Inverse problems, data assimilation and
methods in models of geodynamics




Mathematical Model of
Geophysical Problem

Many geophysical problems can be described by
mathematical models, 1.€., by a set of partial differential
equations and boundary and/or initial conditions defined
in a specific domain.

A mathematical model links the causal characteristics of
a geophysical process with its effects.

The causal characteristics of the process include, for
example, parameters of the initial and boundary
conditions, coefficients of the differential equations, and
geometrical parameters of a model domain.



What are Direct Problems?

The principal aim of the direct mathematical problem 1s to
determine the relationship between the causes and effects
of the geophysical process or phenomenon and hence to
find a solution to the mathematical problem for a given
set of parameters and coefficients.

What are Inverse Problems?

Solution of an inverse problem entails determination of
unknown causes of geophysical processes or phenomena
based on observation of their effects.

An inverse problem 1s the opposite of a direct problem. An
inverse problem 1s considered when there 1s a lack of
information on the causal characteristics (but information
on the effects of the geophysical process exists).



Inverse Problems

The 1inference of the values of some parameters based on
observations 1s, of course, as old as quantitative science,
but it was only 1n the middle of XVIII century that the
first formalizations arose. The two basic problems of that
time were the use of geodetic data to estimate the shape
of the Earth, and the use of astronomical data to infer the
orbits of planets and comets.
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Inverse Problems
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Inverse (Time-Reverse) Problems

The mantle 1s heated from the core and from 1nside due to decay
of radioactive elements. Since mantle convection is described by
heat advection and diffusion, one can ask: Is it possible to tell,
from the present temperature estimations of the Earth, something
about the Earth s temperature in the geological past?

Even though heat diffusion is irreversible in the physical sense, it
1s possible to predict initial conditions for mantle temperature and
flow 1n the geological past using data assimilation techniques
without contradicting the basic thermodynamic laws.

In other words, the present observations (mantle temperature,
velocity, etc.) can be assimilated 1nto the past to constrain the
initial conditions for the mantle temperature and velocity.



Well- & 111-Posed Problems

Inverse problems are often 1ll-posed. Jacques Hadamard introduced
the 1dea of well- (and ill-) posed problems in the theory of partial
differential equations (Hadamard 1902).

A mathematical model for a geophysical problem has to be
well-posed 1n the sense that it has to have the properties of
existence, uniqueness, and stability of a solution to the problem.
Problems for which at least one of these properties does not hold
are called

ill-posed.

The requirement of stability 1s the most important one. If a problem
lacks the property of stability then its solution i1s almost impossible
to compute because computations are polluted by unavoidable
errors. If the solution of a problem does not depend continuously on
the initial data, then, in general, the computed solution may have
nothing to do with the true solution.



DATA ASSIMILATION IN GEODYNAMICS

How to assimilate the data in geodynamic models?

1: Collect the geophysical, geological, and geodetic data

2: Learn mathematical and computational approaches
to data assimilation

3: Assimilate present data to restore the dynamics of
the Earth’s mantle in the geological past.




DATA COLLECTION FOR ASSIMILATION

- Seismic 1mages (tomography, reflection, other)
- Borehole data

- Heat flow data

- Composition of the crust and upper mantle

- Data from mineral physics

- Geodetic measurements

- Data on paleogeographic reconstructions

- Data on subsidence and uplift

- etc



WHY DO WE ASSIMILATE THE DATA?
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Statement of the Problem

Model domain

Q:(O,xl :ll)X(O,X2 :lz)X(O,X3 :h), 16(91,92)

Governing equations

Momentum (Stokes) equation

—VP+V-(u[Vu+(Vu)' 1)+ RaTe =0

Continuity equation V-u=0

Heat equation

Rheology equation

oT /0t +u-VT =V°T

H(P,T) = px exp

Ra

_ agpATh

RT

E +V P




Statement of the Problem

Boundary and Initial Conditions

At all model boundaries, impenetrability condition with perfect slip
n-vVu, =0, n-u=0

Zero heat flux through the vertical boundaries
n-vi =0

Isothermal upper and lower boundaries
I'=T, at xy=h, T=1, at x3=0

— Atinitial time  T(X[,%5,%3,6 =0)) =T (xX{,%,,X3)

+«— At final time T(xl,X2,X3,t:92):T**(XI,X2,X3)



Backward in Time

How to solve the inverse problem of thermal convection?

-V Principal difficulty in ~ |¢~ 0
v backward modeling
1s neither the Stokes nor
O] advection equations, but
the heat equation

The inverse heat problem is ill-posed (Hadamard, 1923).

NO DIFFUSION



BAD Application to Plate Motion Reconstruction
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Data Assimilation Methods

» Backward advection method (BAD)
Ismail-Zadeh et al., 1998, 2001, 2004
Steinberger and O’Connell, 1998 (Harvard)
Kaus and Podladchikov, 2001 (ETHZ)
Conrad and Gurnis, 2003 (CalTech)

* Variational method (VAR)
Ismail-Zadeh et al., 2003; 2004; 2006
Bunge et al., 2003 (Princeton, now Munich)
Hier-Majumder et. al, 2005; 2006 (Minnesota)
Liu and Gurnis, 2008 (CalTech)



Variational Method (VAR)

The variational method finds the best fit between the forecast
model state and the observations by minimizing an objective
functional over space and time.

