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I n t r o d u c t i o n  

The s tudy  of P r y m  varieties has always served to l ink moduli-quest ions on curves 

and  on abel ian varieties. The "Prym differentials", as they  appeared to the ancients,  

provided the ma in  ingredient  in  the  work of Schot tky  and  J u n g  on the  equat ions of the 

locus yg of Jacobians  in  the modul i  space •g of pr incipal ly  polarized abel ian varieties 

([Sk], [SJ]). They  kept  precisely the  same role th rough the extension by  Farkas  and  

Rauch  ([FR] and  m a n y  other works) of Schot tky 's  computa t ions  to higher genus, and  

evolved through works of Fay ,  Mumford,  T ju r in  and  others to a wide body  of geometric 

knowledge with applications to both  curves and  abel ian varieties, cu lminat ing  in Beauvil le 's  

ref inement  of the results of Andreot t i  and  Mayer [AM] in  genera 4, 5, and  proof of the  

i r reducibi l i ty  of ~44, Ms (in all characteristics). 

I n  recent  years, especially through works of Beauvil le ([B1], [B2]) and  Masiewicki 

[Ma] and  the  directing hand  of Clemens from behind the scenes, there evolved an  increasing 

recognit ion t h a t  in  order to ext ract  the  most  in fo rmat ion  abou t  modul i  spaces, the  correct 
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way to use Prym varieties is to view them globally, as setting a correspondence between 
~g ,  At-l ,  or as a map 

from a certain finite cover ~g of ~g ,  to Ag-1. The present paper attempts a systematic 
and unified study, for all g >~ 6, of the structure of this map along its various exceptional 
loci, including those that  are mapped to Jacobians Yg_lc ~4g-z. Using the results of Wir- 
ringer, Mumford, Tjurin, Recillas, Fay, Masiewicki and Beauville, one can describe all 
of the latter loci, including those components which lie in the boundary of an appropriate 
partial compactification of ~g. Parts II ,  I I I  and IV analyze ~ near these components. 

In genus 6, the Prym map is equidimensional (dim ~ 6 = d i m A s = 1 5 ) .  Wirtinger 
proved in [W] that  it is generically finite; a motivating question for our work and its un- 
published predecessor [S] was to compute its degree. Combining the local computations 
along the various loci over Jacobians, we are able to show in Par t  I tha t  this degree is 27 
(although the fiber over Ys itself is infinite with components of relative dimensions 0, 
1 and 2). 

Wake an algebraic geometer in the dead of night, whispering: "27". Chances are, he 
will respond: "lines on a cubic surface". In  Par t  V, we amass substantial evidence towards 
the conjecture tha t  the general fiber of ~ carries the structure of the intersection--con- 
figuration of lines on a cubic surface. (A good understanding of this general fiber is expected 
to help understand the Schottky problem and related moduli questions in genus 5.) Recently 
the conjecture has been proven by one of us, and will appear elsewhere. 

In  Par t  V we also study the other loci, in genus 6, where ~ is not of maximal rank. 
(It is true, though not  proven here, tha t  these are all such loci.) I t  is well-known [CG] 
that  the intermediate Jacobian of a cubic threefold is, in many ways, the Prym of a plane 
quintic curve; we show it is not the Prym of anything else. A similar result holds for the 
intermediate Jacobians of a more general family, of "quartic double solids" studied recently 
by Clemens [C]. Par t  of the argument here was completed, upon our commission, by 
Clemens. While we are at it, we settle a question posed in [CG] by explicitly constructing 
a cubic threefold whose intermediate Jacobian is the Prym of a given plane quintic. 

In a couple of places we make use of a result, obtained jointly with M. Green three 
years ago, describing the tangent space to the subvariety in of ~ g  curves admitting 
a g~. This has since been subsumed in the general Brill-Iqoether theory of [GH2], yet  it 
seemed simple and pret ty  enough to be included here, as an appendix. 

As to the generality of our results: Parts  I I I  and IV deal with loci which exist in all 
genera. Our results there are also valid for all g, though in Par t  IV, w 4, we are able to make 
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the necessary constructions much more explicit in genus 6; in particular, we obtain in this 
case a new compactification 7tl' of ~ 6 ,  based on the stability of plane (rather than  pluri- 
canonical) models of the curves. Infinitesimally along the relevant components, ~ '  "looks 
like" the corresponding versal deformation spaces. In  it the locus of curves with "elliptic- 
tails" is blown down to cuspidal curves; the precise structure of this map is given in IV.4.3. 
I t  should be interesting to construct analogous objects in all genera. 

Par t  I I  is anomalous: it deals with a locus present only for g = 6. Moreover, the results 
we really need for the degree computation were obtained by  Tjurin and Beauville. We in- 
cluded it for completeness, but  also to establish some ideas tha t  reccur in later sections, 
thus unifying the t reatment  of the various components. We also prove there an irreduci- 
bility result which might be new. 

To be on the safe side, we only claim our results over the field C of complex numbers. 
We did make some efforts, though, to use only "algebraic" constructions and arguments, 
so we naively hope tha t  there is no real obstruction to rewriting everything over an alge- 
braically closed field of any  characteristic (4=2 or 3, perhaps). We tried to keep the level 
of this work within reach of any mature  reader. Thus when some high-powered machinery 
is needed, such as formal deformation theory in Par t  IV, w 2, we review it  with plenty of 
examples covering our actual application of the theory. 

Both of us wish to acknowledge our gratitude to our teacher, Herb Clemens, who 
introduced us to this fascinating subject, prodded us along, and gave a helping hand when- 
ever we were stuck. We are also indebted to A. Beauville who caught some early inac- 
curacies and encouraged the project, to D. Gieseker for his help with understanding the 
relevant deformation theory and the subtle points of the factorization in Par t  IV, and to 
K.  Chakiris, M. Green, P. Griffiths, J .  Harris, D. Morrison and S. Ramanan  for many  
conversations, ideas, good advice and much patience. 

Notat ions  

In  Par t  X, "Y.3.5" refers to w 3 of Par t  Y, while 3.5 refers to w 3 of Par t  X. 
~tlg - -  moduli space of (smooth, complete) curves of genus g. 
~a - -  moduli space of unramffied double covers of curves in ~ .  
~ g  - -  the Deligne-Mumford compactifieation of 7ttg, allowing stable curves of arith- 

metic genus g. 
~g - -  the eompactffication of ~g constructed in 1.1.2. 
~g - -  moduli of "allowable" double covers in ~g. 
•g - -  moduli space of principally polarized abelian varieties of dimension g. 
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C 
C - -  
p - 

X 
r 

~ ,  ~ - -  

the subvariety of Ag parametrizing gacobians, birational image of ~ g  under 
the Jacobi map. 
curve of genus g. 
double cover of C. 
the P rym map. 
a semi-period on C. 
object whose Jacobian is p(C); a curve in Parts  I - I V ,  a threefold in Par t  V. 
canonical map of X. 
Prym-canonical map of C. 
Abel map of X. 
Abel -Prym map of C. 
subvarieties of ~ , ,  ~g where C is trigonal. 
subvarieties of ~ g ,  ~g where C has an ordinary double point, C a Wirtinger 
double cover. 

~E ,  RE--  subvarietics of ~ g ,  ~g where C has an elliptic tail and ~ is supported on the tail. 
~ s . s ,  ~ s . s -  Intersection of previous two. 
~ a r ,  ~ a r  - -  subvarieties of ~ s ,  ~ where the elliptic tail E is harmonic (explained below). 
"me.a.n., ~e.a.n. - -  subvarieties of ~ ,  ~s  where the elliptic tail E is equianharmonic ex- 

plained below). 
~Q - -  moduli space of plane quintic curves with even cover. 
~c  - -  moduli space of plane quintic curves with odd cover. 
P(V) - -  the projective space of one dimensional subspaces in V (no dualization). 

Harmonic, eqnianharmonic--refer to elliptic curves with complex multiplication by  
( - 1) 1/~, 11/8. (Corresponding invariants: ] = 1728, 0. Equations: y2 = x a - x ,  y2 = x a _ 1.) 

F o r / :  X-+ Y, the branch locus in Y is the image of the rami/ication locus in X. 

Part I. The degree of the Prym map 
After reviewing the definitions and some background material, due mostly to Beauville, 

we state our main result (Theorem 2) and outline its proof, or rather explain how the 
proof leads naturally to studying the local structure of the P rym map, in Parts  I I ,  I I I ,  IV. 

w 1. The partial compactification 
Given a curve C E ~ g  and a nowhere ramified double cover 

one constructs the "Prym var ie ty"  as follows, z induces a norm map 
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Fig. 1 

~m: J(C) ~ J(C) 

between the Jacobian varieties J(C), J(C) of line bundles of degree 0 on C, C. The Prym 
variety ~(C, C, ~) is defined to be (the connected component of the origin in) ker (Nm). 
Mumford shows in [M2] tha t  ker (Nm) has two components, and that  the principal polariza- 
tion of J(C) induces on ~(C, C, ~) twice a principal polarization, so that  ~(C, C, ~) is a 
principally polarized abelian variety. By Hurwitz' formula, C has genus 2g-1 ;  since Nm 
is surjective, we conclude that  ~(C, C, xe) is ( g -  1)-dimensional. 

Let ~o denote the moduli-space of curves C of genus g, together with an unramified 
double cover C. The above construction yields a morphism 

which we call the Prym map. 
The natural projection p: ~g-+ ~ g  is finite, of degree 2 2a- 1. Given a C, its double 

covers correspond to non-zero (Z/2Z) homology I-classes. Topologically, one constructs a 
C by pasting together two copies of C slit along a non-trivial loop, with sheets interchanged 
(see fig. 1, where g=3, 2 g - 1  =5). Algebraically, C is determined by a "semi-period" on 
C, or a non-trivial line bundle ~ such that  ~ is trivial. ~/has a natural "two-valued section" 
which yields the double-cover C; vice versa, C determines ~ as the only semi-period on C 
whose pullback to C is trivial, ([M2]). We use various abreviations for ~(C, C, ~): ~(C), 
p(~) and also P(V) or p(C, ~). 

The map ~: ~g-> Ag-1 is dominant for g ~< 6 and generically finite for g = 6. Wirtinger, 
in [W], showed this using the extension of ~ over a certain boundary component of Re 
(cf. Part  IV). The problem of extending ~ to possibly singular and ramified covers was 
attempted by Fay  [F] and Mumford [M2]. Masiewicki in [Ma] had the correct notion of 
allowable double-cover, but applied it only in the special case of plane quintics (cf. Part  II). 
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In [B1], w 6, Beauville obtained a proper map (although not necessarily finite) which on a 
dense open set factors through the previously described ~ .  For our purposes we need the 
following strengthening of Beauville's result. (The proof is technical and might better be 
skipped on first reading.) 

T H E O ~ ] ~  1.1. ("Prym is Proper".) The map ~ extends to a proper map 

O: ~g-~ Ao-1. 
1.2. Proo/ o/ Theorem 1.1. First we construct a compaetification ~g of ~g. Let  ~(gn) 

denote the moduli space of stable curves of genus g with a level-n structure. I t  is a complete, 
separated algebraic space ([P], Theorem 10.9 If.) and for n >13 it is actually a "fine" moduli 
space, i.e. a universal curve F(n)-~7~ ) exists and enjoys a universal property. For n = 1, 
Mumford [M3] and Knudsen proved recently tha t  ~ g  = ~(1) is in fact a projective variety, 
in particular a scheme. Since 7~(g~)-~g (the forgetful map) is finite, we see by [K], Corol- 
lary II.6.16 that  ~(n),,,~ is also a scheme (separated and complete).iThe., same holds for 1 ~(n) 
(n~>3) since there is a closed immersion F(m-+W/~I. (A point of F (n) consists of a curve 
C with level-n structure and a marked point p 6 C. Choose once and for all an elliptic 
curve E with level-n structure, and map 

compare IV.1.3.) 
Consider, then, the morphism 

q: F (~ -->W~>_x = T, n >/3, 

of complete, irreducible schemes. Following Beauville, we let r: I-~ T be the complete 
scheme, finite over T, representing the funetor of T-involutions of F (n) ([DM], p. 84). 
The point-set underlying I parametrizes level-n curves C of genus 2 g - 1  together with an 
involution i: C-+C. Moreover, I has the following universal property ([DM], p. 84): "For  
any T-scheme S ~ T ,  the set of S-involutions of F (~) • is naturally isomorphic to 
Morr (S, I) via pulling back the universal family 

F (") x r I-+ I 
with its involution." 

The symplectic group Sp (4g-2 ,  Z/nZ) acts on T with quotient 7~g_1. We claim the 
action lifts to I ,  or in other words, for each ~6Sp (4g-2 ,  Z/nZ), there is a T-isomorphism 
~*I--*I. To produce such an isomorphism we only need, by the universal property, to 
exhibit an ~*I-involution of F (n) • TO:*I. Let fl = ~-1. Since 

F ~ x r a* I  ~ a*(fl*F~') x r I )  
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we need an /-involution of fl*F (~) x r I .  This is supplied by the "universal" involution of 
F (n) • r I  using the following: 

L~,M~A 1.2.1. The automorphism fl.: T-=>T lifts to F (n). Equivalently, there is a T- 
isomorphism fl*F (n) - ~  F (n). 

Proo]. By [P], Theorem 10.3, ~(n) and F (n) are obtained as geometric quotients of 
the I-Iilbert scheme H (~) and the universal curve C (~) over it by the action of PGL (N). 
Since 

C ('`) = C x .  H(") 

is the pullback of the universal curve C over the level-1 Hilbert scheme H, we see that  fl 
lifts to C (~) (acting as identity on C, fl,  on H(~)). Its action commutes with I)GL (N), 
hence descends to the quotient C(~)/PGL (N)~  F (~). Q.E.D. 

