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Introduction. Prym varieties form a special class of principally polarized
abelian varieties, more general than Jacobians, but still accessible geomet-
rically. They were discovered by Wirtinger [Wi], then played a key role in
the Schottky-Jung identities [S-J]. Interest in them was revived in the early
1970s by D. Mumford [M], and they have been studied actively since then.
In these notes I'll try to give an overview of the current state of the theory.

1. Definition; the Schottky-Jung configuration. We start with two Riemann
surfaces C, C and an étale double covering 7: C — C. Let g be the involution
of C that exchanges the two sheets of the covering 7. Then ¢ acts on the
Jacobian JC of C, and JC splits under this action into a “+” part (which
is nothing but 7*JC) and a “—” part P, which is called the Prym variety of
(€, C). More precisely, one has

P=Im(l-o*) c JC.

We’ll usually put g(C) = g + 1, so that C has genus 2g + 1 and P has
dimension g.

The Prym variety P turns out to be a principally polarized abelian variety
('l say for short p.p.a.v.); in fact, the principal polarization of JC induces
twice a principal polarization on P. This follows from a general (and simple)
lemma about p.p.a.v.’s:

LEMMA. Let u be an endomorphism of a p.p.a.v.A, and p a positive integer.
Assume

(i) u is symmetric (i.e., u = i1, the dual variety A of A being identified with
A via the principal polarization),

(ii) the kernel of u is connected,

(iii) u? = pu.
Then the principal polarization of A induces p times a principal polarization
on the image of u. 0O
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The lemma applies to u = 1 — g, giving our assertion. O

Actually much more is true. Using the special properties of the theta
divisor of a Jacobian (essentially the Riemann singularity theorem), one can
show that the theta divisor of JC itself restricts to twice a theta divisor on
P [M]. More precisely, let us fix a theta-characteristic on C, that is, a line
bundle L on C such that L2 = w¢. Such a theta-characteristic corresponds
to a symmetric theta divisor 8, on JC, defined (set-theoretically) by

8, ={acJC|H'(L®a)>1}.

The line bundle 7* L is a theta-characteristic on C; we will assume that it
is even, i.e., that A%(z* L) is even. We’ll denote by ©,., the corresponding
theta divisor on JC. Then

THEOREM 1. There exists a divisor Z on P, defining the principal polariza-
tion of P, such that

(1) O,-1lp = 2E.

The relation of ©,.; with JC is easier to establish. The covering 7 is
defined by a “half-period” n on C (that is, a line bundle whose square is
trivial). I claim

(2) (m*) 'Oz = L + O,

Let us check this s~et-theoretically: an element o of JC belongs to the
left-hand side iff H°(C,n*(L ® «)) is nonzero. But one has

HY(C,n*(L®a))=HC,L®a)® H(C,L®1® ),

which gives (2).

The relations (1) and (2) taken together deserve to be called the Schottky-
Jung configuration. Let us see that they imply the classical Schottky-Jung
identities. Let 8,¢&, 6 be nonzero sections of H°(JC,&(0,-1)), H'(P,Z(E)),
and H(JC,#(©;)). There exist constants a, b such that

(1) 6(x) = af(x)? for all x in P;
(2" 6(n*y) = bO(»)0(y +n) forallyin JC.

(These are equalities between elements of line bundles over P and JC.)

We want to apply both (1) and (2') to the same element of JC. This
element must be of the form n*y, with y € JC and n*y € P. Applying 7.,
this implies 2y = 0. Let us denote by JC, the group of points of order 2
in JC. One checks that for an element y of JC,, the condition n*y € P
means that y is orthogonal to # for the natural pairing on JC,. Therefore
for y € nt we get that

E(n*y)?/0(y)60(y +1n) is independent of y.
This is the classical form of the Schottky-Jung identities.
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2. Pryms versus Jacobians. I said in the introduction that Pryms are more
general than Jacobians. This requires some explanation. Let me denote by
&/, the moduli space of p.p.a.v.’s of dimension g, by % the Jacobian locus in
g, by P, the subset of &7, corresponding to Prym varieties, and by P, its
closure. Then %, is an irreducible subvariety of $¢,, of dimension 3g (for g >
5), containing %,; for g < 5 one has Z ¢ = . These facts are (essentially)
due to Wirtinger [Wi]. Since curves of genus g + 1 depend on 3g moduli,
the assertion on dim(%,) means that the “Prym map” (€,C) — Prym(C, C)
is generically finite for g > 5, and dominant for g < 5; later I'll give much
more precise statements (§4). Let me first prove the inclusion %, C Z,.

