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Hydrology: what peculiarities for D.A.?
Some ‘classical’ applications of hydrological sciences
• Engineering design (water structures and infrastructures)
• Water resources management
• Natural hazards and extreme events (floods, droughts, …)
• Land-atmosphere interactions (lower flux boundary condition 

for weather and climate modelling)
• Water-related environmental quality
Cross-dciplinary themes
• Eco-hydrology
• Socio-hydrology
• Hydrogeochemistry
• Water security

Climate change 
physics and 
impacts



Most of the complexity 
resides not in the flow itself, 
but in the environment that 
contains/constraints the flow, 
and in the forcing. 

HEC-RAS 6.0 River Flow 
Simulation System 

Hydrology: what peculiarities for D.A.?



The most important 
governing equations in 
hydrology are convergent in 
nature (quick loss of memory 
of initial conditions)

Hydrology: what peculiarities for D.A.?

time

state
A divergent system
(e.g. Atmosphere)

time

state
A convergent system
(e.g. Soil Moisture)

If the model is ‘wrong’ 
(poor structure, bad 
parameters) it will rapidly 
converge back to the 
‘wrong’ solution, after 
state update with D.A.



https://ismn.geo.tuwien.ac.at

Hydrology: what peculiarities for D.A.?
Some key variables (e.g. soil
moisture, evapotranspiration, 
river discharge, land surface
temperature) are routinely
measured at the ground with 
a very poor spatial coverage

Evapotranspiration from flux stations

River discharge gauges



Hydrology: what peculiarities for D.A.?
New and long-flying satellite missions provide
seamless estimates of those variables that
are poorly gauged at the ground, but they are 
themselves the output from D.A. systems with 
highly variable, non gaussian, errors structure.

Microwave remote sensing of soil moisture

Courtesy of D. Entekhabi, MIT



Hydrology: what peculiarities for D.A.?
A pletora of problem/application specific models, 
with different level of conceptualizations and largely
unknown model biases.

MODFLOW 6

HEC-RAS 6.0

VIC



Model (and its ‘non-
observable’ parameters)

(e.g. aquifer conductivity)

Forcing data
(e.g. 

precipitation)

States 
Observation

Data
State estimation

Improved
State estimation

Geophysical
inversion

Bayesian estimation

Main
sources of 

uncertainity



1. Improving remote sensing of land
surface: dynamic (Kalman-based) filtering 

Model

Forcing 
Data

Observation
DataState estimation

Improved
State estimation

• A linear example with a 
minimalistic model:
Filtering clouds from 
Meteosat-SEVIRI Land 
Surface Temperature

• A non linear example
with a global, 
distributed soil
hydrology model:
Enhanced (Level-4) Soil
Moisture products from 
the SMAP mission



A pure filtering example:
Filtering cloud-contaminated LST 
observations from MSG-SEVIRI

Thermal Infrared Retrieval of LST
°𝐾

time

Detecting clouds 
from ‘sudden’ 

temperature drops

Clouds 
are 
usually 
much 
colder 
than 
land 
surface



𝑇𝑘 = 𝛼𝑘𝑇𝑘−1 + 𝛽𝑆𝑘 + 𝑣𝑘
𝑇𝑘 = 𝐿𝑆𝑇𝑘 +𝑤𝑘

Incoming short-wave radiation

SEVIRI Land Surfce Temperature retrievals, 3km res., 30’ revisit

Partial relaxation of Gaussian measurement
error hypothesis:
• 𝑤𝑘 comes from the mixture of a 
‘standard’ 𝑁 0, 𝑅∗ Gaussian noise ad a 
‘much larger’ (non-0 mean!) cloud 
contamination error.

• Which error component is active at time 𝑘
can be ‘detected’ with the innovation:
𝑅𝑘 = ቊ

𝑅∗ 𝑖𝑓 𝑇𝑘
− − 𝐿𝑆𝑇𝑘 ≤ 𝛿 𝑅∗ + 𝑄

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑃𝐷𝐹 𝑤𝑘

°𝐾

Cloud 
Contamination



𝑅𝑘 = ൝𝑅
∗ 𝑖𝑓 𝑇𝑘

− − 𝐿𝑆𝑇𝑘 ≤ 𝛿 𝑅∗ + 𝑄 ൗ1 2

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 Kalman Gain is zero in this
case, and the observation is
discarded!