By Deligne's theorem ([K], p. 183) quotients by finite group actions exist in the 
category of separated algebraic spaces. In  our case, the quotient 

fits into a diagram 
~' = z/sp (4g-2,  Z/nZ) 

T ' ~ 2 g - 1  

where I is finite over ~ g - z .  Hence ~ '  is finite over ~2g-1 and by [K], II.6.16 ~ '  is actually 
a scheme. 

Restricting to smooth curves, we have a diagram 

which allows us to define ~g as the closure, in ~ ' ,  of ~o. ~g is a complete, irreducible 
scheme containing ~g as dense open subset, and after finite base extension 

(where ~(g~) is the closure in I of ~(g~)) we have a family of stable curves 

q: ~-*~ 
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and an S-involution i: C-+C such that: 

(a) For each s E S, the induced involution is: Cs-+ C~ is different from the identity on 
each component of Cs- 

(b) C~ has genus 2g -1 ,  and the quotient curve CJ(is) has genus g. 
(c) Any pair (C, i) where OE 7//2g-1, i a fixed-point free involution, is isomorphic to 

(Cs, i~) for some s G R~)~ ~. 

Property (c) is clear; (a) and (b) are proved in [B1], 6.1. 

1.3. Let C E~g,  C E~2g_ 1 a (possibly branched) double cover, i: C-*C the involution, 

~m: J(C) ~J(C) 

the norm map on the generalized Jaeobians, and P =-ker (Nm) ~ 

De/inition 1.3.1. (C, i) is allowable if P is an abelian variety. 

De/inition 1.3.2. (0, i) is allowable if the only fixed points of i are nodes where the 
two branches are not exchanged, and the number of nodes exchanged under i equals the 
number of irreducible components exchanged under i. 

1)e/inition 1.3.3. (C, i) is allowable if the components of O can be grouped as C = 
A U A' U B where i interchanges A, A' and fixes 8,  each connected component of A is 
"tree-like" and either 

(i) /~---~, A connected, #(A fq A ' )=2 ,  or 
(ii) A A A' = O, #(/3 f) As) -- 1 for each connected component At of A, the fixed points 

of i in B are precisely the nodes, and the two branches there are never exchanged (so that  
B =13/(i) also has nodes at  the corresponding points). 

Definitions 1.3,1 and 1.3.2 are equivalent by [B1], Lemma 5.1. They imply Defini- 
tion 1.3.3 by [B1], 5.2, and the converse is clear. 

Let ~ g c ~ g  be the open subset of allowable double covers, Sc~q the corresponding 
open subset in ~(g"). Clearly R ~ g  and R(g~)cS. By [B1], 6.2 there is a Prym morphism 

1o: S ~ Ag_. 

(Beauville proves this whenever S satisfies conditions (a), (b), (c) in 1.2, and S is the open 
subset of Definition 1.3.1. We shall use this result for a different ~q in IV.4.4.4.) By [B1], 

3 - 802907 Acta rnathematica 146. I m p r i m 6  le 4 M a i  1981 
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Proposition 6.3, the map 1o is proper. Finally, S =  I is stable under Sp (4g-2,  Z/nZ) with 
quotient Rg, and 10 commutes with this action, so we obtain an induced map 

p: R~ ~ A~-I. 

is proper since 1o is, and ~[~, = p.  Q.E.D. 

1.4. We briefly sketch another construction for ~g. Recall that  a level-n structure on 
a stable C e ~ g  is a sympleetic injection 

//1(~, Z /nZ)~  (Z/nZ) 2~ 

where the right hand side has the standard symplectic structure. G=Sp (2g, Z/nZ) acts 
by composition on the left. Let G0= G be the stabilizer of 

(1, o . . . . .  o) e (z/2z)2~ (n = 2). 

The quotient ~(g~)/G o is a complete algebraic space by Deligne's theorem and a scheme 
since it is finite over 7tlg. Its open subset covering ~ g  is naturally isomorphic to ~ .  
Further, the examples worked out in IV.2.6 show that  near all singular curves which we 
need, Rg is locally isomorphic to ~(g2)/G o. 

w 2. The main result 

THEOREM 2.1. The Prym ma10 

Item unrami/ied double covers o] curves o/genus 6 to princi2ally polarized abelian varieties 
o/dimension 5, is generically 27 to 1. 

2.2. Proo/o/  Theorem 2.1. L e t / :  X-+ Y be a generically-finite, proper map of degree 
d. This degree can be computed "a t "  any point yE Y:/-l(y) breaks into finitely many 
connected components Y~; to each of these we can associate the local degree d~ of the map 
/ along Y~, and we find 

d= ~d~. 

In our case we apply this to ~,  and compute the degree at a generic Jacobian 

J(O) G Y5 c As, 

that  is, for C a generic curve in ~5.  
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2.3. In  [M2], Mumford lists those double covers 

whose Prym could be a Jacobian. There are only 2 possibilities tor obtaining a generic 
(not hyperelliptie etc.) Jacobian: 

(1) C a smooth plane quintic curve, ~: C-~C an "even" double cover. (The distinction 
between "even" and "odd" covers of plane qnintics is explained in Par t  II ,  w 1). 

(2) C a trigonal curve, that  is a 3-sheeted branched-cover of p1. 

.Note. The other family in his list, double covers of elliptic curves, is of dimension 
2 g - 2 = 1 0 ,  thus too small to map onto the generic point of T/~5 which has dimension 
3 ( g -  1) - 3 = 12. 

New types arise when the Prym map is partially-compactified. Beauville has extended 
Mumford's arguments to the boundary components of ~g, and obtained a substantially 
longer list ([B1], Theorems 4.10 and 5.4). However, using a dimension-count as above we 
eliminate all but  the following two types (compare IV.1.4). 

(3) C has an ordinary double point; let X be the normalization of C, then C =X/ (p  =q) 
for 2 distinct points io, qqX;  C is the union of 2 copies X1, X~ of X (with marked points 
21, ql, respectively i%, q~): 

O = X1 I~ X2/(pl = q~, t~ --- ql) 

and ~: C-+C is the natural projection. (This type arises from his Proposition 5.2 (i).) 
(4) C is a reducible curve, consisting of a component X of genus 5 and an elliptic 

curve E, meeting in 1 point. C has 3 components: X 1 and X~ are copies of X (mapped by 
7r to X), J~ is another elliptic curve, doubly covering E. ([B1], Proposition 5.2 (ii).) 

2.4. The bulk of this paper is devoted to computing the local degrees of ~ along the 
above four subvarieties of ~s. Combining II.4.4, III.3.4, and IV.5.1, we see that  the con- 
tributions to the total  degree are, respectively, 1, 10, 16, 0, adding up to 27. Q.E.D. 

As discussed in Par t  IV, w 4, the vanishing contribution of the last family is possible 
as this is an irreducible component but  not a connected component. In fact it intersects 
family #3, and ~) blows it down (to a subfamily of #3) before mapping to As- 

w 3. Computation of local degrees 

Let  [: X ~  Y be a proper, dominant map between n-dimensional varieties. / is 
generically finite, say of degree d. Let  W c  Y be an irreducible closed subvariety of co- 
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dimension k in Y . / - I ( W )  breaks into finitely many connected components Z~, of codimen- 
sion l~ in X. The local degree d~ of ] along Z~ is the degree of the map obtained from / by 
localizing X at Z~. We have 

d = ~ d , .  

Let Z be one of these components. Let)~ be the blowup of X along Z, with exceptional 
divisor Z. Let Y be the blo~vup of Y along W, with exceptional divisor ]~. The map / 
lifts to a rational map 

We would like this to induce a map on the exceptional divisors 

/,: 2-~ ~. 

We restrict our attention to the smooth points of Z, W. First we notice that  ~z is the (pro- 
jectivized) normal bundle to Z in X, similarly for W, W, Y. Choose z6Z,  w =/(z) E W. The 
differential 

maps T~ Z to T w W, hence induces a linear map 

/,.z: •z \x .z  "--> IYw\Y. w. 

The following observation is intuitively obvious. 

L E p t A  3.1. The rational map ] is regular at a generic point 5EZ i / a n d  only i / the  
di/]erential / , . z  is not identically zero at a generic zEZ. T is regular/or all 5 in the/iber o/ 
over z i] and only i] ],.~ is in]ective on the normal space to Z at z. I n  this case the restriction 
o] T to 21 z is the pro]ectivization o/the linear map/ , . z .  

The lemma follows immediately from the universal property of blowups (see, e.g. [H], 
Chapter 2, Proposition 7.14). The universal property guarantees that  [ is a morphism near 

[ z if the ideal of W becomes invertible when pulled back to)~. Injectivity o f / ,  on normal 
bundles is equivalent to surjectivity on conormals 

2 ~ 2 Iw/Iw XzlI~ 

so by the implicit function theorem or Nakayama's lemma, 

/-llw" Ox = Iz 

and the pullback to )~ becomes invertible as required. 
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LE~MA 3.2. Assume f,.~ is in]ective on the normal space Nz\z.~ at each zEZ. Then 
the local degree of f along Zequalsthe degree of the induced equidimensional map on exce p- 
tional divisors, 

/,:2~W. 

Proof. Localize at Z, so that  Z=f-i(W) and 2 =~-i(W). Now 

deg/l~=deg[l~ 

since the regular maps f, f agree on X ~ Z ~ 2 .  Sinco fl~=/* (followed by the em- 
bedding W ~  ~), the desired equality 

deg =deg/, 

is equivalent to asserting that  ~ is unramified at  (the generic point 2 of) Z, i.e. that  d[~ 
is an isomorphism. 

Let LZ be the line in Nz\x.z given by 5621z. We have the exact sequence 

mapped by dfz to 
O~ Tz2~ TzX~Lz~O 

where ~=[(5) .  The induced map Lz-+L~ is just the restriction to L~ of / , . z ,  injective by 
assumption. On the other hand, the map on T~ Z is just 

d(/,): ~'Z 2-~ T ~  T. 

Now [ is proper and dominant since / is, hence ~ is surjective, hence / ,  is surjective since 
2=[-1(W). Therefore d(/,) must be an isomorphism at a generic ~e2, and by the exact 
sequences so is d[~. Q.E.D. 

3.3. Warning. The lemma requires injectivity for all z EZ, not only generic z. Other- 
wise / is not regular on any neighborhood of Z, and could involve a blowup of some small- 
dimensional subvariety onto W, in which case Z is only one of several components of the 
graph of ~ over Z, hence possibly 

deg / ,  < deg f[f-, <neighborhood of g) = local degree of / on Z. 

The connected component Z in Part  IV has two irreducible components and the conditions 
of Lemma 3.2 fail along the intersection, necessitating the blowdown in Part IV, w 4. 
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w 4. The eodifferential of Prym 

Lemmas 3.1, 3.2 indicate tha t  the first step towards understanding ~ is to compute 
its differential, or as is convenient in many variational problems, the dual map, the co- 
differential. Precisely this was done by Beauville in [B2], Proposition 7.5, for C, C smooth. 

Since ~g is an unramified cover of W/g near a smooth point C 6 W/a, we can identify 
T*~g at (C, 7) with T*W/a at C, hence with the space H~ a)~) of quadratic differentials 
on C, by standard identifications. Similarly T*;4g_l at A e;4g-z is identified with S2T~A, 
the symmetric square of the cotangent space to A at the origin. When A = ~(C, 7) (~ the 
line bundle of order 2 on C corresponding to the double cover C) there is the further identi- 
fication 

T~A ~ H~ COc| 

which follows immediately from the definition of A as the skew-invariant subvariety of 
J(C), and the splitting 

H~ co~) ~ II~ O~c)|176 o~c| 

(Compare [M2].) Beauville's result is: 

PR 0 P 0 S I T I 0 N 4.1. Using these identi/ications, the codi//erential 

is lust cup-product 

/ollowed by the identi/ication 

deduced/tom the isomorl~hism 

~)*: S2H~ eoc| 7) -~ H~ ~ )  

S~H~ o~z| -* H~ C, coo | 7 3) 

Ho(c, o~| -~ Ho(c, co~) 

4.2. Pause. As stated, this result holds for (automorphism-free) C E W/a, or C E ~ 
over it. In Part  IV we shall extend it to singular curves. Here is a pictorial interpretation 
which could motivate the generalization. 

An object X E Wlg is represented uniquely up to projective automorphisms by the 
canonical image (I)(X) of X in pg-z =p(Ho(X, cox)*), unless X is "special" (=hyperelliptie). 
The analogous concept for (C, 7) E ~g is the Prym-canonical image ~F(C), namely the image 
of C in Pg-~ given by the linear system o)c| 
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Using this Prym-eanonical map ~F, the eodifferential 
is just the restriction 

HO(pg-~, 0(2)) -+ H~ co~) 

~* as given in Proposition 4.1 

sending a quadric to the quadratic differential it cuts on iF(C). In particular, ker (~)*) 
can be identified with the system of quadries in Pg-~ containing ~F(C). 

To obtain an analogue for singular (U, 7), one could study the limiting position of 
~F(Ct) as t-+0, where {Ct} is a family of curves, smooth over a punctured neighborhood of 
0, where Co=C. For Wirtinger double covers C=X/(pNq) etc. (as in 2.3(3)) the limiting 
object is the canonical image @(X) together with a chord qb(p), r (the map ~F is ill- 
defined at  the double point, and it blows it up to this line) and for elliptic-taft curves 
U=XI.J~E (2.3(4)) it  is dg(X) together with its tangent line at  dp(p). This suggests what 
ker (~*) should be in these cases, though the precise statements (IV.3.4, proved in 3.1-3.3, 
and Propositions IV.4.4.5, IV.4.3.1(iv) (explained and proved in IV.4.3.3)) are rather 
delicate. 

