Data Science and Machine learning

Applications to data processing task, signal identification, classification, surrogate modelling and inversion.
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obs for everyone

Data Scientist:

The Sexiest Job of the 21st Century

hen Jonathan Goldman ar-
rived for work in June 2006
at LinkedIn, the business

networking site, the place still
felt like a start-up, The com-
pany had just under 8 million

accounts, and the number was
growing quickly as existing mem-
bers invited their friends and col-
leagues to join. But users weren’t
seeking out connections with the people who were already on the site
at the rate executives had expected. Something was apparently miss-
ing in the social experience. As one LinkedIn manager put it, “It was

like arriving at a conference reception and realizing you don’t know
anyone. So you fust stand in the corner sipping your drink—and you
probably leave early”

Meet the people who

can coax treasure out of
messy, unstructured data.
by Thomas H. Davenport
and D.J. Patil

70 Harvard Business Review October 2012
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The three pillars of Data Science

Data Management
Discovering, stewardship
& curation.

Data Engineering
Organisation and delivering
data to computation.

Data Analytics
Methods and tools for collecting
and learning from data.

Geoscientists have been in this game for decades.
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Machine Learning
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Machine Learning (ML): A branch of artificial intelligence in which a computer progressively improves its performance on
a specific task by “learning” from data, without being explicitly programmed.

Deep Learning (DL): An extension of Machine Learning that uses the mathematical concept of a neural network (NN) to loosely
simulate information processing and adaptation patterns seen in biological nervous systems.

ICTP-IUGG workshop

Emerging Directions in Geophysical Inversion



The new field of Machine Learning

We think of Machine Learning as a new field, but is it?

In the first phase of project PREP, 1 a multiple factor classification
technique, of a sort resembling ''learning machines' which have been
studied as pattern recognition automata, was experimentally applied to
forecasting solar flares likely to have produced proton showers in the

interplanetary space. Type IV radio emission was used as a criterion for...

“Study of the application of perceptrons for prediction of Solar Flares,
Solar flare forecasting with a recognized automation”

“Final report for Phase Il Project PREP. Prepared for NASA
by C.M.Theiss and A.E. Murray, Cornell Aeronautical Laboratory, Inc. (February 1965)
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Human and Machine Learning

Classification

O_

—1 ' ' ' ' T ' ' ' ' |
0 250 500

Seismogram, Temperature in Birmingham over 50 years, = White noise  Stock prices

Humans can recognise seismic signals. The way computers do it implicitly defines some misfit criteria.

From Valentine & Trampert (2012)
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Human and Machine Learning

Classification
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Supervised Learning

Given training data of inputs and outputs
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uture inputs
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High dimensional inputs require
large volumes of data to

Regression detect correlations.
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Make predictions of outputs for future inputs,..., generate new outputs 'In a similar style’
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Machine Learning in Seismology

First data centric applications is seismology from [990s

® Farthquake first-arrival picking (McCormack et al. 1993;Veezhinathan et al, 1991)
® Deconvolution of seismic traces (Wang and Mendel, 1992)

® Discrimination between earthquakes and artificial sources (Dowla et al,, 1990; Dysart and Pulli, 1990)

Recent applications use deep learning, but applied to similar applications

® First-arrival picking (Ross et al. 2018a,b; Zhu and Beroza, 2019; Mousavi et al. 2020)
® carthquake detection (Perol et al. 201 8; Mousavi et al. 2020)
® Discrimination between signal and noise (Meier et al. 2019)

® Signal denoising (Zhu et al, 2019)
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Machine Learning in Seismology

Improved computational capacity has led to vastly increased sophistication of Neural Networks
in seismic applications.

Early and modern use of Neural Networks applied to first arrival picking.
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work. The inputs to the network are pixel images of the
seismic data about the peak currently being examined.
Network outputs indicate whether the current peak is earlier
or later in time than the first break on the trace.

The two layer model of McCormack et al. (1993)
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/0 layer model of Mousavi et al. (2020) involving a mixture of
convolutional layers using 372,000 tunable parameters.
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Detecting new signals in data

More exciting applications would be to detect new signals in seismic data.. ..