We start with a smooth curve X of genus g; we choose two distinct points
on C—say, p and g—and denote by X’ the curve obtained from X by iden-
tifying p and ¢g. We construct an étale double cover X’ of X’ by taking two
copies of X and identifying point p of the first copy with point g of the
second, and vice versa. The picture of this Wirtinger cover looks like this:

:ZLZ

\_,Q/

By deformation one can get a flat family & — D of curves over the unit
disk D, with % smooth for ¢ # 0 and % = X', and an étale double cover
% — % such that % = X'. It is then quite easy to show that the Prym variety
Prym(f?ﬁ, %) specializes to J X, which proves our assertion.

The Jacobian locus is not contained in %, but some Jacobians are. Here
are some examples.

(a) Hyperelliptic curves. Assume that the curve C is hyperelliptic, i.e., can
be realized as a double cover of P!, with branch locus B ¢ P!. It is well
known that every étale double cover of C is obtained in the following way:
one chooses a partition B = B,1I B, of B with #B, and #B, even. One denotes
by C; the double cover of P! branched along B; (i = 1,2), by ¢; the natural
involution of C;, and by C the fibered product C; xp: C2. Then o = (01, 03) is
a fixed-point free involution of €, and the quotient C /o is a 2-sheeted cover
of P! branched along B—hence isomorphic to C. Now in this situation it
is easy to check that the Prym variety of (C, C) is isomorphic to JCy x JCs,
hence belongs to ,Z—and to % iff #B, or #B, equals 2. Conversely, taking
C; = X and C, = P! shows that every hyperelliptic Jacobian JX is a Prym.

(b) Trigonal curves. Assume now that C is trigonal, i.e., admits a base-
point free linear system |D| of degree 3 and (projective) dimension 1. Let 27
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denote the variety of effective divisors £ on C such that n,E € |D|. Then
& has two components X and X', which are exchanged under the involution
o. The curve X is smooth, and the map E — =, E from X to the projective
line |D| is 4-to-1. One can show [R2] that Prym(C, C) is isomorphic to J X,
and conversely that the Jacobian of a tetragonal curve is the Prym of some
trigonal curve.

(c) Plane quintics. Let us start here from a genus 5 curve X that is neither
hyperelliptic nor trigonal. The canonical model of X is then defined by 3
quadratic equations P = Q = R = 0 in P*. Thus the linear system of quadrics
in P* containing X is a net (= projective plane) I1. The discriminant curve
C (i.e., the subset of Il corresponding to singular quadrics) is defined by the
equation det(xP +yQ+ zR) = 0, and is therefore of degree 5. Let us assume
for simplicity that IT contains no rank 3 quadric. Then C is smooth, and
the quadric corresponding to a point in C has two different rulings. These
two rulings define an étale 2-sheeted covering n: C — C. One can prove
[Ma] that the Prym variety of (C, C) is isomorphic to J X. The half-period #
associated to 7 satisfies 4°(@-(1)®n) = 0; conversely, any pair (C, C), where
C is a plane quintic and 7: € — C a covering with 4°(@¢(1) ® ) = 0, comes
from a net of quadrics, so that Prym(C, C) is a Jacobian.

Using Mumford’s work, Shokurov [Sh] proved that these examples are
essentially the only ones.

THEOREM 2. Assume g # 4. If Prym(C,C) is a Jacobian, then C is
hyperelliptic, or trigonal, or C is a plane quintic and h%(@c(1) @ n) = 0.

