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Review chapter

https://arxiv.org/abs/2110.06017Draft available at

Sparsity constrained inversion; Optimal Transport; Ensemble based methods; Gaussian processes;  

Prior Sampling; Posterior Sampling; Variational Methods; Generative models; Surrogate Modelling;  

Physics informed Neural networks. Data-novel strategies.
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Data, data everywhere

Te
ra

by
te

s

0

100

200

275
IRIS seismic data archive growth

1994 2004 2014

-Gantz (2010)

In 2010, global data collection rates from all sources was increasing at 58%, equal to 1.2 x10   bytes p.a.  
More than the estimated number of stars in the universe.  

21

Huge data volumes presents challenges for data custodianship,  
but will also lead to new methods for drawing inferences . 
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Forward and Inverse problems

Model 
predictions

Observations

Earth model 

representation

Forward problem

Inverse problem

Parameter fitting

Data assimilation,

Bayesian inference

Simulation of 

Physical phenomena

solution of ODEs and 

PDEs

 `The purpose of models is not to fit the data, but to sharpen the questions.’
-S. Karlin, 1983

Deductive 
Process

Inductive 
Process

Climate,  
Weather prediction,  
Geodynamic modelling,  
Seismic wave 
propagation

NON UNIQUENESS 
NON LINEARITY
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Discretizating a model.

Examples of Basis functions

Local support 

Global support 

m(x) =
M�

j=1

mj�j(x)

 All inferences we can make about the continuous function will be influenced 
by the choice of basis functions. They must suit the physics of the forward 
problem. They bound the resolution of any model one gets out.
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Classes of inverse problem

•Linear and discrete
d = Gm

where  is a data vector,  is a vector of model parameters, and  is a constant matrix.d m G

•Nonlinear and discrete
d = g (m)

where  is some known function of the model parameters.g (m)

•Linearised and discrete
δd = Gδm

where  is a perturbation in model parameter from some reference model
 is a vector of differences between the observations and predictions from 

δm
δd δm

� b

a
g(s, x)m(x)dx = d(s)

� b

a
g(s, x,m(x))dx = d(s)• Linear and Nonlinear continuous
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Two common approaches

Minimising some misfit function…

`What is the optimum model for my data?’ `What ensemble of possible models  
do my data support ?’

Requires a  
Likelihood  
function

ϕ(m) = | |d − g (m) | |2
2 + α | |m − mo| |p

p

ϕ(m) = ψ(d, m) + α χ(m) p(m |d) = κ × p(d |m) p(m)

log p(m |d) = log p(d |m) + log p(m) + log κ
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Discrete Linear inversion
Newton’s laws of motion

y = m1 + m2t�
1
2
m3t

2

d = [y1, y2, . . . , yN ]T
d = Gm

m = [m1, m2, m3]T

G =

�

⇧⇧⇧⇤

1 t1 � 1
2 t21

1 t2 � 1
2 t22

...
...

...
1 tM � 1

2 t2M

⇥

⌃⌃⌃⌅

Find the Initial height, velocity and gravitational constant 

of a cannonball when data are height, y, versus time, t.

ϕ(m) = 1
2 (d − Gm)TC−1

D (d − Gm)

ϕ(m)

mLS= (GTC−1
D G)−1GTC−1

D d
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Discrete Nonlinear inversion
Changing the Shear wave speed in a single layer

Changing the layer thicknesses

Waveforms

DifferencesMisfit

Wavespeed

Waveforms

DifferencesMisfit

Wavespeed

Model fitting can have simple near quadratic misfit functions  

or complex multi-modal distributions 

…and sometimes both at the same time!

How do we explore ‘good’ fit and meaningful regions 
of a multi-dimensional parameter space?

The character of the misfit landscape is a function of how 
one measures fit.
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Sparsity

Applications to data collection, Seismic imaging, Seismic wavefield reconstruction
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Under-determined problems

If the columns of matrix  are linearly dependent, then  is not full 
rank and cannot be inverted!

G GTC−1
D G

mLS= (GTC−1
D G)−1GTC−1

D d
Non-unique minimum ϕ(m)Unique minimum in ϕ(m)

ϕ(m) = | |d − Gm | |2
2
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Sparsity
Looking for sparse solutions to linear and nonlinear parameter estimation 

ϕ(m) = | |d − Gm | |2
2 + α | |m | |1

Use of  norms in geophysical inversion dates back at least to Claerbout and Muir (1973), who 
applied it as a robust data misfit.  Scales et al. (1998) used it as a regularization term in seismic tomography.

L1

 regularization norms encouraging sparse solutions to under-determined problems, 
i.e. indicating that we prefer the model parameters to be zero.

L1

| |m | | = ∑
j

|mj |

 regularization norms guarantee sparse solutions, but are too difficult to solve.L0

Reduce data misfit Encourage sparsity
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Why does sparsity maximisation work?

