .
- For every smooth function u on S, the metric $\omega_u = e^u \pi^*(\omega_S) + \theta_1 \wedge \theta_2$ on M is conformally balanced with conformal factor $||\Omega||_{\omega_u}$.
- If W is a stable bundle on S with respect to ω_S of degree 0 and Hermitian-Yang-Mills metric h and curvature F_h , then $E = \pi^*(W)$ is a stable bundle of degree 0 on M with respect to ω_u with Hermitian-Yang-Mills metric $H = \pi^*(h)$ and curvature $F_H := \pi^*(F_h)$.

- We use that the argument by Fu and Yau depends only on the foliated structure of the manifold M.
- $(\theta, \omega_B = \pi^*(\omega_S), \Omega_B = \pi^*(\Omega_S))$ satisfy $d\omega_B = 0$, $\omega_B \wedge d\theta = 0$, $\iota_Z \Omega_B = 0$,

where Z is the dual to θ with respect to ω .

Then (ω_B, Ω_B) induces a transverse Calabi-Yau structure on M.

- We reduce the Hull-Strominger system on M to a transversally elliptic equation, proving a generalization of the Fu-Yau theorem to Hermitian 3-folds with a transverse Calabi-Yau structure.
- We solve the transversally elliptic equation using a result of El Kacimi.

New simply connected examples

To construct explicit examples we consider T^2 -bundles over an orbifold S which are given by the following sequence

where $M_1 \to S$ is a Seifert S^1 -bundle, M_1 is smooth and $M \to M_1$ is a regular principal S^1 -bundle over M_1 .

Roughly speaking, Seifert fibered manifolds are (2n + 1)-manifolds L which admit a differentiable map $f: L \to X$ to a complex n-manifold X such that every fiber is a circle.

The natural setting is study Seifert bundles where the base X is a complex locally cylic orbifold, i.e. locally it looks like \mathbb{C}^n/G where G is a cyclic group acting linearly.

The main idea is that there is a divisor $\cup_i D_i \subset X$ such that $L \to X$ is a circle bundle over $X \setminus \cup_i D_i$ and natural multiplicities m_i are assigned to the fibers over each D_i .

 $\Delta := \sum_{i} (1 - \frac{1}{m_i}) D_i$ is a \mathbb{Q} divisor and is called the branch divisor of X.

Theorem (Kollar)

If (X, Δ) has trivial $H^1_{orb}(X, \mathbb{Z})$, then a Seifert S^1 -bundle L is uniquely determined by its first Chern class

$$c_1(L/X) := [B] + \sum_{i=1}^n \frac{b_i}{m_i} [D_i] \in H^2(X, \mathbb{Q})$$

where b_i are integers such that $0 \le b_i < m_i$ and relatively prime to m_i and B is a Weil divisor over X.

- We consider as CY orbifold surface (K3 orbifold) S an intersection of two degree 6 hypersurfaces in $\mathbb{P}(2,2,2,3,3)$ in generic position (S has 9 isolated A_1 -singularities and $\pi_1^{orb}(S) = 1$).
- Blowing up S at 9-k points, $1 \le k \le 8$ (i.e. using partial resolutions) we construct a smooth Seifert S^1 -bundle $M_1 \to S$.
- By applying the main theorem to $M = M_1 \times S^1$ we obtain a solution of the Hull-Strominger system on M.
- Using Barden's results and a Kollar's result for simply connected 5-manifolds with a semi-free S^1 -action we show that M is diffeomorphic $S^1 \times \sharp_k (S^2 \times S^3)$, where k is determined by the orbifold second Betti number of the surface.

To obtain simply connected examples the construction is similar:

- We consider the blow-up \tilde{S} of S at $k \geq 2$ of the singular points.
- We construct two indipendent over \mathbb{Q} divisors D_1 and D_2 such that the Seifert S^1 -bundle $\tilde{M}_1 \to \tilde{S}$ corresponding to D_1 is simply connected and a smooth S^1 -bundle $\pi_2 : \tilde{M} \to \tilde{M}_1$ determined by the pull-back of D_2 to \tilde{M}_1 .
- By a Kollar's result \tilde{M}_1 is diffeomorphic to $\#_k(S^2 \times S^3)$.
- Since \tilde{M} is a simply-connected 6-manifold with a free S^1 -action and $w_2(\tilde{M})=0$, then \tilde{M} has no torsion in the cohomology.
- \tilde{M} is diffeomorphic to $\#_r(S^2 \times S^4) \#_{r+1}(S^3 \times S^3)$, where $r = rk(H^2(\tilde{M}_1, \mathbb{Q})) 1 = rk(H^2(S, \mathbb{Q})) 2$.

Theorem (F, Grantcharov, Vezzoni)

Let $13 \le k \le 22$ and $14 \le r \le 22$. Then on the smooth manifolds $S^1 \times \#_k(S^2 \times S^3)$ and $\#_r(S^2 \times S^4) \#_{r+1}(S^3 \times S^3)$ there are complex structures with trivial canonical bundle admitting a balanced metric and a solution to the Hull-Strominger system via the Fu-Yau ansatz.

Remark

- The cases k = 22 and r = 22 correspond to Fu-Yau solutions.
- They have the structure of a principal S^1 -bundle over Seifert S^1 -bundles.
- The simply-connected examples are obtained starting from a K3 orbifold with isolated A1 singular points and trivial orbifold fundamental group.

The Anomaly flow

The solutions of the Hull-Strominger system can be viewed as stationary points of the following flow of positive (2,2)-forms, called the "Anomaly flow"

$$\begin{cases} \partial_t(\||\Omega\|_{\omega(t)}\omega(t)^2) = i\partial\overline{\partial}\omega(t) + \alpha'(Tr(R_t \wedge R_t) - Tr(F_t \wedge F_t)) \\ H(t)^{-1}\partial_t H(t) = \frac{\omega(t)^2 \wedge F_t}{\omega(t)^3}, \quad \omega(0) = \omega_0, \ F(0) = F_0. \end{cases}$$

with ω_0 (conformally balanced) [Phong, Picard, Zhang].

In the compact case:

- Short-time existence and uniqueness [Phong, Picard, Zhang].
- For $t \to \infty$ the limit solves the Hull-Strominger system \hookrightarrow new proof of Fu-Yau non-Kähler solutions [Phong, Picard, Zhang].

THANK YOU VERY MUCH	FOR THE ATTENTION!!	
Anna Fino	Interplays of Complex and Symplectic Geometry Lectu	