4.3. We stress another analogy between canonical and Prym-canonieal maps. The 
canonical map 

r  X - + P  g-1 

is the "derivative" of the Abel-map 

~: X'+ J(X). 

In other words, H0(X, COx)* can be identified with the tangent space to J(X) at any point 
of J(X), and the canonical image of/9 EX is the point of pa-1 given by the one-dimensional 
subspace of T~(~)J(X)which is the tangent line, at ~(p), t~ ~(X). In the same sense, the 
Prym-canonical map 

is the derivative of the "Abel-Prym" map 

~: C-, p(a, C, =). 

In other words, H0(U, eoc| can be identified with the tangent space to ~(O) at any of 
its points, and the Prym-eanonical image of p E O is the projectivized tangent direction to 
~0(C) at  either point of ~-a(p). 

Both of these facts follow trivially from the definitions, by  differentiating the Abel 
(respectively Abel-Prym) map. 
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4.4. Pushing this analogy further, we arrive at the following result, which should 
have become a basic tool in Prym-thcory. 

Masiewicki's Universal Property. Let  (P, ~) be a g-dimensional principally polarized 
abelian variety, and C a symmetric curve in P representing the homology class 
(2/(g-1)  !) [.~]0-1. Let  C = C/i be the quotient of C by the involution of P given by multipli- 
cation by - 1 .  Then: 

(1) ~: C-+C is allowable. 
(2) p(C, C) ~ (P, .~.). 
(3) C ~ P  is the Abel.Prym map. 

This is a perfect analogue of Matsusaka's theorem, characterizing Jacobians as g- 
dimensional principally polarized abelian varieties (J, O) in which the homology class 
1/(g - 1) ! [0] g-x is represented by an (effective) curve. 

Part II. Plane Quintics 

For the component of plane quintic curves there is actually enough information in 
the literature to conclude that  the local degree of the Prym map is one; we explain this 
below. With an eye to future applications, we also prove irreducibility of the family of 
even covers of plane quintics (Proposition 3.3) and describe the codifferential of p explicitly 
along it. 

w 1. Mumiord's  results 

Let  ~ be the subvariety of ~6 parametrizing double covers of smooth plane quintics. 
I t  is a basic fact in the subject that  R~ splits into two components (at least): we can desig- 
nate each double cover as either "odd" or "even". 

Indeed, even and odd theta-characteristics on arbitrary Jacobians have been distin- 
guished since the birth of theta-function theory. In modern terms [M1] a theta-eharacteristic 
is a point of order 2 on the gacobian Jg-l(C) of line-bundles of degree g - 1 on C, i.e. a line- 
bundle tt such t h a t / z |  =coo, the canonical class of C. (A semi-period is a point of order 
2 on J~ the gacobian of line bundles of degree 0 on C.) A theta-characteristic/z is even 
or odd according to the pari ty of h~ lu). 

Let  C be a smooth plane quintic (or, with obvious modifications, a smooth plane 
curve of any odd degree). On C there is a natural theta-eharacteristic, given by  the hyper- 
plane class L. (By adjunction, wc is cut by conics.) Thus we can identify ~ with the 
family of theta-characteristics on plane quintics, and assign to ~ the pari ty of L |  Let  
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~Q denote the even part of ~ '  ~, and Rc the odd. In this section we are interested in ~a, 
leaving ~c to Part V (on cubic threefolds). The following is a special case of Mumford's 
theorem. ([M2], Section 7.) 

PROPOSITION 1.1. ~For (C, ~])e ~ ,  O(C, ~7) is in the Andreotti-Mayer locus N 1 i/and 
only if ~ is even, or (C, V) e ~Q. (A principally polarized abelian variety (A, O) is in N~ i] the 
singular locus @~g of | has dimension >~ ]~.) 

Moreover, the proof of the proposition shows that  in this case @B~ can be identified 
with the double cover ~ of C corresponding to ~. The involution on ~)81~ giving the map 
to C is the restriction to @sing of the involution on 0(C, ~) given by multiplication by - 1 
(when the origin is determined by the "Riemann constants"). Hence: 

COROLLARY 1.2. OI,Q is bi]eetive. 

w 2. Tjurin's results 

Tjurin [T1, T2] proved that  the Jacobian of a generic C E ~5  is the Prym of a double 
cover in ~Q. Masiewicki [Ma] extended the result to all C E ~5,  allowing the double cover 
to be in ~Q, the closure of ~Q in ~ .  The proof uses the maps 

- - !  
Here fl is just the restriction to ~Q of 0" For X E ~ 5  (non-hyperelliptic and not trigonal), 
~(X) is the curve C--@~mr in the Jacobian J(X) of X, mapping two-to-one to 

o = 

as in Proposition 1.1. To realize G as a plane quintic, we note that  points of @s~ng correspond 
to g~'s on X (i.e. linear systems of degree 4 and projective dimension 1); and that  when X 
is mapped canonically to pa, as the complete intersection of three quadrics, any g~ on X is 
cut out by a 1-parameter family of planes sweeping out a quadric (of rank 3 or 4) in pa, 
containing X. Let [I be the abstract plane p2 parametrizing the quadrics containing X; 
the discriminant locus in II, parametrizing singular quadrics, is a quintic curve (given by 
the vanishing of a 5 • 5 linear determinant). Now our C maps to this quintic curve, by 
sending a g~ to the point of II parametrizing the singular quadric whose planes cut the g~. 
The map is 2-1 (since a (generic) quadrie in the family has rank 4 [AM] and this contains 
two plane-systems) and can be identified with the double cover 

=: C / ( +  1) = o .  
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Remark 2.1. ~ is smooth and g is unramified, for X generic. In  fact both fail precisely 
when X posesses a "vanishing theta.null"; Masiewicki's work asserts tha t  the resulting 
singular, ramified cover is still "allowable". 

Tjurin's result states: 

2.2. flo~=idm, (more precisely, this is the Jaeobi map ~5-~Y5~ ~45). 
We can reformulate Proposition 1.1 and Corollary 1.2: 

2.3. fl-l(N1) = ~Q and aofll~q = id~. 
Let  

~ --/~-I(Y~) 

Combining 2.2, 2.3, we find: 

2.4. ~ =f l - I (Ys)=~(~s)  is irreducible, and the maps ~, fie are birational inverses of 
each other. 

w 3. Irreducibility 

We prove that  ~Q = ~Q, i.e. ~Q is irreducible. 

LwMMA 3.1. Given (C, ~) E ~Q and a divisor 

there is a unique quartic curve Q intersecting C tangentially at points o/D.  

Proo/. The restriction map: 

H~ 2, 0(4)) --> H~ toe| 

is injective (since C is not contained in a quartie curve) between 15-dimensional vector 
spaces, hence an isomorphism. Thus there is a unique quartic cutting C in 2D. Q.E.D. 

L~MMA 3.2. h~174 =0, and the lO points o /D do not lie on a cubic. (L is the hyper- 
plane class, cut on C by lines.) 

Proo]. h~ La(-D))=h~174 is even. On the other hand, h~ L 3 ( - D ) ) =  
h0(p 2, La| via restriction, and this number is ~< 1 since the intersection of two cubics 
has degree 9 < deg (D). Hence it is zero. (The two cubies cannot have a common component, 
for then nine of the points of D must lie on a conic, i.e. for some Px, Ps EC, 

Oc(D) ~ Oc(2) (Pl--Ps) 
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but then 

i .e .  

Oo(2pl ) ~ Oo(2p2). 

Since a smooth plane quintie is not hyperelliptie, we must havepl  =P2, i.e. ~ ~ Oz.) Q.E.D. 

2Vote. This argument shows that  for (G, 7) E ~c, odd, 

h0(G,L| = 1 

and the points of a n y / ) E  [coc| lie on a (unique) cubic. 

P R 0 P o s I T I 0 ~ 3.3. The space ~Q o/even covers o/plane quintics is irreducible. 

Proo/. Since h~ coc| for all (C, ~)E~Q, the irreducibility is equivalent by 
Lemmata 3.1, 3.2 to that  of the space of pairs (C, Q) consisting of a smooth plane quintie 
and a smooth plane quartie, intersecting tangentially in 10 points D, not on a cubic. By 
arguments analogous to Lemmata 3.1, 3.2 the divisor class [D] of D on Q satisfies 

[D] ~ = Z  5, h~ [D]|  -1) = 4, h~ [D]|  -~) = 0 

(On Q, L =coQ) and for any D'E I [D]| there is a unique cubic cutting Q (tangentially) 
in 2D'. The irreducibility of ~Q thus reduces to that  of the space of pairs (Q, C') of a quartic 
and an everywhere tangent cubic such that  their 6 points of tangency do not lie on a conic. 
Repeating this argument once more, we end with the space of pairs (C', C") of a cubic and 
a conic, meeting tangentially in 3 non-colinear points. This latter is indeed irreducible: 
having chosen the smooth conic C", we are completely free to choose the 3 points on it, 
and for each choice we find a pa of possibilities for C'. Q.E.D. 

w 4. Non-ramlfication 
In view of Proposition 1.4.1, the assertion tha t  the local degree of ~ on ~Q equals 1 

("non-ramification") is equivalent to 

PaOPOSITIO~ 4.1. The Prym-canonieal image ~F(C), /or generic (C, ~1) E ~Q, is con- 
tained in no quadrics. 

In [B2], Beau~lle proved the following: 

COROLLARY 4.2. For X E ~ s (non-hyperelliptic), the Prym-canonical image o/ o~(X) 
( =the even cover o /a  plane quintic, constructed ~tom X in w 2) is contained in no quadrics. 

In fact, by the irreducibility of Proposition 3.3 the corollary implies the proposition. 
We give an independent proof of Proposition 4.1, similar to that  of Proposition 3.3. 
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Proo/. We want to show that  the map 

Sdl~ (oc| ~1) ~ H~ c, o~) 

is an isomorphism (of 15-dimensional vector spaces). Let  D 6 ICOc| ~l, Q the corresponding 
quartic as in Lemma 3.1. By  generieity Q can be assumed smooth. (In particular, since a 
smooth plane quartic is embedded canonically in the plane, Q is non-hypereUiptic.) In  the 
commutative diagram 

S~//~ ~, 0(4) |  , S~H~ ~oc| 

1 1 
//o(p~, 0(8)| , H~ wg) 

(horizontal maps given by restriction) the top map is an isomorphism since quartics cut 
the complete linear system ]eo~] on C. The bottom is injective by Lemma 3.2, since an 
octic passing doubly through D and containing C must contain residually a cubic through 
D. We are left with proving that  the vertical map on the left is an isomorphism. I t  fits 
into the diagram 

0 ~ / / 0 ( 1 ) 2 0 ( 4 ) |  |  , S2H0(p2 ,  0 ( 4 ) Q I D )  , S2 / /~  O(4)@ID)  , 0 

1 1 
0 ,//0(p2, O(4)| | H0(pz, O(8)| ' H~ O(8)| ' 0 

(where the horizontal maps on the right are restriction to Q). So we are reduced to checking 
that  the vertical map on the right is an isomorphism. This map is cup-product 

S~H~ we@if) .--'-HO(Q, OJSQ) 

where ff is the theta-characteristic on Q such that  DE Iff| By Lemma 3.2 again, 
ff is not effective on Q. (Hence ff is an even theta-characteristic.) We conclude by: 

L E P T A  4.3. For a non.hyperelliptic Q 6 ~  a and line bundle ff o/ degree 2 such that 
h~ if)=0, the image z(Q)cPa o~ Q under ff| is contained in no quadric. 

Proo/. (1) If z(Q) is singular, with branches/ol, p~ (distinct or coincident) through a 
singular point p, we compose Z with projection from p to obtain a map of Q to p2 of degree 
~< 4; such a map must be the canonicM map, so that  

ff Q (.0Q( - - P I  - -P2)  ~" (DQ 

so ff is effective, contradiction. 
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(2) If z(Q) is contained in a smooth quadric A, it has type (d, e) on it with d + e = 6 ,  
but d>2, e>2 since Q is not hyperelliptic. Hence d = e = 3 ,  and the arithmetic genus of 
z(Q) is 

( d -  1) ( e -  1) = 4 
so z(Q) must be singular. 

(3) If the quadric A is singular, it must be an ordinary cone with point-vertex p 
(since g(Q) is not contained in any plane.) Upon projection from p, Q becomes a cover of 
a conic, hence of even degree, so the multiplicity at p is even, hence 0. Let  Z be a generator 
of the cone A (that is, a line through p in A) meeting z(Q) in ql, q2, q3. By projecting from 
q3, we represent Q as a plane quintic with a unique singularity, a simple tacnode with 
branches ql, q~ (assuming z(Q) smooth): this is since no line through qa, other than L, 
meets A, hence z(Q), elsewhere in more than one point or tangentially. The genus formula 
gives g(Q) as 4, contradiction. Q.E.D. 