To minimize the objective functional over time, an assimilation
time interval 1s defined and an adjoint model 1s typically used to
find the derivatives of the objective functional with respect to
the model states.

The variational method can be formulated with a weak
constraint where errors 1n the model formulation are taken into
account as process noise [e.g., Bunge et al., 2003] or with a
strong constraint where the model 1s assumed to be perfect [e.g.,
Ismail-Zadeh et al., 2003]. The strong constraint makes the
problem computationally tractable.



Variational Method (VAR)

Consider objective functional

J(@)=|TO,50)~ 20O = |76, 5:0)~ ()] d

Q
where

solution of the forward heat equation with appropriate
7(60,,x;9) boundary conditions at final time &,, which corresponds to
unknown as yet the initial temperature distribution ¢= @(x);

x(x)=T(6,,x;T,) known temperature distribution at the final time
for the initial temperature 7,= T,(x).

The objective functional has its unique minimum at ¢ =17, .

We seek a minimum of the objective functional with respect to initial temperature

VJ(p)=0



Variational Method (VAR)

It can be shown that VJ (@) =¥ (6,,x), where

OV /0t +u-V¥ =-V*¥, xeQ, te(6,,0,),
GIT+02@T/5HZO, XEF, t€(6’1,6’2),
V(0y,x) =2[T(0,,x,0)— x(x)}, xeQ.

The boundary problem 1s referred to as the problem
adjoint to the heat problem.

Note that the adjoint problem 1s well-posed.



Variational Method (VAR)

as applied to the heat problem

* Solve the forward heat problem with initial temperature 7=¢,
and find 7(6,, x; ¢,) at the final time:

oT/ot+u-VT =V’T, xeQ, te(0,,6,)
GIT+O_28T/6HZO, XEF, tE(el,gz),
70, x)=@(x), xell.

* Solve the adjoint problem backwards in time, find ‘H6,, x)
and hence VJ(¢p)=H 6, x):

OV /bt+u-V¥ =—V?¥, xeQ, te(6,,6),
oY +o0,0¥/0on=0, xel, te(6,,0),
¥ (0,,x)=2[T(0;,x;0)— x(x)], xeQ.

* Determine o, and then update the initial temperature, that 1s, find ¢, ;:
o, =min| 1/(k+1);J(¢,)/|VJ (9,)
Pen =0~ VJ(@,), ¢,=T., k=0,L2,..

e Compute the 1terations until
2
60, =J(9,)+|VI(p,)| <&




Numerical Approach

To restore thermoconvective flow and temperature,

time slot [, 6,] 1s divided into m subslots by £.=6, - 7.

At each time subslot:

- the Stokes and continuity equations are solved to find
the velocity field; and

- the heat problem 1s solved by the variational method.



Inuerse (TimB-RB\lGISGl Modelling
of Mantle Plume Fyofution



Variety of mantle plumes
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Ismail-Zadeh et al., 2004
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Model Verification

Backward modeling restoration errors
with diffusion . _
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1-D Heat Diffusion Problem

V(X) A Px) A
1.0- 1.0+

Initial

temperature

0.5-

0 0.5 1.0 0

Forwards in time Backwards in time



Effect of Heat Diffusion

(numerical experiment)
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Effect of Heat Diffusion

(laboratory experiment)
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Reconstruction of Diffused Mantle Plumes
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Conduction vs. Advection
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VAR Application to Restoration of Mantle Plumes

Forward modeling . restoration errors
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Fig. 2. Observed and
predicted continental
flooding and borehole
subsidence for differ-
ent temperature scaling
and mantle viscosi-
ties. (A) Geologically
inferred flooding (blue
areas) bounded by paleo-
sharelines (13} with
cumulative Cretaceous
isopachs (14) overlain
(2-km contour interval),
with red dots indicat-
ing the three boreholes
shown in (F) to (H). (B
to E) Predicted flooding
with lower-mantle vis-
cosity . = 30, 15, 30
and upper-mantle vis-
cositymyy=1,01, 1,1,
respectively (relative to
10°! Pa s); cases (B) to
(D) all have an effective
temperature magnitude
AT = 160°C, and (E) has
AT=240°C, where (D} is
the best-fit model. (F to

95 Ma

85 Ma

70 Ma

VAR Application to Restoration of Slab Subduction

H) Observed and pre-  80Ma
dicted borehole dynamic
subsidence from four dif-
ferent models.
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Numerical Noise and Smoothness of Data
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DATA ASSIMILATION METHODS

* Backward advection method (BAD)
Ismail-Zadeh et al., 1998, 2001, 2004
Steinberger and O’Connell, 1998 (Harvard)
Kaus and Podladchikov, 2001 (ETHZ)
Conrad and Gurnis, 2003 (CalTech)

e Variational method (VAR)
Ismail-Zadeh et al., 2003; 2004; 2006
Bunge et al., 2003 (Princeton)
Hier-Majumder et. al, 2005; 2006 (Minnesota)
Liu and Gurnis, 2008 (CalTech)

 Quasi-reversibility method (QRV) NEXT LECTURE
Ismail-Zadeh et al., 2007, 2008
Glisovic et al., 2009 (U. Toronto)