The proof is based on Mumford’s analysis of the singularities of the ©
divisor [M]. A Jacobian has a highly singular © divisor: the dimension of
the singular locus Sing(8) is at least g — 4. This is a consequence of the
Riemann singularity theorem, which gives a parametrization of Sing(©) in
terms of special divisors on the curve. For Prym varieties, one deduces
from Theorem 1 a geometric description of Sing(®). Using that description
Mumford was able to prove the following result [M]: If Prym(C, C) satisfies
dim Sing(8) > g — 4, one of the following possibilities occurs:

(i) C is hyperelliptic.

(i1) C is trigonal.

(iii) C is a plane quintic, and h°(@c(1) ® n) = 0.

(iv) C is bielliptic (i.e., admits a 2-to-1 map onto an elliptic curve).

(v) C is a genus 5 curve with a line bundle L such that L®? = w¢, h°(L) = 2,
and h°(L® n) = 0.

Assume now that Prym((:‘, C) is a Jacobian, of dimension g # 4. Then
we are in one of the situations (i)-(iv), and we want to rule out case (iv).
Shokurov does it by considering the points of multiplicity > 3 of ©; this
approach works for g > 7. Alternatively one can use the detailed analysis of
Sing(®) in this case given in [D1] to get the result for all g #4. O
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REMARKS. (1) In case (v) (g = 4), the Prym might be the Jacobian of a
genus 4 curve with one vanishing thetanull (or in other words, one g; such
that 2g1 = K). I do not know how to rule out this possibility. The only way
I can imagine would be by proving that the tangent cone at the double point
is a rank 4 quadric. This brings up the difficult (but interesting) problem
of describing the tangent cone to © at an exceptional singularity (see next
remark).

(2) We now know a lot more about Sing(8). If C is generic, Welters [W1]
and Debarre [D2] have shown that Sing(®) is irreducible of dimension g —6
for g > 7, finite for g = 6, and empty for g < 5. On an arbitrary Prym,
two types of singularities may appear on the theta divisor [M]. The stable
singularities, which exist provided g > 6, are a specialization of the generic
case; each component of their locus Sing,(©) has dimension > g — 6. The
tangent cone to © at such a singular point has a nice geometric description.
On the other hand, the presence of special divisors on some particular curves
C creates exceptional singularities of ©, which are harder to control: the
dimension of their locus Sing,,(©) may be arbitrary, and I don’t even know
in general how to compute their multiplicity.

3. Prym varieties as intermediate Jacobians. Let me first recall one possible
definition of the Jacobian of an algebraic curve C. We start from the Hodge
decomposition

HC,C)=H" e Y

the subgroup H'(C,Z) of H!(C, C) projects as a lattice in each direct factor.
We put JC = H%'/Im H!(C,Z); the cup-product on H'(C,Z) defines the
principal polarization of JC.

Now let X be a smooth threefold; assume for simplicity that X has no
nonzero holomorphic 3-form. Then the Hodge decomposition of H3(X,C)
reduces to

H3X,C)= H>' ¢ H'?.

Again the image of H3(X,Z) in H'? is a lattice; we define the intermediate
Jacobian J X of X as the complex torus H'?/Im H*(X, Z), with the principal
polarization defined by the cup-product on H3(X,Z).

The role of intermediate Jacobians is quite analogous to the role played
by Jacobians in the theory of curves. Their importance stems in particular
from three different aspects.

(a) Curves on threefolds. As in the case of curves, there is a homomorphism
¢ from the group of 1-dimensional cycles on X with zero homology class into
JX. This homomorphism is “algebraic” in the following sense. Let (C;)er
be an algebraic family of curves on X, parametrized by a connected variety
T. Choose a base-point ¢y € T, and define the Abel-Jacobi map o.: T — J X
by a(t) = ¢(C; — C;,). Then a is an algebraic map (which depends on the
choice of #; only up to translation).
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(b) The Torelli problem. This is the question of whether the Hodge struc-
ture on H3(X,Z) determines the threefold X. The data of this Hodge struc-
ture amounts to the data of the p.p.a.v.J X; therefore the problem is to recover
X from its intermediate Jacobian.