Detecting correlations between seismic noise features and GPS signals shows how
“noise' coming from the slab relates to slab movement.

Seismic “noise”
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“Continuous chatter of the cascadia sub-duction zone revealed by machine learning” - Rouet-Leduc et al., 2019.

“An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia” - Hulbert et al,, 2020.
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Surrogate models

Commercial data science
But there are cases where we might want a
faster approximate forward theory,

one that can be automatically constructed.

Predictive inference in the absence of a forward problem.

Ken Perlin, Proceedings of the 34th International Conference
on Machine Learning, Sydney, Australia, PMLR 70, 2017.

Geophysical inverse problem arXiv: 1607.03597v5 [cs.CV] 3 Mar 2017

' | 4/\[\/\#/\ Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann,
I¢

https://www.youtube.com/watch?v=10WamCtnwTc

But we have physics and would not want to be parted from it!
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Physics informed Surrogate models

An emerging trend Is to go beyond correlations and include physical laws in Neural Networks
(e.g Lietal,2021; Raissi, 2018; Raissi et al., 2019).

A simple ODE example

d
_f =X + xy, y(()) = yo _‘\\\ \ —— Analytical Solution

—-== Approximation to Function
a.x % Initial Condition

with solution

V) = (g + 1) €7 = 1

A neural network can be set up to represent

the function, f(x), which minimizes

Solving a differential equation with a simple neural network.

b 0 2
J <a—§ —Xx— Xf(x)> dx + a(f(0) — )’0)2

Courtesy M. Scheiter.
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Physics informed Surrogate models

An emerging trend Is to go beyond correlations and include physical laws in Neural Networks
(e.g Lietal,2021; Raissi, 2018; Raissi et al., 2019).

Comparing standard Neural network with Physics informed Neural Network.

t=0.00s t=0.05s t=0.10s t=0.15s 7 t=0.20s

Ground truth - >
(FD) 7~ >\
\ )
Prediction /_\
(NN) / \
u
Prediction ~ ~
(NN + physics loss) 'K\'

iter.
A wave equation example by Moseley et al. (2020)
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Generative models

Another growing trend in Machine Learning is use of Generative models

® Variational autoencoders (Kingma and Welling, 2014)

® (enerative adversarial networks (GANS) (Goodfellow et al,, 2014)

® Diffusion models (Sohl-Dickstein et al., 2015)

® Flow based models (Rezende and Mohamed, 2016)
They are responsible for DeepFakes. Typical use is training a NN to mimic the features in training

data and then generate new outputs (e.g. images) in the the same style.
Geophysical applications include:

® first arrival picking (Zhang and Sheng, 2020)
® Farthquake/noise discrimination (Li et al,, 2018)

® Seismic data interpolation (Oliveria et al, 2018), data augmentation, (Wang et al., 2019) and
data reconstruction (Siahkoohi et al,, 2018).

Direct Inversion applications of generative models:
® Dimensionality reduction (Laloy et al,, 2018,2019; Moser et al., 2020; Lopez-Alzis et al. 2021.)

® Model space samplers (Siahkoohi and Hermann (2021); Zhang and Curtis (2021); Zhao et al. (2021).
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L atent variable inversion

Latent variable space

Benefits: Drastic reduction in numbers of unknowns for little to no loss in representation.

But is there a price to be paid in that the inverse problem may be more difficult,

The optimisation function may be more complex, in the latent space than in the larger space.

There is some evidence for this, e.g. Laloy et al. (2019).
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Generative models and Bayesian inference

Here a WGAN has been used to replicate the ensemble of shear wave velocity Earth models at the CMB
produced by a large Trans-D MCMC Bayesian sampling algorithm.

Mean Std. Dev.

Figure 8. Maps of mean and standard deviation for the full model ensemble, divided into 16 regions; comparison between McMC samples and GAN samples.
The GANSs can recreate the full velocity model ensemble from Mousavi et al. (2021) in high resolution.

® Gives 95-99% reduction in digital volumes -> gives ease of distribution of more than mean and std.
® Allows any third party to generate new ensembles with dramatically increased computational speed.