Model prediction
Valid LST
Cloud 
contaminated
(not used)
Reliable Analysis
(𝑃𝑘+ ≤ 𝑅∗ + 𝑄)

𝑄 ൗ1 2 = 𝑅∗ ൗ1 2 = 1°𝐾 ; 𝛿 = 2.5



Validation with 
MODIS



Sate estimation with sequential non-lienar filtering:
Enhanced Soil Moisture products from the SMAP mission



• SMAP L1C_TB observations
• Distributed ensemble Kalman filter (EnKF)
• NASA GEOS-5 Catchment land surface model
• Surface meteorological forcing from NASA 

GEOS-5 Forward Processing system
• Precipitation corrections with NOAA Climate 
Prediction Center “Unified” global, 0.5 degree 
gauge-based product



Assimilating Microwave TB in a hydrologic 
model resolving water, carbon and energy 
balance of the soil-vegetation layers 
improve the Level 2 original SMAP-Soil 
Moisture product by:

- Downscale the from the nominal 36km 
resolution of the TB data to the 9km* 
resolution of the distributed DA system

- Extend the estimate from the top 5 cm 
(influencing the mw emission) to various 
depths down to 100 cm

- Extend the estimate to regions where the 
TB data decorrelate with soil moisture 
(high vegetation, terrain slope 
variability) 

* Intended 
resolution of the 
merged active-
passive product 
before radar failure

Level-2 Quality Mask Sample of Level-4 Root-zone S.M.



2. State estimation with dynamic (Kalman-
based) filtering and sparse observations

 odel

 orcing 
 ata

 bservation
 ataState estimation

Improved
State estimation

• Near-realtime flood 
mapping with 
assimilation of river
stage data (sparse 
in space) and high-
resolution
multispectral water 
extent (sparse in 
time) into a 2D 
hydrologic-
hydraulic model



EnKF Scheme

Model error covariance estimated 
by perturbing hydrologic input 

(precipitation) and more 
uncertain model parameters 

(channel and floodplain 
roughness, terrain elevation)

River gauge observations are 
very sparse. Need of filter 

localization to avoid spurious 
error growth in limited-size 

ensemble sampling



Case study: Nov. 2012 flooding of the Tiber valley (upstream of Rome)

Available data:
• 5 half-hourly water 

stage records from 
river gauges (4 inside 
the flooded area)

• 1 flooded area map 
from Landsat (partly 
cloudy) near time of 
flood peak



Localization applied in the EnKF update step (takes advantage of the 
perfectly predictable flow direction along the channel network)

Along-channel distance

The ‘standard’ EnKF update is applied  to the river gauges cells 
first, water level in neighboring cells is then updated as: 







Water depth profiles along the main channel

Flow direction



Assimilation of Landsat flood extent alone

Clear reduction of flood extent uncertainty. 
Accuracy?



Assimilation of Landsat flood extent alone
Effects of flood extent assimilation on water stage at river gauges

Quite short persistence of D.A. benefit 
(… convergent system!)



Benefits of joint assimilation of ground water stages 
and satellite flood extent

Landsat overpass



Model (and its ‘non-
observable’ parameters)

(e.g. aquifer conductivity)

Forcing data
(e.g. 

precipitation)

States 
Observation

Data
State estimation

Improved
State estimation

Geophysical
inversion

3. Geophysical inversion as a causal 
identification and quantification tool 

(true backward reasoning)

• Land 
subsidence 
induced by 
excessive 
groundwater 
abstraction



Inverse problems: Reasoning backwards
Most people, if you describe a train of events to them
will tell you what the result will be. There are few
people, however that if you told them a result, would
be able to evolve from their own inner consciousness
what the steps were that led to that result. This
power is what I mean when I talk of reasoning
backward.