COROLLARY 4.4. Along the component o/plane quintics, ~ has local degree 1. 

w 5. The eonormal map 

We describe explicitly the codifferential of the Prym map. Let  J(X) = ~(C, ~), X E Ms, 
(C, ~/) E R6- Then the codifferential is 

O*: * * T* T(c.,) ~e 

By standard identifications 
T~(x) A5 = S~H~ o~x) 

Tic.,) R6 = H~ o~) 
(5.1) 

and ~)* is the restriction map I'F-1, where iF: C->P 4 is the Prym-canonical map. Since the 
restriction of ~ (denoted above by  t5) maps RQ to Js, there is an induced map 

/5*: _N'* -- * J<x)( ~ \ As) - ~  •(o. 7)(i% \ ~6) (5.2) 

on conormal bundles. Both of these are rank-3 bundles and fl*, being the restriction of 
0",  is injective, hence an isomorphism. According to [G], the conormal spaces are: 

N~x) (~5~As)  = Ker (S~H~ cox)-~ H~ w~)) 

N(c. , ) (~Q\  ~6) = {quadratic differentials cut on C = P~ by 
those plane quai~ics which are polars of C 
with respect to points of P~.~ 

(5.3) 
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(The second identity also follows from the result of our appendix, since for C near ~Q, 
C is in ~Q if and only if it posesses a 1-parameter family of g~'s (obtained by projection 
from points of the plane quintie). Hence TcTI'IQ is cut by the obstructions to deforming 
these x, g4 s on C; but  the ramification divisor of each g~ is cut on C by the corresponding 
polar quartic.) 

We obtain the following description: the two maps 

H~ 4, 0(2)) ~ t t~ o~ 2) 

B0(p~, O(4))-~ H0(O, ~ )  
(5.4) 

are isomorphisms, setting an identification of quadrics in p4 with quartics in p2. To the 
p2 of quarries Cv polar to C with respect to some p e P  2 corresponds a net II of quadrics 
in p4  with an isomorphism 

~: H .._> p2. 

2V* Since (p*)-l(~V~c,~)(~o\~6))= j(x)(~5\.r by (5.2), and using (5.3) we recover X 
as the base locus of the linear system of quadrics II; 7 is (the projectivization of) fl*. A 
priori we have two maps 

7: II -~ p2 

~: H -~ p2 

where y(q)=p if the quadric Aq corresponding to qEH satisfies 

~F-I(A~) = C n On 

while ~ gives the identification of II with p2 used to define C in p2. 

LEM•A 5.5. y=~ ;  in particular, ?(q) =pEC i/ and only i/ Aq is singular (at the point 
 9 F(p)  ~ e4). 

Proo]. If Aq is singular, it is singular at  ~/'(~(q)). Then 

2~(q) <~F-I(Aq) = C N C~(q) 

hence y(q) = ~(q) and is on C. Thus 

{q]Aq singular} = y-i(C) 

since both sides are quintics we have equality. Since ~, ~ agree on ~-I(C) and are linear, 
they coincide. Q.E.D. 
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Part HI. Trigonal curves 

w l .  Surjeetivity and irredueibUity 

We work in arbitrary genus following the work of Recillas [R] and extending it  " to 
the boundary".  Let  X be a curve of genus g - 1 which is a four-sheeted branched covering 
of p1 ("tetragonal curve") 

/: X -+ p1. 

For now, assume / has only simple ramification points. Let 

C = s ~ , 2 :  ( : . : )  

be the relative second symmetric product of X over p1, with induced map 

/(z): C-~P:  

of degree 6. If for pEP: ,  f - l (p)={a ,  b, c, d} then 

(/(2))-1(p) = {{ab}, (ac}, {ad}, {bc}, (bd}, {cd}}. (1.2) 

On ~ there is a natural involution o, sending a pair of points over p to the complementary 
pair in / - :@).  Let  

with induced map 

of degree 3. In the above notation, 

c = C/~ 

] , :  c - ~ P  1 

( / , )- l (p)  = { (ab}  N (cd} ,  (ac}  ,~ {bd},  {ad}  ,,. {bc}}.  

The following facts are obvious: 

1.3. (1) C is trigonal. 
(2) The natural map ~: C-~C is an unramified double cover ( C a  is fixed point free). 
(3) The branch points o f / ,  are precisely those o f / ;  hence by the Riemann-t turwitz 

formula, C has genus g. 

1.4. We analyze the possible degenerations of Recillas' construction. 
(0) For a generic four-sheeted cover / ,  with 2g+4  distinct simple ramification points, 

1.3 apphes. 
(i) A double ramification point o f / .  This means 3 sheets of X "come together" over 

pEP: ,  with the local monodromy around p permuting them cyclically. Locally over p, 
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C has 2 disjoint irreducible components, each consisting of 3 sheets joined in a double 
ramification point. ~ interchanges these components, hence C has a double ramification 
point over 10, and 1.3 still holds. 

(ii) Two distinct simple ramification points mapping to the same branch point 10 EP 1. 
The local monodromy around10 acts on the fiber {a, b, c, d} near 10 by, say, the permutat ion 

(a, b)(c, d). 

Locally over 10, C has 4 distinct irreducible components: the pair {ab} (respectively {cd}) 
forms a 1-sheeted local component, while {ac} and {bd} (respectively (ad} and {be}) join 
in a 2-sheeted component with simple ramification. Moreover, these last 2 components 
intersect in the ramification point, a interchanges the 1-sheeted components and acts on 
each of the 2-sheeted components by interchanging their sheets. Hence C has 3 irreducible 
sheets near 10: (ab},,~ {cd} is covered by the 2 disjoint sheets {ab}, (cd} of C, while the other 
2, {ac},,~ (bd} and {ad},.~ {be}, intersect over 10 and the map z: C-~ C is a double cover of 
each, branched over 10. By 1.1.3, the double cover ~ is still allowable. 

(iii) At worst, ] could have a triple ramification point, with all 4 sheets coming together, 
with local monodromy 

(a, b, c, d). 

The induced monodromy on C=S~,,X is 

({ab}, {be}, {cd}, {da})((ac}, (bd}) 
so C has locally two intersecting components of degrees 4, 2. a acts on each, so tha t  C has 
two local components of degrees 2, 1 over p1; the two intersect over 10, and ~: C-~C is a 
branched double cover of each. We thus combine the features of (i) and (ii): ] .  is simply 
ramified, and ~ is simply singular-ramified, hence allowable. In  both this and the previous 
case, C is trigonal and singular, of arithmetic genus g. (Its normalization has genus g - 1 . )  

(iv) For computing the local degree of ~ we need consider only generic (tetragonal) 
curves X. Hence we study only one example where X itself degenerates. Namely, let X 0 
be a trigonal curve, with trigonal divisor class T. Let  {Xt} be a smooth family of curves 
equipped with tetragonal divisor-classes Dr, and assume the limit divisor-class D O exists 
and equals T + [100] for some 1o 0 E X o. In  the limiting 4-sheeted cover 

/: X -~ p1 

we have X = X 0 U p1,/0 = / I Xo the trigonal map, ]1= / ]P~ the identity, and X 0 fl p l _  {100}. 
The resulting C is just Xo; C = X o  U Xo with 2 pairs of points identified: 

t t /  H v 
101 ~ 1 0 2 ,  101 ~ 102 
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t # where p~, io~ are the points of X0, X0 corresponding to Pl (and similarly for P2), and 

{Po, Pl, P2} = to I(P) =/ol(/o(Po)). 

We see tha t  even in this far-out degeneration, the double cover ~: C-+ C is allowable. (In 
fact is of "Wirtinger type"  1.2.3(3).) 

The foregoing allows us to construct a map 

1 . .~--  T: Y4. g - I  ~ g  

from the space of curves X of genus g - 1  with a marked g~, to ~o. We claim ~ o v = J a e o b i  
map X-+J(X).  

PROPOSITIO~ 1.5. For (~: C-~C)=~(X) cus above, 

(1) O(~(X)) ~ J(X)  (as principally polarized abelian varieties). 
(2) The map to: C ~ J ( X )  given by 

to({ab})=~(a)+~(b) 

(where q~: X-+J(X) is the Abel map) is the Abel--Prym map. 

Proo/. We want to use the universal property 1.4.4 of Prym varieties. J(X) has the 
correct dimension g -  1, and the image to(0) is symmetric since i f / - l (p)  = {a,|b, c,[d), then 

to( {ab ) ) + to( {cd} ) = q)(a ) + q~(b ) + q~(c ) § ~o( d) 

depends only on p EP l, hence is constant in J(X).  Hence we are reduced to showing that  
the homology class EH2(J(X), Z) of to(C) is (2/(g--2) !) 0 (g-2) where @ =@(X) is the principal 
polarization of J(X).  The class of ~(X) is (1/(g - 2 )  !) @(g-2), suggesting we use a degeneration 
argument: Let  X degenerate to a trigonal curve as in 1.4(iv). (This can always be achieved.) 
Since H~(J(X), Z) is discrete, the class of to(C) does not change in the degeneration. In  
the limit, C=X'o U X~, and clearly to maps one component isomorphically to ~0(X0) , the 
other to its mirror-image. Q.E.D. 

1.6. Let  ~r.~ be the subvariety of no parametrizing double-covers of trigonal curves, 
~r.g its closure in ~g. Before computing the degree of 0 on ~ r  (we omit the genus for 
brevity) we sketch a construction showing that  the image of ~ is all of ~r,  so we do not 
have to worry about J(X) arising as a Prym in ways other than Proposition 1.5. 

Start  with a double cover 
~: C-+ C 

4-802907 Acta mathematica 146. Imprim6 le 4 Mai 1981 
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of a trigonal curve C; for simplicity we may  assume G, C smooth, ~ unramified. Thus 
is a Z/2-bundie over C, and the 3-1 map 

]: C - ~ P  1 

yields a (Z]2)3-bundle/,  C over p1. The involution 

induces an involution ~,  o n / ,  5; let X be the quotient 

x = 1, C/~, 

since / .  C is an 8-sheeted cover of p1, X comes with a 4-1 map to p1 and is tetragonal. 
One verifies directly tha t  ~(X) can be identified with 

COROLLARY 1.7. ~r is irreducible. 

Proo/. The irreducibility of Y~ is well-known [EC]. 

w 2. Projective lemmata 

We need some lemmata  on the projective geometry of a Prym-canonieat trigonal 
curve. Assume g~>6. We fix a smooth, unramified double cover ~: C-~C of a trigonal 
curve of genus g and the quadrigonal curve X such tha t  ~(X)=(~:  0-~C). Also assume X 
neither hyperelliptic, trigonal nor (when g=7) a smooth plane quintic. Let  r  X-~P g-2, 
XF: C-~P ~-2 be the canonical, Prym-canonical maps. 

L~M~A 2.1. (1) In  pg-2, the images o/the 4points a, b, c, d E X  o/each divisor DEg~ are 
coplanar. 

(2) In  each o/these planes the 3 points o/intersection o/opposite lines ab • cd, ac • bd, 
ad • bc are on xF(C), and as D varies in g~ they trace ~tr(C) once. 

Proo/. (1) follows from Riemann-Roch for X. 
(2) The diagram 

d~, T0P(V)\{0} I ~ [projection 
C ~ pg-2 
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commutes by 1.4.3, where ~ is the Abel-Jaeobi map. Let  

p = ({ab) ,,, (cd}) eC 
= @} = { a b }  @ = 

By Proposition 1.5(2), 
~F(p) = proj (d~v@)) = proj (dq~(a) +dq~(b)) 

so the point ~F(p) is on the line in pg-2 joining ~P(a), ~P(b). (Using 1.4.3 again, this time for 
the canonical map.) The same argument applied to 0?3 shows that  ~F(p) is on the line 
@(c), ~P(d). Q.E.D. 

LwMMA 2.2. A point a E X  is contained in a unique P~ o/our/amily.  

Proo/. If a is contained in the plane spanned by a divisor D E g~ other than the unique 
D containing a, then ~P(X) has 5 eoplanar points, or a g~ by Riemann-Roch. Hence X is 
a plane quintie, and a smooth one since we are assuming X non-trigonal. Q.E.D. 

L~MMA 2.3. The intersection in pg-2 o/ O(X): ~2"(C) consists o/ 2g+4 points. On C, 
respectively X,  these are the rami/ication points o/the trigonal, respectively tetragonal, map. 

Proo/. Consider a plane II spanned by the 4 points a, b, c, d of a divisor D Eg~ on X. By 
Riemann-Roeh, no 3 of the points can be colinear if the 4 are pairwise distinct, and an 
analogous statement holds if 2, 3, or two pairs of the points coincide (namely, if D = 
2a+b+c, then b, c are not on the tangent line to X at  a; etc.). By the analysis in 1.4, only 
simple or double ramification points occur for C smooth. 

If  the 4 points are distinct, they differ from the 3 points of intersection of opposing 
lines joining them. By  Lemma 2.2, they also differ from the points of ~F(C) in any plane 
other than II. 

If in the plane II 0 the points a, b coincide while c, d remain separate, the line ab is 
replaced by TaX, which by non-colinearity does not pass through c or d. The points 

ac • bd, ad • bc 

both tend to the point a =b, while the third point 

ab • cd 

remains apart. Thus we are at  a simple ramification point of the trigonal map on C, and 
the points in pg-2 do coincide. By  continuity, the same coincidence takes place if the 
ramification in II 0 is higher. Q.E.D. 
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We are left with the sticky question of the multiplicity of intersection of ~F(C), (I)(X) 
at  the ramification points. 

Lw~MA 2.4. (1) (I) is an embedding (unless X is hyperelli19tic ). 
(2) ~F is an embedding unless C has a gl two o/ whose divisors have 2 coinciding pairs o/ 

points each, i.e. there are 4 19oints p, q, r, s on C such that 219 + 2q,,~ 2r + 2s, {19, q} ~ (r, s}. 