(c) Rationality questions. The intermediate Jacobian of a rational threefold
is a Jacobian or a product of Jacobians [C-G]. Therefore if JX ¢ _%, the
threefold X is not rational: this is the Clemens-Griffiths criterion, one of the
few known ways to prove the irrationality of a given threefold (see [BS]).

Prym varieties appear as intermediate Jacobians of a particular class of
threefolds, the conic bundles. We'll say that the threefold X is a conic bundle
if it admits a morphism f onto a rational surface S such that each smooth
fibre of f is a rational curve, and each singular fibre is a union of two rational
curves meeting transversally. It is then easy to show that the set of points s in
S such that f~!(s) is singular is a smooth curve C C S. The pair of rational
curves above each point of C define an étale 2-sheeted covering 7: il
Then

THEOREM 3 (MUMFORD). ~The intermediate Jacobian of X is isomorphic to
the Prym variety P = Prym(C, C).

The isomorphism can be defined as follows. For § € C, let us denote by /;
the corresponding component of f~!(#5§). Then (/5);c¢ is a family of curves
on X, and therefore gives rise to an Abel-Jacobi map a: C — JX (defined
up to translation), which extends to a homomorphism f: J C—JX. Lets,t
be two points of C, with n~!(s) = {5,§'} and #~!(¢) = {f,7'}. Then one has

B(r*[s]—n*[t]) =L+ Iy — l; — I = f*([s] - [1]);
but the 0-cycle [s]—[¢] on § is linearly equivalent to 0, hence its image under
B is 0. By linearity we conclude that g vanishes on n*JC, hence factors
through the quotient JC/n*JC, which is isomorphic to P. I have to refer
to [B2] or [T2] for the proof that £ induces in fact an isomorphism from P
onto JX. O

Now let me give a few examples.

(a) The cubic threefold. Let X be a smooth cubic hypersurface in P?.
We choose a line / contained in X, and denote by X, the blow-up of X
along /. The projection from / onto a generic P> ¢ P* defines a morphism
f: X; — P2, For t € P2, the plane spanned by / and ¢ intersects X along a
cubic, which is the union of / and a conic; the fibre f~!(¢) is nothing but
that conic. One checks easily that the discriminant curve C is a quintic in
P2; it is smooth if / has been chosen general enough, and the covering 7
satisfies h%(@c(1) ® 1) = 1. One deduces from Theorem 2 that JX (= JX;)
is not a Jacobian, and then from the Clemens-Griffiths criterion that X is
not rational. This was one of the first examples known of a unirational but
nonrational threefold [C-G].

A detailed analysis of the Prym variety J X shows in fact that the © divisor
of JX has only one singular point, which has multiplicity 3, and that the
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projective tangent cone to © at this point is isomorphic to X [B4]. This gives
the Torelli theorem for the cubic (first proved in [T1] and [C-G]). The Fano
surface Fy, which parametrizes lines on X, has a simple interpretation in
terms of the covering C — C; this may be used for instance to prove that the
Abel-Jacobi map a: Fy — JX is an embedding [B3].

(b) The intersection of 3 quadrics in P®. Now let X be a smooth complete
intersection of 3 quadrics in P%. As in §2, example (c), we denote by II the
net of quadrics in P® containing X and by C the discriminant curve, which
is now of degree 7. We’ll again assume for simplicity that all points of C
correspond to rank 6 quadrics, so that we have an étale 2-sheeted covering
n: C — C defined by the two rulings of these quadrics.

Let us choose again a line / contained in X. For a general point x of X,
there is exactly one quadric f(x) of Il containing the plane spanned by / and
x. One thus defines a rational map X — P2, which extends to a morphism
f: X' = P?, where X' is obtained from X by some innocuous blowing up and
down (here “innocuous” means JX = JX’). Let ¢ be a quadric of I1. The
fibre f~!(q) is the set of planes in P® contained in ¢ and containing /; this
is a rational curve if ¢ is smooth, and the union of two rational curves (one
for each ruling of gq) if g is singular. We therefore conclude from Theorem
3 that J X is isomorphic to Prym(C, C).