From Scheiter. et al. (2021, in prep)
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Generative models and Bayesian inference

Here a WGAN has been used to replicate the ensemble of shear wave velocity Earth models at the CMB

produced by a large Trans-D MCMC Bayesian sampling algorithm.
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Figure 5. Comparison between the original McMC samples and an equal amount sampled from the GAN. Displayed are the first four moments of the
distribution and the covariance matrix. Overall, the GAN learns the original ensemble in great detail.

The WGAN s able to capture higher order moments than just mean and standard deviation.
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Optimal Transport

Applications to misfit functions, optimisation and Bayesian Inference.
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Optimal Transport

Inversion makes a lot of use of misfit functions

Least squares misfit is the sum of
the amplitude separation
between two signals.

(uobs(t) - upred(t))zdt

Amplitude, u changes at fixed time, t

Predicted
Observed oA The predicted should move
\ \ to the left to fit the observed

In inversion gradient based optimisation
will only converge within a
narrow range of time shifts

<+“—>

{‘ | An animation of least
[T squares misfit between
|| blue and orange
waveforms as a
function of phase shift

Ideally we would like
a misfit function which had
‘long range’ information built into it.

Cycle skipping

Following earlier work by
Engquist and Froese (2014)

—— L2 waveform misfit

-4 -3 -2

& ; i ; 3 :
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Napoleons problem

Optimal transport traces its roots back to the tail of Napoleon and his Gaspard Monge.

—

How to optimally transport the sand f(x) to the holes g(x) ?

T(x) The t;m;sort ma)p
X)) =[x
) g(T(x)) = f(
______________________________________________ Y ...
X
| g(x)
Mo Wi =[x Ty
X c(x,y) is the distance
W, = (Z d’'m)'"" p= tor2 between x and y

sz x (distance)?

x mass « Energy (f-2)(r) = [ f(t)g(t+ 7)dt

The modern field derives from the work of Kantorovich (1942); Villani (2003, 2008).
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Wasserstein distances and lransport plans

Optimal transport traces its roots back to the tail of Napoleon and his Gaspard Monge.

Linear programming formulation of Kantorovich (1942). Solve for transport plan 7; ;

Source f(x) f(x)
Target g(y) 9(y)
m(z,y) m(z,y)
min W2 =Y ¢, 7, 2 = f(x), Z = 2()
w(x;y;) i W, = distance x mass

. W2 = (dist 2
W? = (Distance)P X (mass) 2 = (distance)” x mass

n(x,y) = Transport plan

c(x, y) = distance between x and y Figure adapted from Solomon et al. (2015)
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Distances and transformations

Equal steps along the
Euclidean path
between endpoints

—

2 Gaussians

1 Gaussian

Equal steps along the
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Animation of the
linear (least squares)
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and end distributions

Only amplitude changes

Animation of the
optimal transport
path between the start
and end distributions

Amplitude and position
changes
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Optimal Transport: 2D point cloud

Optimal transport of a 1000 point cloud with uniform amplitude.
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Colours represent point index and allow to visualise Transport map.

Sliced Wasserstein algorithm
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Optimal Transport of 3D shapes

From Cow to Duck to Torus

Convolutional Wasserstein Barycentres

From Solomon et al. (2015)
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Optimal Transport Animations

Transporting an apple to an orange

Source Source Target

’ ’ a®

.o

Linear Optimal transport

(1)

1,(1)

Makes use of Sinkhorn Convolutional Wasserstein algorithm of Solomon et al. (2015)
Rémi Flamary and Nicolas Courty, POT Python Optimal Transport library, 2017. https.//pythonot.github.io/
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Optimal Transport in exploration seismic

A number of groups have applied variants of OT in geophysics, primarily to full waveform
inversion (FWI) in exploration seismology.