Proo/. (1) is standard. For (2), 1F fails to be an embedding if and only if there are 2 
points 19, q E C (distinct or not) such that  

or equivalently 
h~ coo| -h~ o~c| -19 -q))  < 2 

h~ C, ~(19+q)) > 0 

so there should exist r, s such that  

~ O(19+q-r - s )  

and the lemma follows since ~2 ~ O. Q.E.D. 

Remark 2.6.1. We shall see that  when g = 6 and X is generic, there are infinitely many 
corresponding C and they all satisfy the condition of Lemma 2.4. For the rest of w 2 we 
assume ~F is an embedding so ~F(C) is smooth. We compute the intersection-multiplicities 
separately in cases (0), (i), (ii), of 1.4. These "codimension one" phenomena are the only 
ones we shall need. 

L w ~ A  2.5. Assume the 2g+4 rami/ication 19oints (o/ C, X)  are simple (=distinct). 
Then at each o/these, the tangent lines to C, X lie in the limiting 19lane II o and are distinct. 
(Hence C, X intersect transversely.) 

Proo/. By assumption ~F(C), (I)(X) are smooth, and they each intersect H 0 at one point 
less than they should, hence the first statement. 

Let  [it be the family of planes spanned by the Dt Eg~ near II0, and consider the degen- 
erating family of complete quadrilaterals. Using a generic projection (from a fixed linear 
subspace disjoint from H 0 and of complementary dimension) we identify all the H~, for t 
near 0, with a fixed quotient plane. This converts the question to one about moving points 
in the plane: Let  a, b, c, d be four points in the plane, with affine coordinates 

a(t) = (Z, Z) b(t) = ( - Z ,  - Z )  C(t) --- (0, 1) d(t) = (1, O) (2.5.1) 



P R Y M  l~AY H I :  T R I G O N A L  C U R V E S  53 

where Z2=t ;  describe the  l imit  quadri la teral  as t-~0. (Since we are only asking for the  
l imiting lines, we need consider, in a, b, c, d, only the  leading t e rms  in Z. A m o m e n t ' s  reflec- 
t ion shows t h a t  coordinates can be chosen to  give (2.5.1).) 

Solving the  l inear equations,  we find 

ab x c d  = ( 89  89 
ac x bd = (2Z ~ + Z ,  2Z ~ - Z )  

ad x bc = (2Z 2 - Z ,  2Z 2 + Z )  

as t-~0 (hence Z ~ 0 )  the  points  a, b t end  to  (0, 0) wi th  t angen t  direction (1, 1). Of the  three  
cross points,  the  first  remains  f ixed while the  other  two t end  to  (0, 0) wi th  t angen t  direction 
(1, - 1 ) ,  t ransversa l  to  (1, 1) as required, (For wha t  i t  is worth,  this shows t h a t  in the  
l imit  the  four coplanar  lines ac, ad, TaC , T a X  are harmonic,  i.e. have  cross-ratio - 1 . )  

Q.E.D.  

LEMMA 2.6. I /  the quadrigonal map on X has a double ramification point, so does the 
trigonal map on C, and their images in pg-2 have contact o/order precisely 2 there. 

Proof. The first  s t a t emen t  is 1.4(i). Clearly ~F(C), O(X) mee t  tangent ia l ly  (contact  ~> 2) 
a t  the  images of the  ramif icat ion points,  and  the  subtle point  is to cheek t h a t  contac t  is 
not  higher. Since project ion can only increase the  order of contact ,  we can follow the  
procedure of L e m m a  2.5. This t ime  3 of the  4 points  come together ,  and we can choose 
affine coordinates in the  plane so ~hat, ignoring higher terms,  

a(t) = (Z, Z 2) b(t) = (~oZ, op~Z ~) c(t) = (coPZ, o)Z ~) d(t) = (0, 1), (2.6.1) 

where Z 3 = t, ~o a = 1, (o =~ 1. 
Now the  cross-points are: 

I+wZ~ a~ 2 2 - ~  
a b •  , - Z ~ - 2 ~ 2  ) 

bd = (a)Z.  1 + w 2 Z  2 _ ( .02Z2"  _2 - (A)PZ 2 
a c  • \ 1 - 2wPZ 2' 1 - 2~2Z  2] 

ad • bc= ( Z .  I + Z ~ Z2 . 2 -  Z 2 
\ 1 - 2Z ~' 1 - 2Z2] " 

We see t h a t  up  to second order, the  points  a, b, c t end  to  (0, 0) along the  parabola  
y = x  ~, while the  cross-points t end  to  (0, 0) along y = - 2 X  2. These two parabolas  have  
in tersec t ion-number  2 a t  the  origin (linear t e rms  agree, quadrat ics  differ) hence the  same 
applies to  xF(C), (I)(X). Q.E.D.  
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The case 1.4(if) of two distinct ramification points over one branch point, requires 
special consideration. The linear system of Prym-differentials on the singular curve C has 
the double-point of C as base-point; hence the Prym-canonical map ~F is not  defined at  the 
double point. A more careful analysis shows that  this point "blows-up" to a line l; ~F lifts 
to a smooth map of the normalization ATC of C into Pg-~, and l is the chord of ~tr 
joining the 2 points of 2VC over the double point. The same geometric picture arises if we 
fix an X with a one.parameter family of ~ 's ,  one of which is special in the sense of 1.4(if). 
The corresponding one-parameter family of trigonal curves C is described in Lemma 2.1(2). 
The limit curve corresponding to the special g~ consists of xF(2VC) (of degree 2 g -  4) plus 
twice the line 1 in the special plane. All that  we shall actually need is contained in the 

L~M~A 2.7. In  case 1.4(if), tF(NC) is o/degree 2 g - 4 .  I t  is the closure in pg-2 o/ the 
points obtained via Lemma 2.1(2) outside the special Tlane. In  the special plane, tF(NC) does 
not meet @P(X). 

Proo 1. All is clear except for the last statement. We can take 

a ( t ) = ( g , o )  b ( t ) = ( - Z , O )  c( t )=(Z,  1) d ( t ) = ( - Z ,  1) (Z ~=t )  

up to higher terms; the cross points are 

ab x cd = (oo, O) 

a c x b d =  (0, oo) 

ad x bc = (0,  89 

and these are different than a(0)= b(0)= (0, 0), c(0)=d(O)= (0, 1). Q.E.D. 

w 3. The degree 

We now specialize to the case g = 6, and compute the local degree of the Prym map on 
the trigonal locus. We work over a generic curve X E ~5.  In  particular we assume X is 
neither hyperelliptic nor trigonal, and does not  have a vanishing even theta-null. By 
Remark II.2.1, this guarantees tha t  ~(X)=@s~ is a smooth curve of genus 11 with a 
natural involution, such tha t  the quotient is a smooth plane quintie curve. By the discus- 
sion in Par t  II,  w 2, X has a 1-parameter family of g~'s, parametrized by @s~. These 1, g4  s 

correspond to plane-families on singular quadrics containing q)(X): such a quadric is a 
point-cone over a smooth (no vanishing thetanulls!) quadric surface in p3, thus contains 
two families of planes, each cutting a g~ on X. Thus the restricted Prym map 

P: :/5 c 
has 1-dimensional fibers. 
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Lv, MMi 3.1. O~c| -~ is the only base-point-/tee g~ on a trigonal curve ( O, L) o/genus 6. 

Proo/. Let  M be a base-point-free g~ on C. Map O into p1 •  using the two maps 
C-~ p1 given by sections of L, M. The resulting curve G is of type (3, 4) on a smooth quadric 
in pa. Since the degrees 3, 4 are relatively prime, the map does not factor through a quotient 
of C. The image of C is smooth since its arithmetic genus 

( 4 - 1 ) .  (3 - 1) = 6 

equals its geometric genus. By adjunction, eOc is cut on C by curves of type (1, 2) on the 
quadric, i.e. 

o~c ~ M |  ~. Q.E.D. 

3.2. We can now prove Remark 2.4.1. In fact for 

with trigonal bundle L, there is not even one pair p, q E C such that  the unique g~ on C 
(Lemma 3.1) has a divisor 2p +2q. Otherwise 

SO 

satisfies 

and 

Oc(2p +2q) ~ r174 -~ 

L '  = L ( p  + q) 

(L') 2 ~ o~c 

h0(O, L ' )  = 2 

(h~ L')>~h~ L)=2,  while if h~ L')~>3 then C is a plane quintie, hence possesses an 
infinity of tetragonal bundles, contradicting Lemma 3.1.) This means that  L'  is a vanishing 
(even) thetanull on C. The Schottky relations ([M2, w 5, Cor. 2], IF], [FR], [Sk]) then 
imply that  X must also have a vanishing (even) thetanuU, contradicting our genericity 
assumption on X. 

A simple dimension count shows that  only an ll-dimensional family of curves X E M5 
can be represented as a 4-sheeted branched cover of p1 with a total ramification point. 
Hence for the generic X ease 1.4(iii) will not arise. 

Along the lines of Par t  I, w 3 we compute the local degree by blowing up A~ along 
Y5 and ~6 along ~T. We have the diagram 

1 I 
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and its restriction to the exceptional loci: 

where 7~ 5 is a p2-bundIe over ~5  (projectivized normal bundle of ~ 5  in As) and ~ r  a 
P~-bundle over ~T. In view of Lemma 1.3.1, the main ingredient is the computation of the 
codifferential 

which by Proposition 1.4.1 is cup product 

S~H~ coc@~/) -~ H~ ~o~). 

Our purpose is to show dim (ker (~*)) is as small as possible. 

PROI'OSI~rlO~ 3.3. Ker (~*) is one dimensional, corresponding to the unique quadric 
in Pa containing (O(X) and) the/amily o/planes cutting the given g~ on X. 

Proo]. Ker (~*) consists of those quadrics in p4 which contain ~F(C). Clearly the 
quadrie Q, one of whose (two) families of planes cuts g~ on X, contains ~F(C) since ~F(C) 
is contained in the union of these planes by Lemma 2.1(2). I t  is also clear that  any quadric 
in ker (~)*) contains (1)(X). 

Assume ~(C) ~ Q fl Q', and let Q" be a third quadric such that  

In case 1.4(0), ~F(C) has degree 

hence 

O(Z) =QnQ'nQ". 

2 g - 2  = 10 

~(o)  n @(z) --- ~ (o )  n Q" 

has degree 20, This contradicts Lemmata 2.3, 2,5 smce the t~gonal map has only 

2g+4- -  16 <20 
ramification points. 

In case 1.4(i), we obtain the same contradiction: two of the ramification points come 
together, and at  the resulting point the contact is only of order 2, thus #(~F(C) fl (I)(X)) 
is still 16<20. 

By 3.2, the only remaining case is 1.4(ii). In this case we are dealing with singular 
curves; luckily we are able to avoid the delicate problems arising in Part IV by the fol- 
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lowing reasoning. If  Q' is in ker (~*), it must clearly contain ~F(/VC). The degree of this 
curve is 8, so 

#~T'(NC) N dP(X) = #~F(NC) N Q" = 16 

but by Lemma 2.7, two of the 16 ramification points do not contribute to the intersection 
while the others contribute exactly one intersection each, hence, 

#~F(NC) n (I)(X) = ]4  < 16 

completing our proof. (The subtlety in Part IV arises since the condition "Q' contains 
~l~(/VC) '' does not suffice to determine Q' in the situation there, and it is necessary to con- 
sider higher-order information, centered at the double point.) Q.E.D. 

TH]~OR]~M 3.4. The local degree o/ ~) on the trigonal locus is 10. 

Proo/. By Lemma 1.3.1, ~) is a well-defined regular map, and ~e is the projectiviza- 
tion of its differential ~).. Indeed Proposition 3.3 shows that  ker (~ . )  is one-dimensional, 
hence contained in the tangent space T(~r), so ~ .  is injective on the normal bundle. By 
Lemma 1.3.2 the required local degree equals tha t  of 

For generic X E ~5,  let p2 denote the fiber of ~ 5  over X, and ~ its inverse image in ~T" 
We proceed to describe the map 

Po: ~ ~P~. 

We use the identifications made in Part II ,  w 5. Our P~, being the projectivized normal 
(rather than conormal) space, is dual to the plane II containing the plane quintic E = 
o~(X)/( +_ 1). Thus a point of P~ is a line in II, or a pencil of quadrics containing (I)(X), and 
vice versa: a line in PS corresponds to a quadric Q containing dp(X). By Lemma II.5.4, 
the quadric Q is singular if and only if the point p EII dual to I is in the plane quintic F.  

is a Pl-bundle over co(X)=@sly(X), the curve of genus 11 which is the double cover of 
the quintic curve F. Let CEa(X), that  is, C is a trigonal curve (in ~6) together with a 
double-cover, whose Prym is J(X).  The restricted map 

~e: pi ~ p2 

(on the fiber p1 of ~ over C) is injective, and its image is the line in P~ corresponding to 
the singular quadric Q in ker (0*It)" (Since ~ is the projectivization of 0 . ,  its image is 
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the dual of ker (~*.) Now, 

degree ~e = # ~ e l ( P )  (i 0 generic point 6P z) 

= #{C e ~ ( x )  ] ~ . ( P  1) B p )  

= #{c e ~(x) ] ~(p) ~ ~(c)} 

where l(p) is the line in IF[ dual to 1o, and 

~: a (X)  -~ F 

is the double cover ~(X)-~ ~(X)/( +_ 1)" Therefore, 

degree ~e = degree (a (X)~II )  

= (degree ze). (degree F) 

= 2 . 5  = 10. Q.E.D. 

w 4. Refinements 

4.1. In the proof of Theorem 3.4 we did not need a description, in geometric terms, of the 
normal bundle to RT in R8 (and the fiber p1 of R over C, etc.). Such a description is readily 
available, though, and helps to complete our picture of the Prym map near the trigonals. 