A few consequences: first of all, X is not rational (though it is unirational).
Second, the Torelli theorem holds for these varieties: this is because one
can recover the pair (C,C) from the associated Prym ([D4], see §4), then
reconstruct X from (C, C) ([B2] or [T3]). Finally the surface of conics lying
in X can be described nicely from the point of view of Pryms [B3].

All this set-up generalizes in a straightforward way to the intersection of
3 quadrics in P2". The intermediate Jacobian is isomorphic to Prym(C, C),
where C is a plane curve of degree 2n + 1 (for n = 2 this is example (c) of
§2). The Torelli theorem still holds.

(c) Other examples. Most of the classical examples of unirational three-
folds are not conic bundles, but can be specialized to conic bundles by ac-
quiring a certain number of double points. This allows us to prove generic
irrationality results, i.e., to show that a member of these families which is
general enough is not rational [B2]. I'd like also to mention the paper [B-CT-
S-SD], where we give an example of a conic bundle X that is not rational,
but such that X x P3 is rational.

4. The Prym map.

(a) Generic injectivity. We denote by %, the moduli space of étale 2-
sheeted coverings 7: C — C, with g(C ) = p; equivalently this is the moduli
space of curves C € .#, with a (nonzero) half-period n € H'(C,Z/2). Itis a
finite cover of .#,, of degree 2% — 1.

By associating to a pair (C, C) its Prym variety, we define a morphism

pg:‘%gﬂ_’y,
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called the Prym map. It should be thought of as an analogue of the period map
(or Torelli map) J: .#; — %, which associates to a curve its Jacobi variety.
The Torelli theorem asserts that J is injective—it is even an embedding [O-
S]. For the Prym map only a weaker statement is true:

THEOREM 4. For g > 6, the Prym map pg: Fgr1 — Ny is generically
injective.

This result was first proved by Friedman-Smith [F-S] and, for g > 8,
by Kanev [K], using degeneration arguments. A more geometric proof was
obtained later by Welters [W3], and recently by Debarre [D2]. Both proofs
mimic known proofs of the Torelli theorem. For any p.p.a.v. (4,0), define
a subvariety X4 of 4 by

Y, = {a € A|a + Sing(®) C 6}.

Welters shows that when (A4, ©) is the Prym of a pair (C, C), with C general
enough and g(C) > 17, 4 is the union of the surface

C - C:={[x]+ Iyl -[ox] - [oyllx,y € C}

and possibly of some components of dimension < 1. It is then easy to recover
C and C from the surface ¢ — C. Observe that for a Jacobian JC, Z;c is
the surface C — C by another result of Welters [W2].

Debarre considers the tangent cones to the singular points of ©. The tan-
gent space to Prym(C, C) at any point can be canonically identified to the dual
of H(C, wc®1). Let us denote by P the projective space P(H(C, wc®n)*).
The linear system |w¢ ® 7| maps C into P, and this map is an embedding if
C has no g}; the image is the half-canonical model of C. For each singular
point a of ©, the projectivization of the tangent cone to © at a is a hypersur-
face in P. For g > 7, Debarre shows that the intersection of these projective
tangent cones is the half-canonical curve (when C is generic). This should be
compared to Green’s theorem, which says that for all Jacobians except the
well-known exceptions (hyperelliptic, trigonal, plane quintics), the intersec-
tion of the projectivized tangent cones to the theta divisor is the canonical
curve.

Contrary to the case of Jacobians, both results do not hold for every Prym.
If C is a plane curve and 4°(@-(2) ® n) = 0, the Prym variety P satisfies
Zp = {0}. If C is trigonal, say of genus > 8, the intersection of the tangent
cones is the tetragonal curve X such that Prym(C,C) = JX (§2, example
(b)); therefore there exist singular points of © such that the corresponding
projective tangent cones do not contain the half-canonical model of C. In
both cases the trouble comes from the exceptional singularities of the theta
divisor (§2, Remark 2).