Sherlock Holmes,
A Study in Scarlet,

Sir Arthur Conan Doyle (1887)



Study area

Strong water 
abstraction from 
an alluvial aquifer 
to support plant 
nursery irrigation 
in the Pistoia 
area



Satellite SAR interferometric estimates of 
surface deformation velocity

Line of Sight

Vertical

ENVISAT 2003-2010 Sentinel-1 2015-2017



Coupled surface
hydrology – groundwater

model

Forcing data
(precipitation, 
temperature,…)

Satellite 
surface

deformation; 
wells data.

States:
Grounwater budget
Aquifer deformation

Estimation of 
abstraction-induced

deformation

Variational Data Assimilation Framework

Aquifer parameter 
estimated with D.A. 
(spatially variable):
• Hydraulic 

conductivity
• Elastic and 

inelastic skeletal 
storage 
coefficients 

Underdetermined 
inverse problem:
Non-linear Tikhonov 
regularization is 
used



Tikhonov regularization (general definition)
In the simplest linear inverse problem: find 𝜽 such that 𝑮 𝒙 𝜽 = 𝒛
the problem may be ill-posed (e.g. underdetermined system of 
equations due to a larger number of model parameters than
observations, or collinear observations).

the inverse mapping operates as a high-
pass filter that has the undesirable 
tendency of amplifying noise 

This tendency can be alleviated by adding a regularization term to the 
square residuals to be minimized

𝑮𝜽 − 𝒛 2 + 𝜞𝜽 2 𝜽 = 𝑮𝑇𝑮 + 𝜞𝑇𝜞 −1𝑮𝑇𝒛

Tikhonov matrix A properly chosen Tikhonov
term guarantees the 
existence and indetifiability
of this inverse



Tikhonov regularization in a D.A. 
(Bayesian) framework 
Solve the ill-posed inversion of 𝑮 𝒙 𝜽 = 𝒛, given:
• 𝜽0 = a prior estimate (expected value) of the 

unknown parameters 𝜽
• 𝑸 = the covariance of the unknown 𝜽
• 𝑷 = the covariance of the data 𝒛

Find the minimum of:  
𝑮𝜽 − 𝒛 𝑇𝑷 𝑮𝜽 − 𝒛 + 𝜽 − 𝜽0

𝑇𝑸 𝜽 − 𝜽0

𝜽 = 𝑮𝑇𝑷𝑮+ 𝑸 −1 𝑮𝑇𝑷𝒛 + 𝑸𝜽0 = 𝜽0 + 𝑮𝑇𝑷𝑮 + 𝑸 −1 𝑮𝑇𝑷 𝒛 − 𝑮𝜽0

In this case, the Tikhonov matrix would be a 
factorization of the covariance of the unknowns 𝑸 = 𝜞𝑇𝜞

Need to be 
prescribed!



𝑲𝑘 = 𝑷𝑘
−𝑯𝑇 𝑯𝑷𝑘

−𝑯𝑇 + 𝑸 −1

ෝ𝒙𝒌
+ = ෝ𝒙𝒌

− +𝑲𝑘 𝒛𝑘 −𝑯ෝ𝒙𝒌
−

𝜽 = 𝜽0 + 𝑮𝑇𝑷𝑮 + 𝑸 −1 𝑮𝑇𝑷 𝒛 − 𝑮𝜽0

Compare Tikhonov Linear Inverse with Kalman Filter Update

Hint:
𝑮 = 𝑯

… or the dumped, minimum length, weighted Backus-Gilbert 
Generalized Inverse

𝜽 = 𝜽0 + 𝑮𝑇𝑾𝑑𝑮 + 휀2𝑾𝑥
−1 𝑮𝑇𝑾𝑑 𝒛 − 𝑮𝜽0

In non-linear ill-posed problems, 𝑭 𝒙, 𝜽 = 𝒛
a Variational (iterative) approach is used to find 
the minimum of:
𝑭 𝒙, 𝜽 − 𝒛 𝑇𝑷 𝑭 𝒙, 𝜽 − 𝒛 + 𝜽 − 𝜽0

𝑇𝑸 𝜽 − 𝜽0



Water table 
elevation

Surface 
displacement

Prior Posterior

Posterior 
storage 
coefficient 
field



How much the improved state estimation ‘explains’ 
the measured ground displacement spatial pattern?