By the result of the appendix, the conormal space at  C to RT in R6, as a subspaee 
of the cotangent space to R6, is the vector space of quadratic differentials on C which 
vanish on the ramification divisor R of the trigonal map on C, 

N* ~ H~ w~( - R)). N ~, \ Re, C 

Let L6 Pic  a (C) be the trigonal line bundle. By Hurwitz'  formula O ( R ) ~ o c |  ~. Hence 

N~\~,,c ~ ll~ ~c| -2) 

and its dual projectivization, the fiber of R over C, is naturally isomorphic with the p1 
on which C is mapped by sections of o~c| -2. 

We now obtain another proof that  the map of G to p4 via Lemma 2.1 is Prym-canonical. 

COROLLARY 4.2. Quadric~ in p4 cut on G quadratic di//erentials. The quadrics con. 
raining dp(X) cut the unique g~ =mc| -~ on C, plus a base.locus equal to the rami]icatlon R. 
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Proo/. The second statement implies the first. The base locus is clearly ~F(C) N O(X) = R, 
of degree 16. Since a unique quadric contains xF(C), the residual intersection is of projective 
dimension 1, and degree 2 0 - 1 6  = 4. We conclude by Lemma 3.1. Q.E.D. 

Combining these identifications, we find: 

COROLLARY 4.3. The dual o/the restricted map 

is the pro]ection 
(p1), = R [ c  ~ p2 

(/rom the l~oint in l l  corresponding to the singular quadric Q =~(C) where g: a(X)=Osl~-~ 
Osmg/+__ l ~ I I )  and can be identi/ied with the restriction map 

II ~ {quadrics through (I)(X)} -~ {divisors o/ g~ ~coe| -~} ~ PL 

Part IV. The boundary components 

In studying the Prym map near singular curves, the finer points of moduli theory 
come into play: at  certain points, the "universal family" of curves does not exist over 
any punctured neighborhood; at others, the "versal deformation" is not universal; the map 
Ra -~ ~ a  can be ramified; instead of the canonical bundle, we need to distinguish the dualiz- 
ing sheaf co from the Kghler differentials g2. And when one finally overcomes the confusion 
and computes 0* correctly, its kernel turns out, as already mentioned in 1.3.3, to be too 
large for Par t  I, w 3, to apply! 

In w 1 we see that  there are essentially two boundary components of interest to us, 
Rs and RE. In w 3 we compute the codifferential along Rs, a computation which leads in 
w 5 to the desired local degree of 16. Most of the difficulties mentioned above arise along 
Rs, and especially the intersection RE.s= RE n Rs. To avoid these we construct in w 4 a 
new compactification ~ '  of )~/g (actually this is done only for g =6, and "infinitesimally" 
for all g) and show that  ~ factors through the new space R', in which RE has been "blown 
down". The computation of w 5 then yields the degree on the whole boundary. 

In  w 2 we gathered some definitions, facts, and specific examples which might help a 
reader previously unfamiliar with deformations and moduli of singular curves. 

We start  with a "generic" curve 

w 1. The loci 

XE ~a-1  
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of genus g -  1, and describe, following Beauville's list [B1], all the ways J ( X )  can arise as 
a Prym of a double-cover in the boundary of ~o, that  is a singular double cover, missing 
from Mumford's list [M2]. The "generic" choice ~511 be used twice: to ignore families in 
~g of dimension < 3 ( g - 1 ) - 3 ,  and later on to insure tha~ X corresponds to a smooth 
point of 7~- , ;  in particular we assume that  X has no non-trivial automorphisms. 

1.1. Singulars. Let  lo, q E X  be two distinct points, and 

C = X/(~, ~ q) 

the singular curve of genus g obtained from X by identifying p,  q. C has an ordinary double 
point p =q, and the natural map 

N: X-~ C 
is its normalization. We let 

= X l  LI G / ( P l  ~ q~, P~ ~ q~) 

where X1, X 2 are copies of X. C has two ordinary double points, and like C is a stable 
curve. The natural map 

~: C ~ C ,  

obtained by identifying each X~ with X, is an allowable double cover in the sense of Beau- 
ville. (I.1.3.) Hence 

and ~(~)e~4g_l is well-defined. I t  follows from the definitions (and is proven in-[B1], 
Theorem 5.4, case (i), and much earlier in Wirtinger's work [W]) that  

~)(~) ~-. J ( X ) .  

Letting X, p,  q vary and allowing all limits, we find a closed subvariety 

parametrizing singular covers. I t  has dimension 

3 ( g -  1) - 3  +2  = 3 g - 4  

and is ~herefore a hypersurface in ~g, in fact a boundary-component sitting over one of 
the several boundary-components 7~s of 7~g in the standard ("Deligne-Mumford" or 
"stable") eompactification 7~g. 

The restricted Prym map 
Rs-~ Yg-1 
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is proper and surjective. For an automorphism-free X, its fiber over J(X) is the symmetric 
product SsX. Outside of the hyperelliptic locus (excluded by  the generic choice of X) we 
can identify Yg-1 with ~g-1; the resulting map over (~g-1)~mooth can be identified with the 
(relative) second symmetric  product, of the universal curve (which exists over (~)s~oo~). 

1.2. Singular elliptic tails. In  taking Rs to be a closed subvariety of ~g, we need in 
particular to allow p, q to coincide; in the fiber SsX this corresponds to the diagonal. 
Somewhat contrary to intuition, the limiting curve C is not cuspidal, as stable curves can 
have ordinary double points at  worst. Instead we get the reducible curve 

o = x I j P V ( p  ~ ], o ~ oo) 

where 0, 1, co ~l  )1. Equivalently, 

C= XU~,E 

where E is the rational-elliptic curve PZ/(0~ oo). In  this case we have 

0 = (x~ u E~ U E~ U Xs)/(Pl ~ 11, 01 ~ 008, ool ~ 08, 13 ~p~)  

and each Xi (respectively E,) is mapped isomorphically to X (respectively E) by  z:  C-->C. 
These are the correct limits since they are stable (each pz has >~ 3 points fixed) and fit into 
one-parameter families where all nearby curves are as in 1.1, with p and q tending to a 
common limit (a deformation of C smoothing the singularity p but  preserving the other 
double point). We shall analyze this situation carefully in w 4. 

1.3. Elliptic tails. Let  T E X  and let E be an elliptic curve. Then 

is a stable curve, as is 
O = X U , E  

C =X1 U~,~V U~.X~ 

where X~ are copies of X, J~ an unramified, irreducible double cover of E, hence an elliptic 
curve itself. (There are three such, corresponding to the three nonzero elements of 
Hz(/~ , Z/2Z).) Since E has a one-parameter family of automorphisms (translations in the 
group structure) it does not mat te r  which point e of E we identify to p E X ;  but  once e is 
chosen, the identification in C is:/o,~e,, where el, e 2 are the points of J~ over e. Now there 
is a natural  map 
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which is an allowable double cover since it  satisfies the conditions of [B1], Lemma 5.1. 
By [B1], Theorem 5.4(ii), we have 

where Q is the Prym of 

Clearly Q = (0) so that  O(g) ~J(X) .  

~(z~) ~ J(X)  • Q 

g-~  E. 

We let ~E,  ~E denote the hypersurfaces in ~o ,  ~g respectively parametrizing these 
curves C with an "elliptic tail", and their degenerations. For  fixed X the only degeneration 
is the one already discussed in 1.2. The two hypersuffaces ~E,  ~ s ,  respectively ~s, ~s, inter- 
sect in the subvariety ~ s . s ,  respectively ~ . s ,  of their common degenerations, curves with 
an elliptic tail which is itself singular. In fact it follows from Schlessinger's local deforma- 
tion theory (cf. 2.5) tha t  the intersection is transverse. 

L~,~Mx 1.3.1. The fiber o/ the restricted Prym map 

over a qeneric X 6 7~l~_1, is isomorphic to X • PL 

Proo/. We are free to vary  p and E, independently. Clearly the possible p are para- 
metrized by X, E by p1 (the "7.-invariant") and E by a three-sheeted cover of p1. This 
cover has a simple ramification point over the harmonic E (7. = 1728, complex multiplica- 
tion by 1 / ~ )  and over the singular E (] = oo, monodromy around E interchanges 0, 
while fixing - 1 )  and has a double ramification point (all three sheets permuted, cyclically) 

3 

over the equianharmonic E (7" = 0, complex multiplication by ~o = 1/1). By Hurwitz '  formula 
this three-sheeted cover of p1 is itself rational. Q.E.D. 

Remark 1.3.2. In all three cases 1.1, 1.2, 1.3, there is a line bundle U on C such that  
~= O, ~ O, and z~*~ 7 = O~. For example, in 1.1, (respectively 1.2), U is the line bundle 

which is trivial on X (respectively X [.j~p1) and whose fibers over p, q (respectively 0, c~ ) 
are identified after multiplication by - 1 .  (Compare 4.4.2.) 

1.4. The complete fiber. 

L•M•A 1.4. The only irreducible components o /~g~Rg, /or  g =6, whose image under ~ 
contains ~Jg-1 are ~s, RE and (/or g = 6 only) ~ r -  ~r. 

Proo/. We use the notation and results of [B1], (5.2) and (5.4). If for generic 

z~: 0-+ C 
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in a family mapping onto Ua-1, 

O=AUA'UB 

with B fixed by the involution on C, A and A'  interchanged, then as in:I.1.3 we have either 
(i) B=O, #(Afl A') =2, ~(~) ~J(A), so J(A) is a generic Jacobian, hence A a generic 

curve, and the family is Rs, or 
(ii) B~(3, A NA'=f3, B satisfies condition (*), ~(~)~J(A)• Q the Prym of B. 

Since the generic Jacobian is simple, we have either 
(ii) (1) Q=(0), hence g(B)=-i +d im (Q)=1, B is elliptic and our family is ~ ,  or 
(ii) (2) J(A)= (0), hence C = B satisfies condition (*) and ~(0)  is a generic Jacobian. 

By [B1], Theorem 4.10, the curves U, C must belong to one of the families (a)-(j) described 
there. The families (a), (b), (c), (f), (h), (i), respectively, have codimensions g - 4 ,  g - 2 ,  
g - l ,  g - 2 ,  4, g - 1  in ~g; families (d), (g) exist only for g=5; families (e), (j) exist only for 
g = 6 and have codimensions 3, 6 in ~s. Such a family can surject onto ~g-1 only if its co- 
dimension is ~< 3. This happens only for (a) and (e), both for g = 6. The first corresponds to 
the 13-dimensional family Rr of trigonals, which does contain a 12-dimensional subfamily 
~ T ~  RT mapped onto Y5 (as we saw in Par t  I I I , w  3). The second is 12-dimensional and its 
generic element is a smooth plane quintie, thus the singular members form a subvariety of 
dimension -<<11 <dim (~5).  Case (a) has codimension ~ 3  (actually=3) also when g - 7 ,  
but its generic element is smooth, hence the singular curves of type (a) have codimension 
~>g-3 =4 when g=7. Q.E.D. 

w 2. Moduli at the boundary 

In  order to compute the differential of ~ at  boundary points, it  is necessary to under- 
stand some generalities on the structure of the moduli space near singular curves. Almost 
everything we need is in w 1 of [DM]. We go through it here not for completeness' sake (our 
discussion is fragmented and incomplete) but  with the hope of giving just enough working 
tools that  a non-expert but  believing reader might be able to follow the rest of the paper. 

2.1. Deformations. The most convenient object to work with is the versal/ormal 
deformation C of a curve U. I t  is a family of curves parametrized by the complete germ M 
of the origin in a smooth (3g -  3)-dimensional variety, or 

M = S p e e  C[[t 1 . . . . .  t3~_3] ]. 

a "deformation" of U is such a family, where the central fiber is isomorphic to U and the 
base space M has a unique point (but (preferably) lots of tangent directions). The "formal" 
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par t  refers to the base being defined by  formal power series or being a "complete" germ, 
and the "versal" indicates our family is as close to being "universal" as can be. Roughly, 
the germ of any infinitesimal family of curves (with central fiber C) comes via pullback of 
C, by  a map of its base to M; and this map  is uniquely determined to first order. (Cf. 
2.2(2) for a non-uni-versal deformation.) In  [SC] Schlessinger introduced the notion of 
versal deformation, and proved its existence under very general conditions, in particular 
for all "curves".  

Concentrating at tention a t  a point p E C, one can isolate the interesting par t  of C 
via the concept of local deformation, or deformation of the "curve" which is the localiza- 
tion of C at  p. Essentially, what  happens is tha t  M splits, 

M ~, M p x M '  

where M~ is base to the versal local deformation of Cv, and the action in M '  happens 
away from p. 

2.2. Examples. (0) p a smooth point of C, then My =(0), M '  = M ~ A  3g-3, affine (3g - 3 ) -  
space. (N reads = " g e r m  of".) 

(1) p an ordinary double point of C. Then M y r a  I =Spee C[t] and the local deforma. 
tion looks like 

Cv ~ Spec C[u, v, t]/(uv - t ) .  

(2) p a cusp of C. Then MvNA2=Spec  C[a, b], and 

Cp ~ Spec r b, x, y]/(x~ + a x  + b - y ~ ) .  

The local deformation here is 2-dimensional, and contains a 1-dimensional subfamily, 
parametrized by points of the cuspidal curve 4a a +27b ~ =0,  of curves with ordinary double 
points. 