(b) Non-injectivity. The Prym map is never injective. This is because of
Donagi’s tetragonal construction, which I am now going to explain. We start
with a pair (C’, C), where the curve C is tetragonal, i.e., admits a linear sys-
tem |D| of degree 4 and dimension 1. For simplicity I will assume that every
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member of |D| has at most one double point. As in §2, example (b), we con-
sider the variety 2 of effective divisors on C such that n.E € |D|. It is again
the disjoint union of two smooth curves, say C; and C,, but contrary to the
trigonal case the natural involution of 2 preserves each C; and induces on
C; a fixed-point-free involution ;. We put C; = C;/o;. The map E — n.E
from C; onto |D| = P! defines a 4-to-1 map C; — P!. So we have associated
to (C, C) two other pairs (C;, Cy) and (C,, C2), with C; and C; again tetrag-
onal. These three pairs are not isomorphic in general. However, Donagi
proves that the Prym varieties Prym(C, C), Prym(C}, C,), and Prym(C,, C,)
are isomorphic [Dol]. Note that the construction is symmetric: if we perform
it on (Cy, C}), we'll get back the two other pairs (C, C) and (G, Cy).

In [Do1] Donagi conjectures that the tetragonal construction is the only
obstruction to the injectivity of the Prym map. At that time this conjecture
seemed to me overoptimistic. It looks now more reasonable in view of the
recent results of Debarre [D3, D4]:

THEOREM 5. Let (C’, C) and (C", C'") be two pairs whose Prym varieties are
isomorphic.

(a) If C is tetragonal of genus > 13 (but not bielliptic), then either (C', C")
is isomorphic to (C,C), or it is obtained from (C,C) by the tetragonal con-
Struction.

(b) If C is a plane curve of degree > 1, then (C', C") is isomorphic to (C, C).

Let me also mention that the differential of the Prym map behaves nicely
at nontetragonal curves. At a pair (C, C) with Prym variety P, the transpose
of the tangent map

Tiecype: Tie o) Fer1) — Tr()

can be identified with the natural homomorphism from S2H°(C, wc®7) into
HO(C, w?z). It follows from [G-L] that this map is surjective (i.e., that p is
an immersion at (C, C)) if C has no g} and g(C) > 10.

(c) The Prym map from Fg to ;. We now consider the low genus case g <
5. The Prym map is no longer injective, it is actually generically surjective—
this can be deduced from the expression for its codifferential given above
[B2]. However the story does not stop here: the description of the fibres of
pe involves some beautiful geometry.

For g = 5 one has dim % = dim.%% = 15, so the Prym map is generically
finite. Its degree has been computed in [D-S]: it is 27. Let me quote here
Donagi-Smith: “Wake an algebraic geometer in the dead of night, whispering:
‘27°. Chances are, he will respond: lines on a cubic surface....” Indeed
Donagi proved that the fibre of ps has the structure of the 27 lines on a cubic
surface. To explain what this means, let us say that two pairs (C, C) and
(C',C") in F are incident if one is deduced from the other by a tetragonal
construction. Then for (4,0) generic in %, the fibre p;‘(A,G) endowed
with this incidence relation is isomorphic to the set of lines on a (smooth)
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cubic surface with the usual incidence relation. For instance, a general curve
of genus 6 has 5 g!, giving rise to ten elements (C;, C;)1<i<i0, With (G, Ci)
incident to (Ci;s, Cits); this corresponds to the fact that a line / on a cubic
surface S has 10 incident lines /i, ..., /1o, distributed into 5 planes IT;, ..., Is
such that [1, NS = /U [; U l;s.

A consequence is that the Galois group of % over % is the Galois group
of the 27 lines (the Weyl group of the root system Eg). Another consequence
of this result is that it severely restricts the possible degenerations of the fibre,
allowing us, for instance, to study the branch locus of ps. I refer to Donagi’s
forthcoming book [De2], and in the meantime to the announcement [Dol],
for more details on the fascinating geometry of the situation.

(d) The Prym map from Rs to %,. The structure of p4 has been worked out
again by Donagi [Del, Do2]. To explain his result, let us first observe that
the intermediate Jacobian of a cubic threefold X has a canonical symmetric
© divisor, defined by the condition that 0 is its unique singular point. We
then define the parity of a half-period (i.e., a point of order 2) on JX as the
parity of the multiplicity of © at this point. We denote by % the moduli
space of (smooth) cubic threefolds with an even half-period. Let (X,¢) be
a point of %; the half-period & defines a degree 2 isogeny ¢: J¢ — JX.
The Fano surface Fy of lines in X is embedded into JX through the Abel-
Jacobi mapping (§3, example (b)); the surface Fy, := ¢~ !(Fy) is smooth and
irreducible, and ¢ induces an étale 2-sheeted covering Fy,. — Fy.