ROC curve



How much the improved state estimation ‘explains’ 
the measured ground displacement dynamics?

ENVISAT 2003-2010

Sentinel-1 2015-2017



Means, motive, and 
opportunity
Means, motive, and opportunity is a 
popular cultural summation of the three 
aspects of a crime needed to convince 
a jury of guilt in a criminal proceeding.

Motive: Aquifer deformation physics. 
Opportunity: Spatial and temporal coherence of subsidence and 
groundwater dynamics.
Means: The geophysical inversion demonstrated that the 
groundwater abstraction had the means to induce the 
measured amounts of surface deformation.

Alibi ?



Model (and its ‘non-
observable’ parameters)

(e.g. aquifer conductivity)

Forcing data
(e.g. 

precipitation)

States 
Observation

Data
State estimation

Improved
State estimation

Geophysical
inversion

Bayesian
estimation

4. Geophysical 
inversion and state 
estimation together 
(for the reasons recalled in the 
introduction, many D.A. 
solutions in hydrology need to 
address both).

Common approaches:
• Filter augmentation
• Variational assimilation 

with an adjoint



Model (and its ‘non-
observable’ parameters)

(e.g. aquifer conductivity)

Forcing data
(e.g. 

precipitation)

States 
Observation

Data
State estimation

Improved
State estimation

Geophysical
inversion

Bayesian
estimation

4. Geophysical 
inversion and state 
estimation together 
• An example of 

satellite Var.D.A. for 
mapping surface, soil 
moisture-controlled, 
energy balance and 
soil/atmosphere 
interaction.

• An example of river 
flow Var.D.A. for 
flood prediction.



Guiding principle:
Land Surface Temperature (LST) diurnal dynamics bears 
information on soil moisture and its control on surface 
turbulent fluxes

Thermal imaging of irrigated crops



LST
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Soil moisture controls the partinioning of available 
surface energy (Net Radiation minus Ground Heat 
Flux) among Turbulent Latent (evapotranspiration) 
and Sensible Heat Flux 



Multivariate 1D-Var
State estimation as a time-continuous initial value problem

𝑑𝒙

𝑑𝑡
= 𝑭 𝒙, 𝜽, 𝒖 + 𝒘

𝒛 = 𝑮 𝒙 + 𝒗

𝑡 ∈ 𝑡0, 𝑡1 𝒙 𝑡0 = 𝒙0

Global penalty function with adjoined model constraint
through Lagrange multipliers

𝜽 is the ‘non-observable’ parameters set

Assimilate a number of observations 𝒛𝑘 = 𝒛 𝑡𝑘 , 𝑡𝑘 ∈ 𝑡0, 𝑡1 , 
𝑘 = 1,… ,𝑁 through the minimization of:

𝑱 𝒙, 𝜽, 𝝀ห𝒛𝑘 = 𝜽 − 𝜽 𝜞𝜃 𝜽 − 𝜽
𝑇
+

𝑘

𝑮 𝒙 − 𝒛𝑘 𝜞𝑧 𝑮 𝒙 − 𝒛𝑘
𝑇 +

𝑡0+
𝑡1 𝝀

𝑑𝒙

𝑑𝑡
− 𝑭 𝒙, 𝜽, 𝒖 𝑑𝑡 + 𝑖. 𝑐.