We note tha t  the versal deformation here is not universal. We can give different 
maps of the affine line to A 2 inducing the same family of curves over the line. For example, 

t ~ (ct 2, dt 3) 

induces the family of curves with equations 

y2 = x a + ct2x + dt u. 

These curves, for all t # 0 ,  are all isomorphic to each other (multiplying y by  8 a, x by  s ~, 
has the effect of dividing t by  s2). Still the family itself is non-trivial, as the trivializing 
transformations "blow-up" as t-+0; we encounter a " jump phenomenon" where the central 
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fiber, cuspidal, differs from the (isomorphic) curves near it. However, this family depends 
only on the ratio cS/d 2, so there is a 1-parameter family of these maps inducing isomorphic 
jump-deformations. The versal condition still holds since all these maps vanish to first 
order in t. 

(3) One can also form the local deformation Mlooal for the simultaneous localization of 
C at several singular points. The result is nothing but  the product of the local deformations. 
This applies, for example, to the curves 

co = X U ~ E ~ E . s  

of 1.2. Here Mlocal~A~=Spee C[s, t]. Varying one parameter will smooth E, and the other 
will smooth p, yielding an irreducible neighboring C. 

2.3. Canonical sheaves. 

2.3.1. The versal property clearly determines M uniquely, up to non-natural iso- 
morphism which is "natural  to first order" (compare 2.2(2)). In  particular, the tangent 
and cotangent spaces to M at the origin are natural objects, computable in terms of C. 
The tangent space is computed in [Sc] to be Extloo (~c, Oc) so by duality the cotangent 
space is H~ ~c| involving the two "canonical" sheaves g2c, coc. We discuss these 
next. 

2.3.2. The locally free sheaf eOc is the dualizing sheaf of C, or the object that  makes 
duality and Riemann-Roeh work for a possibly singular C. ~c  is the sheaf of K~hler 
differentials, generalizing the cotangent bundle of smooth curves. At a smooth point of C, 
sections of either of these sheaves are regular differentials on C. At any point, both sheaves 
can be computed given a projective embedding of C: sections of ~ are restrictions of dif- 
ferential 1-forms on the ambiant space, modulo differentials of the defining ideal; sections 
of co come from meromorphic differentials "with logarithmic singularities" (at worst) 
along C via Poincard residue. Thus for a plane curve C defined locally by / (x ,  y) =0  at  the 
origin p, we have the explicit formulae: 

~c,~ ~ Oc.,(dx, dy)/(/:: dx +/2, dy) 
dy 

We note tha t  ~c is locally-free of rank 1, since its two generators are set equM. On the 
other hand, ~c  is invertible only for smooth C; in fact it has torsion sections, supported 
at  the singular point p. 

2.3.3~ There is a natural map 
j: ~-,o),  

5 -  81)2907.4eta rnaChematica 146. Imprim6 le 4 Mai 1981 
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which is the identity at  smooth points. One way to describe j is by comparing with the 
normalization 

N: NC ~ C. 

The pullback induces a map from sections of g2c onto sections of ~Nc; pushforward maps 
sections of ~oNc to sections of coc; and the sheaves ~Nc, ~oNz are naturally isomorphic. 

Clearly ] induces an isomorphism on stalks at smooth points. Thus its kernel and co- 
kernel are skyscraper sheaves supported on Sing (C), in fact of equal ranks, ker (]) consists 
precisely of the torsion-sections in g2e. Im (j) consists of differentials regular on NC. 

For  example, at  an ordinary double point with local equation/(x,  y)=xy=O, 

~ ,  ~ O~(dx, dy)l(ydx + xdy) 

and ker (~'), coker (j) are 1-dimensional, spanned by y dx = - x d y ,  dx/x = - (dy/y) respectively. 
(We label the generators so that  formally, ](dx)=dx =x(dx/x), etc.) 

2.3.4. We return to the description of T*M as H~ s174 proven in [Se]. The 
splitting 

M ~ Mlocal X M '  

is natural at least in the sense that  TM'  is a well-defined subspace of TM,  corresponding 
to those directions along which the deformations are trivial when localized at the singular 
points. Thus T*Mlor is a well-defined subspace of T*M~H~ g2c| I t  is related to 
T*M by the "local to global" spectral sequence, which in this case degenerates allowing 
the computation of T*Mlo~; it turns out to be precisely the torsion subspace. (More 
precisely, the space of sections supported on the finite set where we have localized.) 

Since eoe is invertible, there is an isomorphism of the torsion spaces for ~c, eoc | ~c, deter 
mined by the choice of a (meromorphic) section of wc which is regular and nou-zero at the 
singular points of localization. Thus T*Mlooa~ becomes identified with the torsion sections 
of ~c, or with ker (j). 

We saw above that  for an ordinary double point this space is one-dimensional in 
accord with 2.2(1). Similarly for a cusp, whose equation is ](x, y) =y2_xa=O: 

~ ~ OAdx, dy) / (2ygy-  3~2 dx) 
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and ker (]) is 2-dimensional, spanned by 

This agrees with 2.2(2). 
3ydx-2xdy, 3xydx-2x~dy. 

2.4. Deformations vs. 1)Ioduli. Finally, the relation between versal deformations and 
local moduli of a stable curve. There is a natural map 

sending the origin of M to the point of ~ g  corresponding to C. The degree of/~, at  the 
origin, is the order of the group G of automorphisms of C (which is finite for C stable). Indeed, 
by the versal property, each non-trivial automorphism of C induces a non-trivial auto- 
morphism of M commuting with/~, and vice versa. 

While M is always smooth, its quotient by # may be singular. In fact, one sees that  
when G is cyclic this happens precisely when the locus in M parametrizing curves on 
which G persists fails to be a smooth (possibly empty) hypersurfaee. Thus ~ g  is 
singular along the locus of hyperelliptic curves precisely for g~>4, since the hyperel- 
lipties have codimension g - 2 .  Another example: Mg is not singular at a generic point 
of the hypersurface ~s, even though these curves have an automorphism (identity on X, 
- 1  on E).  

For the case of the cuspidal curves we shall work out the relation between M, ~ in 
full detail in w 4. 

2.5. Moduli at a singular elliptic tail. As an application of these ideas, we prove the 
remark made in 1.3 that  the hypersurfaces M~, ~ z  intersect transversely in ~ , z  over a 
generic X E "/Hg-z. 

For CE ~s .z ,  the map 
#: M - ~ g  

is two-to-one due to the automorphism of E. I t  is the sum of two maps, 

and 
~-~local: Mloc~l "->~g 

/~': M'  -~M~ 

where #' is injective, ~Ulocal is two-to-one, and as seen in 2.2(3), MlocalNA~. (Both maps go 
into the germ of ~ g  at  C which is a large vector space. The "sum" is taken in this vector 
space.) Clearly the germs of ME, Ms are products, with the image of/~', of the images of 
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the corresponding hypersurfaees (=curves)  M~, Ms in M1or By 2.2(3), the curves 
Ms, Ms~ Mlo~ are transversal. The involution of Mlo~ commuting with jUloo~l induces an 
involution (with the origin as fixed point) on Ms; but  on M s it acts as the identi ty since 
(2.4) the automorphism of C persists there. Hence, in formal coordinates (x, y) on M~o~ 
such tha t  

the map/~Iooal is 
(x, y) ~-> (x ~, y). 

Therefore, (x ~, y) are formal coordinates on the quotient, and 

= { v  = 0 } ,  = = 0 }  

are transversal, being given by  the vanishing of two independent coordinates. 

2.6. Double covers. Given any  type of "level structure",  we can construct a correspond- 
ing (branched) cover of M. In  particular, there is the family of allowable double-covers, 
parametrized by  a space /~ mapping onto M with degree ~ 2 2g- 1. Further,  the m a p / z  

R , M  

The basic examples are: 

(0) For a, smooth curve C e ]~a, R consists of 2 3~ 1 disjoint copies of M. Note tha t  this 
is true even in the presence of automorphisms of C; in tha t  case, z,  # are ramified, ~ is not, 
and ~ could be ramified though it tends not to be, or a t  least to be "less" ramified than/~. 
This indicates a general phenomenon: replacing double-covers by  sufficiently high level- 
structures, the corresponding ~ becomes unramified, so ~ factors through M allowing the 
construction of a universal curve over a high-level moduli space. 

(i) For Ce  ~ s -  ~ . s ,  R is a (2 eg-x + 1)-sheeted cover of M consisting of one component 
/~z of degree 1 (mapping isomorphically to M) and 2 2q-2 components of degree 2, each a 
double cover of M branched along M s ~  = (0) x M ' c  Mloca 1 x M '  = M. Here R z parametrizes 
deformations of a Wirtinger double-cover (C, C) E ~s, and the other components Roa a para- 
metrize deformations of double covers whose corresponding (Z/2Z)-homology classes meet  
the vanishing cycle of C in one point, hence are acted upon non-trivially by  the mono- 
dromy. (The remaining covers are not allowable.) 

lifts to a commutat ive diagram: 
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(ii) For CEW/~W/E.s  generic, R consists of 22g-2+2 copies of M, and R is locally 
4tale of degree 22g-~ + 2 over W/. (Since the vanishing cycle is homologous to 0 there is 
no monodromy, hence no branching in ~, ~.) 22g-2-1 of the corresponding curves look 
like E 1 U )? U E2, and the remaining 3 look like X 1 U E U X~. The corresponding 3 sheeted 
covers of M, W/will be denoted RE, ~z respectively. The maps/x, ~ are 2 to 1, branched 
along W/z, ~-l(W/s) respectively. 

(iii) Let  C = X  U E where X is still generic but  E is one of the special elliptic curves. 
For  the equianharmonie E, ] = 0 ,  Aut (E )~Z/6Z  acts on ~z by permuting the 3 non- 

zero elements of H(E, Z/2Z) cychcally, hence ~z is totally ramified over W/z.o.~.r. ( ~ ' ~  
is still 4tale as in (ii)). Deg (/~) is 6, and in fact ~u factors through RE, hence R=RE • ~,M 
is still 4tale of degree 2 zg-~ + 2 over M. 

For the harmonic E, ] = 1728, Aut (E )~  Z/4Z acts on ~z by permuting 2 of the 3 
semiperiods and fixing the third. Hence RE has two components: an 4tale component 
(of degree 1 over W/) and a double cover ramified over W/z. h=- ~ z  is as before. Deg (ju) = 
4 and again # factors through ~z, so R is 4tale. 

Finally, consider C6Wlz,s. Since being allowable is an open property, R has only 
those components that  are allowed by both (i) and (ii); this amounts to 3 sheets only; 
namely ~ = ~ z .  Aut (E)~Z/2Z  as in (ii), but  there is an extra monodromy action on 
H(C, Z/2Z) coming from the degenerating Jacobian, as in (i). Hence ~z has 2 components: 
an 4tale component ~s, of degree 1 over Wt, and a double cover ~odd branched along Wls 
On the other hand, M-+ 71/has degree 2 and is branched along Wlz as in (ii); hence R has 
degree 3 over M, and consists of an 4tale component of degree I and a double cover branched 
along Ms. The "elliptic tail" is in the 4tale component. 

w 3. The eodifferential 

We at tempt  to extend Beauville's result, Proposition 1.4.1, to the boundary. Let  
X6~/o_  1 be a generic curve, and let (Co, O0)6~g be either X/(p,~q) or XUvE, with the 
double cover chosen as in w 1. Let  r/6Pie ~ (Co) be the line bundle corresponding to Co, 
~ ~ Oco. (Compare Remark 1.3.2.) 

8.1. The spaces 

are of dimensions 
S~H~ ~o| //~ ~2| 

(g),3g-3,3g-3, 

_r-/o(c o, o~ @~o) 

as they would be for a smooth C. Further, by  general nonsense they vary smoothly over 
families of curves C, in particular they each form a vector-bundle over the base M of 
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the versal deformation of C. (Each of these sheaves ~Co is the restriction to C O of a similar 

sheaf ~ defined over C (or over the total space of any family deforming Co. ) The above 

vector bundles are associated to the locally-free-sheaves 

R~ 

on M, where [: C-~M is the deformation.) 
By the examples in 2.6 we see that  whether (Co, 7) is in Rs, RE on R~.s, the base R of 

its versal deformation is isomorphic, via if, to that  of C O alone, M. In particular we can 
identify 

Tbo,,~/t ~ T*oM ~//0(C 0, fl| 

The Prym codifferential at  (Co, 7) becomes a map 

~*: Z~H~ o)| -~//~ o, ~| 

This clearly extends to a sheaf map of the locally-free-sheaves over M, 

~2R0/,((DcIM| ---> R0/,(~-)~CIM(~.)fDC/M) 

and can thus be computed, at  Co, if we know its values at all nearby C. 

3.2. The map j: ~-~co described in 2.3.3 induces 

j,://o(c, ~2| -~//0(C, co| 

We compose this with ~*, obtaining a map 

j ,o ~O*: ,~H~ ~,| --'-"//~ o~ | 

which varies continuously with (C, ~), and equals cup-product for O generic (recall ~2 ~ O), 
hence for all O including our C o. 

LEMl~A 3.2.1. P (ker ( j , o  ~*)) is (naturally identifiable with) the [amily o[ quadrics in 
the canonical space o / X  containing the canonical curve ffP(X). 

Proof. The isomorphism P(C, ~) ~J(X)  induces on cotangent spaces an isomorphism 

[1~ co | ~ H~ O)x). 

/ /ence P(S2tt~ eo| is identified with the family of quadrics Q in the canonical space. 
If j , (O*(Q))=0 as a section of co| on C, it vanishes in particular at  each point of 

X, hence ~9(X)cQ. 



