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Data Science and Machine learning

Applications to data processing task, signal identification, classification, surrogate modelling and inversion. 
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Jobs for everyone
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The three pillars of Data Science

Data Analytics 
Methods and tools for collecting 

and learning from data.

Data Engineering 
Organisation and delivering  

data to computation.

Data Management  
Discovering, stewardship 

& curation.

Geoscientists have been in this game for decades.
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Machine Learning

Machine Learning (ML): A branch of artificial intelligence in which a computer progressively improves its performance on 
a specific task by “learning” from data, without being explicitly programmed.

Deep Learning (DL): An extension of Machine Learning that uses the mathematical concept of a neural network (NN) to loosely 
simulate information processing and adaptation patterns seen in biological nervous systems.
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The `new’ field of Machine Learning

`Final report for Phase II Project PREP. Prepared for NASA 
by C.M. Theiss and A.E. Murray, Cornell Aeronautical Laboratory, Inc. (February 1965)

“Study of the application of perceptrons for prediction of Solar Flares, 
Solar flare forecasting with a recognized automation”

…

We think of Machine Learning as a new field, but is it?
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Human and Machine Learning

Classification
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From Valentine & Trampert (2012)

Humans can recognise seismic signals. The way computers do it implicitly defines some misfit criteria.

Seismogram,     Temperature in Birmingham over 50 years,      White noise     Stock prices
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Human and Machine Learning

Classification
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From Valentine & Trampert (2012)

Stock prices

Temperature in Birmingham  
over 50 years

White noise

Seismogram

Humans can recognise seismic signals. The way computers do it implicitly defines some misfit criteria.

Seismogram,     Temperature in Birmingham over 50 years,      White noise     Stock prices
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Supervised Learning
Given training data of inputs and outputs

Classification

Regression

Make predictions of outputs for future inputs,…, generate new outputs `in a similar style’

High dimensional inputs require 
large volumes of data to 

detect correlations.



Title Text

• Body Level One 
• Body Level Two 

• Body Level Three 
• Body Level Four 

• Body Level Five

ICTP-IUGG workshop Emerging Directions in Geophysical Inversion

Machine Learning in Seismology

First data centric applications is seismology from 1990s

• Earthquake first-arrival picking (McCormack et al. 1993; Veezhinathan et al, 1991)

• Deconvolution of seismic traces (Wang and Mendel, 1992)

• Discrimination between earthquakes and artificial sources (Dowla et al., 1990; Dysart and Pulli, 1990)

Recent applications use deep learning, but applied to similar applications

• First-arrival picking (Ross et al. 2018a,b; Zhu and Beroza, 2019; Mousavi et al. 2020)

• earthquake detection (Perol et al. 2018; Mousavi et al. 2020)

• Discrimination between signal and noise (Meier et al. 2019)

• Signal denoising (Zhu et al., 2019)
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Machine Learning in Seismology
Improved computational capacity has led to vastly increased sophistication of Neural Networks 
in seismic applications. 

The two layer model of McCormack et al. (1993)

Early and modern use of Neural Networks applied to first arrival picking.

70 layer model of Mousavi et al. (2020) involving a mixture of 
convolutional layers using 372,000 tunable parameters.
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Detecting new signals in data
More exciting applications would be to detect new signals in seismic data….

“Continuous chatter of the cascadia sub-duction zone revealed by machine learning” - Rouet-Leduc et al., 2019.

“An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia” - Hulbert et al., 2020.

Detecting correlations between seismic noise features and GPS signals shows how  
`noise' coming from the slab relates to slab movement.
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Surrogate models

?

Commercial data science

Predictive inference in the absence of a forward problem.

?
Geophysical inverse problem

But we have physics and would not want to be parted from it!

But there are cases where we might want a  
faster approximate forward theory,  
one that can be automatically constructed.

https://www.youtube.com/watch?v=iOWamCtnwTc

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann,  

Ken Perlin, Proceedings  of  the 34th International  Conference   

on  Machine Learning,  Sydney,  Australia,  PMLR 70,  2017.

arXiv: 1607.03597v5 [cs.CV] 3 Mar 2017
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Physics informed Surrogate models
An emerging trend is to go beyond correlations and include physical laws in Neural Networks 
(e.g. Li et al., 2021; Raissi, 2018; Raissi et al., 2019). 

A simple ODE example

Courtesy M. Scheiter.

∂f
∂x

= x + xy, y(0) = y0

with solution

y(x) = (y0 + 1) e 1
2 x2 − 1

A neural network can be set up to represent 
the function, , which minimizesf(x)

∫
b

a ( ∂f
∂x

− x − xf(x))
2

dx + α( f(0) − yo)2

Solving a differential equation with a simple neural network.
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Physics informed Surrogate models
An emerging trend is to go beyond correlations and include physical laws in Neural Networks 
(e.g. Li et al., 2021; Raissi, 2018; Raissi et al., 2019). 