Global minimization by setting independent variates to zero 

𝜹𝑱 𝒙, 𝜽, 𝝀ห𝒛𝑘 = 0

ൗ𝜕𝑱
𝜕𝒙 = 0

ൗ𝜕𝑱
𝜕𝜽 = 0

ൗ𝜕𝑱
𝜕𝝀 = 0

𝑑𝝀

𝑑𝑡
= −𝝀

𝜕𝑭

𝜕𝒙
− 𝜞𝑧 𝑮 𝒙 − 𝒛𝑘 𝛿 𝑡 − 𝑡𝑘

𝑑𝒙

𝑑𝑡
= 𝑭 𝒙, 𝜽, 𝒖

𝜽 = 𝜽 + 𝜞𝜃
−1න

𝑡0

𝑡1

𝝀
𝜕𝑭

𝜕𝜽
𝑑𝑡

Forward Model

Backward
Adjoint Model

Parameters
Update

Iterate until 𝝀 → 0Eu
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Assimilation of remotely sensed Land 
Surface Temperature (LST) and Fraction of 

Photosynthetically Active Radiation 
absorbed by vegetation (FPAR) from 

MeteosatSG-SEVIRI 
(geostationary, 15’ revisit, 3km resolution)

Forward model
Heat diffusion into the soil 
with b.c. provided by surface 
energy balance

Vegetation dynamics (Leaf Area Index)

Retrieved daily states and parameters
Evaporative fractionsFPAR



Multivariate penalty function





Retrieved 
Evaporative 

Fractions 
vs. 

Satellite microwave 
(AMSR-E) soil 

moisture estimates



Retrieved diurnal 
flux cycles

vs. 
ground flux tower 

data

Bamba site

Agoufou site

Net Radiation
Sensible Heat

Latent Heat
Ground Heat



Operational flood 
forecasting with a 
distributed, soil 
moisture 
accounting and 
river routing model

Total area: 9,374 km2

Cell size: 0.25 km2

Total river network length: 
3,692 km
Drainage density: 
0.394 km-1

5 River flow gauges along the main channel



Hindcast experiments with 16 recorded high-flow 
events, assuming rainfall can be perfectly predicted

Recorded 
peak flow at 
downstream 

gauge

Basin-average 
cumulative precipitation

Predicting 
floods is 
not just 
predicting 
rainfall!



One key simplification with 
respect to other ‘fluid flow’ 
problems:

Knowing the drainage structure, 
the problem may be reduced to 
a system of coupled ODEs

𝑄𝑖
𝑄𝑗

𝑞𝐿

Multivariate 1D-VAR 
instead of 3D or 4D-VAR

𝐾 ො𝑥, ො𝑥𝑖 = 𝑒𝑥𝑝 −
𝛼𝑢𝑝,𝑑𝑜𝑤𝑛

∆𝑡
න

ො𝑥𝑖

ො𝑥
𝑑𝑠

𝐶 𝑠

Dendritic Asymmetric
Assimilation Kernel

(local updates need to efficiently
propagate upstream)



Penalty 
function

Euler-Lagrange equations (iterates for 𝜆 → 0)
Forward model

Adjoint backward model

Updates

The sensitivities are 
coded explicitly, not 
estimated from 
discrete variations



Data of river flow at multiple locations

Analysis increment of river flows throught the 
network 

Analysis increment of hillslope
runoff

Difficult to adjoin, but at least mass 
conservation and rainfall distribution need 
to be maintained

D.A. of river flow can improve state estimation at 
hillslope level (hillslope runoff and initial soil moisture)?



Mixed VAR – Particle Filter

Hydrometric data

Analysis increment of river
flows

Analysis increment of 
hillslope runoff

Montecarlo sampling of 
Antecedent Soil Moisture, 
rainfall interpolation

Likelihood

Variational assimilation
with an adjoint



Prediction updates with different D.A. windows



Prediction error reduction with D.A. as a function of 
prediction lead time





Concluding remarks: (some) trending topics

Models

Data

D.A. Techniques

Hydrologic Digital Twins: Toward holistic, application 
independent, hydrological modeling

New types of data: UGC (User Generated Contents), 
Opportunity, Citizen's science.

Inclusions of AI-Learning algorithms to improve performances 
of D.A. in physically-based models (e.g. learning from 
repeated steps in sequential D.A. approaches).