Engquist and Froese (2014); Engquist et al. (2016); - Monge-Ampere PDE solver (p=2)
Yang and Engquist (2018), Yang et al. (2018);

Me'tivier et al. (2016 a,b,c,d); Me tivier et al. (2018 a,b);, - Dual formulation optimisation (p=1)
Me'tivier et al. (2019); Yong et al. (2018)

Hedjazian et al. (2019) - Seismic receiver functions; Huang et al. (2019) - Gravity inversion.

Books and lecture notes:

Villani (2003, 2008); Ambrosio (2003); Santambrogio (2015).

Approaches differ between studies:

« Solution method for Wasserstein distance, Wp, and also p value.

 Transform of seismic trace to a Probability Density Function (PDF).

« 1D OT Trace by trace or 2D reflection image.

These are all open issues. It is an evolving field. 51
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Transport between waveforms

B A —— Predicted signal
—— Observed signal

Waveform A

Waveform B Amplitude, u changes at fixed time, t

Least squares

Uses the vertical separation as a measure
of distance between two signals.

—— Predicted signal

B m A —— Observed signal

Optimal transport

Uses the minimum work required to transform Amplitude, u and time, t change together.
one signal onto another.

W, = distance x mass
W2 = (distance)? x mass

Wg = (distance)’ x mass
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OT Waveform misfit

Least squares misfit and Wasserstein distance between a pair of double Ricker wavelets

Using Wasserstein misfit formulation of
Sambridge et al. (2021, under review)

—— L2 waveform misfit

ICTP-IUGG workshop

Time Shift

A variant of an experiment performed by Engquist and Froese (2014)
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Minimizing the Wasserstein distance

Fit the noisy waveform by
adjusting three parameters

Change Time shift

Change Amplitude
\/\ me/\A I\/\\Jl\ /\ /\ \/\ \JMV/\A I\/\\J/\ \//\\/ I\//\\/
VYT VYNV
Observed Predicted Change Frequency
¥ X

Noise is N(u, 6%) H\j VVMVK\\/ \/U W W

MU = 5% of maximum Ricker amplitude
0 = 50% of maximum Ricker period

Sambridge et al. (2021, under review)
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Wasserstein vs L, optimisation

Wasserstein distance,W22

Wasserstein distance, W,

o o
2 2 o o
I O 4

Waveform misfit

°©
o

o
N

Waveform misfit
|
o
-

|
=3
N

Wasserstein based on
2D fingerprint PDF

Sambridge et al. (2021, under review)

Red line indicates global minimum
Emerging Directions in Geophysical Inversion
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L, optimisation misfit surface

east squares waveform misfit as a function of
Time shift and Amplitude parameters

Change Time shift

i

Change Amplitude

A\ I, A N\ I
\/\/\ﬂ\/\/u —

VAN

o - Sambri I, (2021 |
Red line indicates global minimum ambridge et al. (2021, under review)
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A comparison of misfit surfaces

Seismic waveform misfit surfaces as a function of source position

Misfit at z=10.0 km with source at 20.0km depth

Misfit at z=10.0 km with source at 20.0km depth

—20 A

—40

-60 -40 -20 0

ICTP-IUGG workshop

10.8

10.2

0.725

0.650

0.575

0.500

0.425

0.350

0.275

0.200

0.125

0.050

Misfit at z=20.0 km with source at 20.0km depth

40
7.65

20 7.05

0 6.45
5.85

-20
5.25

-40
4.65
-60 4.05

-60

Misfit at z=20.0 km with source at 20.0km depth

0.54

0.48

40
0.42
20 0.36
0.30

0
0.24
-20 0.18
0.12

—40
0.06
—60 T T T 0.00

-60 60

Sum of
squared waveform
differences, L,

Marginal
Wasserstein
algorithm, W22

Sambridge et al. (2021, under review)

Emerging Directions in Geophysical Inversion



Some conclusions

® Many new developments in inversion of geophysical data translated from other fields

® \We can expect new types of signal to be found in geophysical data

® \We can expect new ways of performing inversion, but the principles of inversion are unchanged.

® An exciting time for applications of new mathematical and computational tools

such as Sparsity, Machine Learning and Optimal Transport.

® This will require multi-skilled people like never before.

We will learn new things by
....doing things in new ways and

...asking new types of question!
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