A wave equation example by Moseley et al. (2020)
Courtesy M. Scheiter.

Comparing standard Neural network with Physics informed Neural Network.



Title Text

• Body Level One 
• Body Level Two 

• Body Level Three 
• Body Level Four 

• Body Level Five

ICTP-IUGG workshop Emerging Directions in Geophysical Inversion

Generative models
Another growing trend in Machine Learning is use of Generative models

• Variational autoencoders (Kingma and Welling, 2014)

• Generative adversarial networks (GANS) (Goodfellow et al., 2014)

• Diffusion models (Sohl-Dickstein et al., 2015) 

• Flow based models (Rezende and Mohamed, 2016)

They are responsible for DeepFakes. Typical use is training a NN to mimic the features in training
data and then generate new outputs (e.g. images) in the the same style. 
Geophysical applications include:

• first arrival picking (Zhang and Sheng, 2020)

• Earthquake/noise discrimination (Li et al., 2018)

• Seismic data interpolation (Oliveria et al, 2018), data augmentation, (Wang et al., 2019) and  
data reconstruction (Siahkoohi et al., 2018).

Direct Inversion applications of generative models:

• Dimensionality reduction (Laloy et al., 2018,2019; Moser et al., 2020; Lopez-Alzis et al. 2021.)

• Model space samplers (Siahkoohi and Hermann (2021); Zhang and Curtis (2021); Zhao et al. (2021).
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Latent variable inversion

Benefits: Drastic reduction in numbers of unknowns for little to no loss in representation.

But is there a price to be paid in that the inverse problem may be more difficult,  

The optimisation function may be more complex, in the latent space than in the larger space.

There is some evidence for this, e.g. Laloy et al. (2019).



Title Text

• Body Level One 
• Body Level Two 

• Body Level Three 
• Body Level Four 

• Body Level Five

ICTP-IUGG workshop Emerging Directions in Geophysical Inversion

Generative models and Bayesian inference 

From Scheiter. et al. (2021, in prep) 

Here a WGAN has been used to replicate the ensemble of shear wave velocity Earth models at the CMB
produced by a large Trans-D MCMC Bayesian sampling algorithm.

• Gives 95-99% reduction in digital volumes -> gives ease of distribution of more than mean and std.
• Allows any third party to generate new ensembles with dramatically increased computational speed.
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Here a WGAN has been used to replicate the ensemble of shear wave velocity Earth models at the CMB
produced by a large Trans-D MCMC Bayesian sampling algorithm.

From Scheiter. et al. (2021, in prep) 

The WGAN is able to capture higher order moments than just mean and standard deviation.

Generative models and Bayesian inference 
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Optimal Transport

Applications to misfit functions, optimisation and Bayesian Inference. 
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Optimal Transport
Inversion makes a lot of use of misfit functions

∫ (uobs(t) − upred(t))2dt

Amplitude, u changes at fixed time, t

 
  

Least squares misfit is the sum of  
the amplitude separation  

between two signals. 

Observed Predicted

An animation of least 
squares misfit between 

blue and orange 
waveforms as a 

function of phase shift

Following earlier work by  
Engquist and Froese (2014)

Cycle skipping

The predicted should move  
to the left to fit the observed

Ideally we would like  
a misfit function which had  

`long range’ information built into it.

In inversion gradient based optimisation  
will only converge within a  
narrow range of time shifts
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Napoleons problem
Optimal transport traces its roots back to the tail of Napoleon and his Gaspard Monge.

W2
2( f, g ) = ∫X

c(x, T(x))f(x)dx

f(x)

g (x)

How to optimally transport the sand  to the holes  ?f(x) g (x)

g (T(x)) = f(x)
The transport map

The work required to  
complete the task

 is the distance 
between  and 

c(x, y)
x y

The modern field derives from the work of Kantorovich (1942); Villani (2003, 2008).

x
y

T(x)

   (distance)  x mass  EnergyW2
2 ∝ 2 ∝

 Wp = (∑
i

dp
i mi)1/p  1 or 2p =

( f ⋅ g )(τ) = ∫
∞

−∞
f(t)g (t + τ)dt
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Wasserstein distances and Transport plans
Optimal transport traces its roots back to the tail of Napoleon and his Gaspard Monge.