Donagi constructs a birational map k: & — %, then proves that the fibre
of p4 at a general (A, ) € 4 is isomorphic to the surface Fy 4.

(e) g < 3. The lower genus cases are easier—because we are now dealing
with Jacobians—but still interesting. Let (4,0) be a p.p.a.v. We’ll denote
by 1 the involution @ — —a on A. If (4,8) is the Prym of a pair (C,C),
the curve C can be embedded in A in such a way that 1 induces on C the
involution ¢ (choose an element § of JC, such that (d.n) = 1 and consider
the map x — x — ox + n*9).

If dim(A) = 3, there are exactly two translates of the theta divisor, say 6,
and ©_,, which contain C, and one has C = 6, N ©_,. Conversely, for any
a in A, one deduces easily from §2, example (b), that (4, ©) is isomorphic to
Prym(C, C/1), where C is the curve 8, N ©_,. Up to translation, this curve
depends only on the element +2a in the Kummer variety Km(A4) := 4/{*1}.
It follows that the fibre p3'(A,8) is isomorphic to Km(A) [R1].

If dim(A4) = 2, the curve C belongs to the linear system |28|. Conversely,
any curve C in |28)| is symmetric, and (4, ©) is isomorphic to Prym(C, C/1)
(at least if C is smooth). Taking into account the action of the group JC; on
|28| by translation, one sees that the fibre p; 1(4, ©) is birationally isomorphic
to the quotient |28|/JC,. A biregular description of this fibre, based on a
detailed analysis of the above birational map, can be found in [V].
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Finally the case g = | is an easy consequence of the explicit description
for Pryms of the hyperelliptic curve given in §2, example (a); I leave it as an
exercise for the reader.

(f) Prym is proper. The above statements must be taken with a grain of
salt: if one sticks to Prym of smooth curves, the fibre of p, for g < 4 will be
only an open set in the compact variety I have described. However, one of the
key ingredients in the study of the Prym map is its compactification, often
referred to by the motto “Prym is proper.” This means that by accepting
coverings with mild singularities, we’ll get a moduli space §g+1 (containing

Hg+1 as a dense open subset) and an extended Prym map p,: H g1 — %,
which is proper.

The points we have to add in §g+1 are pairs (C‘ , C) of stable curves (this
essentially means that their only singularities are ordinary double points),
such that C is the quotient of C by an involution ¢. Two cases occur: if &
exchanges some components of C one gets a Wirtinger-type covering (see §2),
whose Prym is a Jacobian or a product. If o preserves all components of C
one gets an admissible cover: o fixes all the nodes (but no smooth point), and
preserves the two branches at each node. For such a covering one can define a
Prym variety exactly as in the nonsingular case, and all the properties we have
previously found extend in a (more or less) straightforward way [B1]. These
generalized Pryms appear naturally in the constructions we have already seen:
e.g., as Jacobians of tetragonal curves when the g has some higher-order
ramification, as intermediate Jacobians of the (smooth) intersection of a net
of quadrics in P?" when at least one quadric of the net has a singular line,
etc.

Let us now assume for simplicity that C and C are irreducible, each of
them with » nodes. Let N and N be the normalizations of C and C. The
map 7n: C — C induces a covering 7’: N — N, ramified at the 2v points of N
which dominate a singular point of C. Let ¢’ be the corresponding involution
of N. In [M], Mumford defines an abelian variety R = Prym(N, N) as the
image of the endomorphism 1 — ¢’* of JN. Let P = Prym(C, C); there
exists an isogeny P — R with kernel (Z/2)"~! [B1]. Therefore if v = 1,
we find P = R; this explains why the Prym of a covering 7': N — N with
two ramification points has a principal polarization, while in the general case
one has to choose a pairing between the ramification points in order to get a
principal polarization on a suitable cover of R.