If sensor basis is incoherent with the model basis and the true model is sparse in a known basis 

All solutions that  
fit the data

All solutions that  
are sparse
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All solutions that  
are sparse

All solutions that  
fit the data

All solutions that  
fit the data and  

are sparse

Why does sparsity maximisation work?

If sensor basis is incoherent with the model basis and the true model is sparse in a known basis 
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Compressive sensing in a nutshell
A novel technology for reconstructing time series from an irregularly sampled subset of data.  
It uses some novel mathematical principles that provide accurate reconstruction of  complex  
signals from minimal observations. 

Amplitudes random in time 

Candes et al. (2006), Candes & Tao (2006), Donoho (2006), Candes and Watin (2008), Hermann et al. (2008, 2009)

ϕ(m) = | |d − Gm | |2
2 + α | |m | |1

Data values are measured by a sensor basis, 

Model parameter are coefficients of a model basis, ϕj(t)

Fourier coefficients dobs
i = ∫ si(t) d(t) dt

Time

Wavenumber

dp(t) = ∑
j

mj ϕj(t)

Provided there is  incoherence between sensor and model basis and  
provided the model is sparse in its basis. 

Sufficient random samples can yield exact solutions! 
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Compressive sensing example

Amplitudes random in time 

Recovering a time series from random samples

Sensor basis: si(t) = δ(t − ti)

Model basis: ϕj(t) = ei2πfjt, Fourier basis

Amplitudes at random times

Fourier coefficients 

WavenumberTime

ϕ(m) = ∑
i

(dobs
i − dp(ti))2 + α∑

j
|mj |

p : Sparsity 

: Least squares

p = 1
p = 2
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Least squares reconstruction ( ) p = 2
Original signal (blue) and reconstruction (green). 

Time

• data samples
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Recovering a time series from random samples

True Fourier coefficients 

Time

Original signal and reconstruction 

Least squares reconstruction ( ) p = 2

Note poor amplitude recovery with many non zero coefficients

Wavenumber Wavenumber

Recovered Fourier coefficients 

Time Wavenumber

999 recovered finite  
coefficients

10 True finite coefficients

1000 potential wavenumber 
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Recovering a time series from random samples

True Fourier coefficients 

Compressed sensing reconstruction ( ) p = 1

Exact amplitude and wavenumber recovery

Wavenumber

Recovered Fourier coefficients 

Time Wavenumber

10 recovered finite  
coefficients

10 True finite coefficients

Original signal and reconstruction 

1000 possible 
coefficients
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The age of big data
Looking for sparse solutions to linear and nonlinear parameter estimation 
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IRIS seismic data archive growth
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The global rate of data collection is estimated to be increasing at 58% per year, which in 2010 alone amounted 
to 1250 billion gigabytes, more bytes than the estimated number of stars in the universe - (Gantz, 2010)

Since 2007 we have been generating more bits of data per year than can be stored in all of the world’s storage devices (Gantz, 2010)

In seismology

This creates challenges for storage and transmission of sensor recordings
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Sparsity based image reconstruction

From Robert Taylor’s pyrunner blog  http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/

Waterfall by M. C. Escher (1200 x1600) Discrete cosine basis

Compressive sensing concepts have applications in image reconstruction. Sparsity 
constrained optimization. Candes et al. (2006), Candes & Tao (2006), Donoho (2006), Candes and Watin (2008).

min
m

||d�Gm||2 + �||m||1
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Sparsity based image reconstruction

From Robert Taylor’s pyrunner blog  http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python/

Waterfall by M. C. Escher (1200 x1600) Discrete cosine basis

Compressive sensing concepts have applications in image reconstruction. Sparsity 
constrained optimization. Candes et al. (2006), Candes & Tao (2006), Donoho (2006), Candes and Watin (2008).

Use of L1 sparsity constraints has a long history in seismic imaging
Scales et al. (1998); Hermann et al. (2008, 2009), Simons et al. (2011), Loris et al. (2012), Charléty et al. (2013).

min
m

||d�Gm||2 + �||m||1

But the Earth is not known to be sparse in any convenient basis.
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Overcomplete tomography

Courtesy Buse Turunçtur 

= 0.9 × −0.3 × −0.3 ×

= 1.0 × + 1.0 × −1.0 ×

Pixel basis

Cosine basis

m(x) =
M

∑
i

αiϕi(x)

m(x) =
M

∑
i

αiϕi(x) +
M

∑
j

βjψj(x)

Sparse models
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Overcomplete tomography example

Over-complete Least squares

From the Ph.D. studies of Buse Turunçtur 

min
m

| |d − Gm | |2 + λ | |m | |1 min
m

| |d − Gm | |2 + λ | |m | |2