Linear programming formulation of Kantorovich (1942). Solve for transport plan πi, j

Wp
p = (Distance)p × (mass)

 = distance x massW1

 = (distance)  x massW2
2

2

Figure adapted from Solomon et al. (2015)

 = Transport planπ(x, y)
 = distance between x and yc(x, y)

min
π(xi,yj)

Wp
p = ∑

i, j
ci, jπi, j, ∑

i
πi, j = f(xi), ∑

j
πi, j = g (yi)

Source

Target



Title Text

• Body Level One 
• Body Level Two 

• Body Level Three 
• Body Level Four 

• Body Level Five

ICTP-IUGG workshop Emerging Directions in Geophysical Inversion

Distances and transformations

Equal steps along the  
Euclidean path  

between endpoints
2 Gaussians

1 Gaussian

Equal steps along the  
Optimal Transport path  

between endpoints
2 Gaussians

1 Gaussian

Animation of the  
linear (least squares) 

path between the start  
and end distributions

Animation of the  
optimal transport 

path between the start  
and end distributions

Only amplitude changes

Amplitude and position 
changes
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Optimal Transport: 2D point cloud

Optimal transport of a 1000 point cloud with uniform amplitude.

Colours represent point index and allow to visualise Transport map.
Initial Final

Sliced Wasserstein algorithm
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Optimal Transport of 3D shapes

From Solomon et al. (2015)

Convolutional Wasserstein Barycentres

From Cow to Duck to Torus
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Optimal Transport Animations

Makes use of Sinkhorn Convolutional Wasserstein algorithm of Solomon et al. (2015)
Rémi Flamary and Nicolas Courty, POT Python Optimal Transport library, 2017. https://pythonot.github.io/

Linear Optimal transport

Transporting an apple to an orange

Source Source Target

uo(t)

up(t)
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Optimal Transport in exploration seismic

51

A number of groups have applied variants of OT in geophysics, primarily to full waveform  
inversion (FWI) in exploration seismology.

Approaches differ between studies: 

• Solution method for Wasserstein distance, , and also p value. 

• Transform of seismic trace to a Probability Density Function (PDF). 
• 1D OT Trace by trace or 2D reflection image.

Wp

These are all open issues. It is an evolving field.

Engquist and Froese (2014); Engquist et al. (2016);  - Monge-Ampere PDE solver (p=2) 
Yang and Engquist (2018); Yang et al. (2018); 

Me ́tivier et al. (2016 a,b,c,d); Me ́tivier et al. (2018 a,b);     - Dual formulation optimisation (p=1) 
Me ́tivier et al. (2019); Yong et al. (2018)

Hedjazian et al. (2019) - Seismic receiver functions; Huang et al. (2019) - Gravity inversion. 

Books and lecture notes: 

Villani (2003, 2008); Ambrosio (2003); Santambrogio (2015). 
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Transport between waveforms

 
  

Uses the vertical separation as a measure 
 of distance between two signals. 

Least squares

 
  

Uses the minimum work required to transform 
 one signal onto another. 

Optimal transport

 = distance x massW1

 = (distance)  x massW2
2

2

Amplitude, u changes at fixed time, t

Amplitude, u and time, t change together.

 = (distance)  x massWp
p

p

Waveform A

Waveform B

AB

AB
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OT Waveform misfit
Least squares misfit and Wasserstein distance between a pair of double Ricker wavelets

A variant of an experiment performed by Engquist and Froese (2014)

Using Wasserstein misfit formulation of  
Sambridge et al. (2021, under review)
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Minimizing the Wasserstein distance

Change Time shift

Change Amplitude

Change Frequency

Fit the noisy waveform by  
adjusting three parameters

Observed Predicted

Noise is N(μ, σ2)

σ =
μ = 5% of maximum Ricker amplitude

50% of maximum Ricker period

Sambridge et al. (2021, under review)
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Wasserstein vs  optimisation L2

Red line indicates global minimum

Wasserstein distance,  W1 Wasserstein distance,  W2
2

Least squares misfit,  L2

Wasserstein based on  
2D fingerprint PDF

Sambridge et al. (2021, under review)
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 optimisation misfit surface L2

Red line indicates global minimum

Least squares waveform misfit as a function of  
Time shift and Amplitude parameters

Change Time shift

Change Amplitude

σ =
Sambridge et al. (2021, under review)
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A comparison of misfit surfaces

σ =
Sambridge et al. (2021, under review)

Seismic waveform misfit surfaces as a function of source position

Sum of  
squared waveform  

differences, L2

Marginal  
Wasserstein  

algorithm, W2
2
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Some conclusions

•  Many new developments in inversion of geophysical data translated from other fields 

•   We can expect new types of signal to be found in geophysical data 

•   We can expect new ways of performing inversion, but the principles of inversion are unchanged. 

•   An exciting time for applications of new mathematical and computational tools  

such as Sparsity,  Machine Learning and Optimal Transport.  

•   This will require multi-skilled people like never before.

We will learn new things by  

    ….doing things in new ways and 

          …asking new types of question! 