5. The Schottky problem for Pryms. The usual Schottky problem is the
problem of characterizing Jacobians among all p.p.a.v.’s. I have to refer to
other talks in this volume, or to the report [B6], for a survey of the recent
progress on this subject. Let me just mention three approaches which have
been successful:
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(a) The Schottky-Jung approach gives explicit equations for the subvariety
g of &, in terms of the theta-constants 0[3](t) associated to a p.p.a.v. (those
are essentially the values of the theta function at the points of order two).

(b) The Andreotti-Mayer theorem says that %, is a component of the subva-
riety A* ~% of %/, consisting of p.p.a.v.’s (4, ©) such that dim Sing(6) > g—4
(cf. §2).

(¢) The trisecant approach is based on the reducibility properties of the
intersections © N ©,, which can be interpreted in terms of trisecants to the
Kummer variety. For an indecomposable p.p.a.v. (4, ©), the global sections
of the line bundle @4(28) (or equivalently the second-order theta functions)
define a morphism y: 4 — PV (N = 28 — 1); the image of y is the Kummer
variety K (A4, ®), isomorphic to A/{x1}. The two following conditions turn
out to be equivalent:

(i) There exist nonzero distinct elements a, x,y of A4 such that

ene, cO,uUB,.

(ii) The Kummer variety K (A, ©) admits a trisecant.

They are satisfied by Jacobians, and one hopes that they characterize Ja-
cobians (trisecant conjecture). 1 have to refer to [B6] for a discussion of
this approach. Let me just mention that by (cleverly) specializing the points
a,x,y to 0, condition (i) becomes the celebrated KP equation, which indeed
characterizes Jacobians [S, A-D].

I would like now to consider the analogous problem for Pryms, i.e., to try
to characterize Prym varieties among all p.p.a.v.’s. It would be very nice to
carry out the first approach for Pryms, that is, to find explicit polynomials
in the theta-constants vanishing on %,: in fact, through the Schottky-Jung
identities (§1) this would give new equations for % . Unfortunately nothing
seems to be known in this direction.

On the other hand, the second and third approaches work nicely for Pryms,
in striking analogy with the case of Jacobians. We already saw (§2) that
P, is contained in the locus ./ ° of p.p.a.v.’s with dim Sing(8) > g — 6;
Debarre has proved that %, is a component of /® ~6 [D5]. On a Prym (P,8),
some intersections © N 8, N O, are reducible, and in fact contained in some
union ©, UB,, with a, b, x, y distinct and # 0; this implies as above that the
Kummer variety K(P,©) admits quadrisecant planes. It is proved in [B-D]
that &, is a component of the locus of p.p.a.v.’s (A, ©) such that K(A,©) has a
quadrisecant plane (or such that some intersection © N8, N O, is reducible).
Here however the existence of a quadrisecant plane does not characterize
Pryms: if a p.p.a.v. (4, ©) contains an elliptic curve E such that (8.E) = 2,
there is a plane intersecting K (4, ©) along a conic (namely, the image of E
in K(4,0)).

Contrary to the case of Jacobians, one cannot in general specialize the 4
points a, b, x,y simultaneously to 0. This becomes possible if (and only if)
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the curves C, C defining the Prym are singular. One then obtains a differen-
tial equation analogous to the KP equation, called the BKP equation. One
might hope that this equation characterizes Pryms of singular curves; how-
ever, because of the example quoted above (and others of the same kind),
one has to impose some nondegeneracy conditions on the equation. A result
of this type has been announced by Shiota.

Let me conclude with the following diagram.

dim Sing(8) | reducibility of Kummer has
Jacobians g—4 ene, trisecants
Pryms g—6 ONn6,NnO, |quadrisecant planes

This picture irresistibly suggests a question: what’s next? Can we find
a stratification %, C¢ %, C? C --- C %, made of geometrically defined
subvarieties of .%, fitting nicely into the above picture? At the moment this
is totally unknown. One may hope that the results of Kanev on Prym-Tjurin
varieties will eventually shed some light on this problem.
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