P R Y M  MAP IV:  l l r  C O M P O N E N T S  71 

Vice versa, since co| is locally free on C, in particular torsion-free, it is enough to 
show tha t  if ~p(X)cQ then ?',o ~*(Q) vanishes at  each smooth point of C. For C irreducible 
(case of ~z) this is equivalent to tiP(X)c Q. In  the elliptic-taft case clearly ?', o O*(Q) vanishes 
on X c C. On E, 

This has a unique non-zero section, which is non-zero a t p ;  but  we saw already tha t  ],o O*(Q) 
is zero on X, hence at  T, hence everywhere on E.  

C o R o T, L A ~ Y 3.2.2. P (ker ( ~)* ) ) c {quadrics through @ (X) }. 

3.3. Since ] induces isomorphisms on stalks away from the double point, we see tha t  
for Qeker  (] ,o ~)*): 

This reduces the search for ker (~*) to a local computation in the stalks at  the double 
point p of the various sheaves involved. We write down the stalks of all sheaves in sight, 
labeling the generators so tha t  the natural  maps preserve them, 

dx ~'-> dx, dx(~ dy ~'-> dx dy, etc. 

~: O,, < dx, dy) l (y dx + ,~ @ ) 

~: 0,, 

~@~: O~ {dx ~, dxdy, dy dx, dy~>/(y dx~ + xdxdy, ydxdy 
+ xdy ~, ~(gx g y -  dydx), y(d~dy- clyde)) 

~Qco: o~(dx~, dY~ / / dx ~ 

 //t7 / /  etc. 

In  view of the first sentence in 3.3 and the commutat ive diagram 

Bo(f2|174 ,/-/o(f2 | f2) 

1 1 
~*: HO(o~|174174 , H"(f~| 



72 R.  DOIWAGI AI~D R. C. SMITH 

(where vertical maps are induced by ]) our problem lifts to computing the map 

(~|174 (~| (~| ~)~ -~ (~ | 

Since ~ is trivial near p, this is the same as 

where the first map  is induced by  cup product,  the second by ]. As an Or-module, the 
object on the left has generators 

dx ~, dxdy, dydx, dy ~. 

By our convention, their images in (~| still bear the same names, except now 

dx ~ dy ~ 
dxdy=dydx= - y - - =  - x - -  

x y 

is the (unique) torsion-element of ~| We conclude: ~)*(Q) vanishes at  p if and only if 
the coefficients in Q of dx 2, dxdy, dy ~ all vanish. 

3.4. The eodifferential for (C, vl) 6 ~s. For C--X/(p ,,. q) we can take x, y as coordinates 
on X at p, q; dx, dy are the corresponding differentials. The coefficients of dx 2, dxdy, dy 2 
furnish three linear functions ~, 8, ~ on S2H~ o~| By Corollary 3.2.2 and 3.3, Q is in 
ker (~*) if and only if: 

(1) Q ~ r  
(2) a(Q)=fl(Q)=~(Q)=o.  

Now, condition (1) implies g(Q)=~(Q)=0, as these two give the values of Q at  p, q. 
Assuming this holds, fl(Q)=0 iff Q is identically zero on the line pq. We have proven: 

PROPOSITIO~ 3.4.1. For ( C , ~ ) E ~ z ~ s . s  over a generic X6W1g_l, C=X/(p,~q), 
P (ker (~*)) can be naturally identified with the space o/quadrics containing the canonical 
curve r and its chord r eb(q). 

3.5. The eodifferential for elliptic-tails. I f  we perform the same computation for (C, 7) 6 
RE, taking x, y as coordinates on X, E near p, we see tha t  8, ~' vanish identically; in fact, 
so does the coefficient of dy, as a linear function on H~ o~| (Proof: 

coc| [x = cox(p) | 0 = cox(p) 
~Oc| I E = ~oE(p) | ='TE(P) 
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and for a section of COc| on C, the residues at p should be opposite. But  

h~ X, ~x(P)) = h~ X, ~Ox) -- g - 1 

so all sections of ~oe| vanish at p, and when restricted to E yield sections of ~s, necessarily 
zero.) Since if Q D (I)(X) then ~(Q) =0  as the value of Q at p, we conclude that  for (C, 7) e ~s, 

ker (0")  = ker (?'.o 0").  

This is larger, by one dimension, than the kernel for (C, 7)E ~s, and would play havoc 
with our argument in w 5. Luckily, we have computed here the codifferential of the wrong 
map! The point is tha t  (cf. 2.6(ii)) 

# : M ~ ,  Q:R-~ 

are 2-to-l, and we were only able to compute the codifferential of the real 0 ,  

after it is composed with Q. Instead of pushing the local arguments further to factor 
~*: T*.,4g_I~T*R through T*~, we describe in the next  section a more global approach, 
showing that  for computing deg (~),  the locus ~E is an "exceptional divisor" which can be 
ignored. 

w 4. Factoring out the elliptic tails 

Our goal in this section is to show that  the Prym map involves blowing down the 
elliptic-tail locus ~ c  ~g to a "cnspidal locus". More precisely, for X E ~g-1, P E X, let Fx. ~ 
(respectively -Px.~) be the family in ~ E  (respectively ~ )  of curves consisting of an elliptic 
tail attached to X at p. (By Lemma 1.3.1 Px.~ is a rational curve.) We want to show that  
the Prym map, from a (formal) neighborhood of s in ~g to a (formal) neighborhood of 
J(X) E y c  -~g-1, factors through the base-space R of the versal family of allowable double 
covers near the euspidal curve C=X/(2p). (See the discussion and examples in 2.6.) Thus 
the Prym map is composed of a map which blows down ~ (sending each rational curve 
/~x.~ to a point) and a regular map. In particular, deg ~ can be computed after ~E is 
blown down. 

The natural steps to this end are: 

(1) Construct a "natural"  map from a formal neighborhood of Fx.~ in ~ to the base 
M of the versal deformation C of C. 

(2) Lift to double-covers. 
(3) Analyze these maps. 
(4) Construct a Prym map on R such that  the composition is ~.  
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We perform steps (2), (3), (4) in arbi trary genus. I t  seems tha t  step (1) can also be 
done in general, using methods similar to those of [M3]; it depends on constructing a family 
of curves parametrized by  a finite branched cover of a neighborhood of ~x.v in ~g, and a 
line bundle over the total  space whose sections embed the generic curve in the family, 
while restricting to the trivial bundle on the elliptic tails (hence mapping the curves over 
/-0x. ~ to cuspidal curves). However, there are some nasty  technicalities involved in the 
existence and naturali ty of the above family. To avoid this, we present a fairly elementary 
argument  which works only in the case we need, g = 6. In  this case we proceed to construct 
a compactifieation ~ '  of the moduli space ~ 6  which is based on families of plane curves, 
thus replacing the elliptic tails by  cusps. As a result we can explicitly factor the P rym map 
on an honest (not just formal) neighborhood of/~x.~, through the space R' of allowable 
double covers of objects in ~[ ' .  ~ '  is defined in 4.2.4 and described in 4.3. 

4.1. Moduli of plane curves. In  our construction of ~ ' ,  we use a bit  of the general 
technique of geometric invariant theory [M4] together with the special symmetries present 
for genus six. All tha t  we need of the general theory is discussed in w 1 of [M3], up to 
Example  1.13 where Mumford constructs a compactified moduli space ~ ' ,  similar to the 
one we need, in genus three. We briefly recall his construction. 

The natural  action of SL (3) on V = A  s induces an action on P(SaV), the linear system 
of plane quartie curves. We consider only the semi-stable curves in P(S4V), and divide by  
the action of SL (3). The resulting projective variety ~ '  is birationally equivalent to 
~ 3 ,  since a generic C E ~ 3  can be realized as a plane quartic in a unique way (the canonical) 
up to automorphisms of p2, and this plane quartic is automorphism-free and stable under 
SL (3). However, as is beautifully illustrated in [M3], the locus ~ E  in ~ is blown down to 
the locus of cuspidal curves in ~7~'. (In Proposition 4.3.1 we shall find the precise structure 
of this blowdown.) In  both ~ ,  ~ '  there are other exceptional loci, which do not concern 
us here. 

More generally, for fixed d and g we can start  with the family of plane curves of 
degree d, whose geometric genus is ~<g. SL (3) acts on this, and the quotient of the semi- 
stable locus is a projective var iety ~g.a, which comes with a natural  rational map 

(Mumford notes tha t  for d >~4, plane curves with only ordinary double points or cusps are 
actually stable.) For fixed g, ~ . ~  contains only singular curves if d is too small, and 
is surjective if d is sufficiently large. Mumford's example (g = 3, d = 4) is the only case where 
e is birational. 
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For genus 6, it seems most profitable to take d = 6, thus considering plane sextics with 
4 double points, or a degeneration of these. In  this case s is generically finite (in fact, five 
to one; see below) and certainly for generic X E ~ 5  any map of degree 6 from X LIvE into 
p2 which is not constant on X must  be constant on E, so tha t  s - l (~E)  consists of cuspidal 
curves as required. This suggests tha t  ~ '  should be a 5-sheeted quotient of ~ . r  the 
problem is tha t  there is no group action on ~6.6 permuting the sheets. Fortunately such 
a group can be produced after 7116.6 is replaced by an appropriate cover. We describe this 
first for a slightly different (but birationally equivalent) object, then return to ~/l~. 6. 

4.2. Forming the quotient 7T/'. Fix four reference points el, e2, ea, e 4 in p2, in general 
position. Let  p15 parametrize the linear system of plane sextic curves with double points 
at  the four e~. 

In  PGL (3) there are 4! =24 elements which permute the e~, forming a subgroup of 
PGL (3) isomorphic to S 4. Let  G be the group of Cremona transformations of the plane 
generated by these linear transformations and the quadratic transformation based at  any 
3 of the et. 

LEMI~IA 4.2.1. #G=120.  

Proo/. Consider the linear system of cubic curves in p2 through el, e2, e3, e a. I t  maps p2 
(with the e~ blown up) to p5 as a quintic del Pezzo surface S. All generators of G preserve 
this linear system, hence G can be represented as (a subgroup of) the group of linear auto- 
morphisms of p5 preserving S. I t  is well-known [SR] tha t  the quintic del Pezzo surface 
contains 10 lines (the 4 exceptional divisors and the 6 lines e~ ej) with a symmetric inter- 
section-configuration, each meeting 3 others. Thus G becomes a subgroup of the group G' 
of permutations of the 10 lines preserving this configuration. Clearly G' is simply transitive 
on quadruplets of disjoint lines: any such quadruplet can be simultaneously blown down, 
recovering P~, and thus mapped to the four exceptional divisors; and once the labeling of 
el, ..., e a is decided, it determines the other six as pairs e~ ej. Now, the first, second, third 
and fourth elements of a quadruplet can be chosen in 10, 6, 2, 1 ways; thus #G'= 120. 
Since G strictly contains $4, we have G = G'. Q.E.D. 

The group G of Cremona transformations of p2 acts on the system of cubics through 
the e~, hence on scxtics double a t  the e~. We can thus form the quotient PI~/G. 

L E M M A 4.2.2. P15/G is birationally equivalent to ~ e .  

Proo/. There is a natural  rational map P I~ -+~  e sending a plane curve to its proper 
transform in S. This map clearly commutes with the action of G, hence factors through 
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P15/G. Both spaces have the same dlmension (15) so we only need to check tha t  a generic 
C E ~ 6  is the image of precisely 120 curves of p15. 

I t  follows from a formula of Brill and Noether (cf. [KL]) tha t  a generic curve of 
genus 6 posesses precisely 5 g~'s. (For a generic curve in ~6 , z  we check this below.) By 
Riemann-Roch,  a line bundle L on C E ~ 6  maps C as a plane sextic if and only if the 
complementary line bundle eoc| -1 is a g~ on C. A plane sextic of genus 6 necessarily has 
4 double points (properly counted), and an easy dimension-count shows tha t  the generic 
C E ~ 6  cannot be realized as a plane sextic whose 4 double points are not in general posi- 
tion (including a coincident pair, etc.) Further,  there is a unique element of PGL (3) taking 
a given ordered quadruplet of points in general position in p2 to e 1, e2, e 3, e4, hence 4! such 
elements for an unordercd quadruplet. We conclude that ,  indeed, a generic C E ~ appears 
in p15 5.4! =120 times. Q.E.D. 

Remarks 4.2.3. (i) Given one of these 120 plane representations of C, there are precisely 
4 others which are projectively inequivalent, obtained from the original by quadratic 
transformations based on three of the four e~ (such triplets can be chosen in four ways). 
However, there is no natural  way of re-embedding these four; this corresponds to the sad 
fact tha t  S 4 is not a normal subgroup of S 5. The five-to-one map 

/: rl~/&-, r~/G 

is consequently not the quotient under a group action. 
(ii) On the cheerful side, knowledge of the fiber of f at  a point xoEP15/S4 is sufficient 

to construct the fiber of p15 over x0: if 

/ - l ( / ( Z o ) )  = {%, x~, x~, ~ ,  ~} 
then the fiber over x 0 can be naturally identified with the set of possible orderings of 
x 1, x 2, x s, x 4. Indeed one checks easily tha t  there is a unique element of p15 such tha t  its 
projective equivalence class (as plane sextie) is x0, and becomes x~ after quadratic trans- 
formation based at  the 3 ej other than  e~ (i = 1, 2, 3, 4). 

(iii) Pls/G itself is not quite good enough to serve as an ~ ' ;  for example, Proposition 
4.3.1(ii) below would hold only for almost all CEp15/G over a generic X. 

4.2.4. We now return to ~6.6. By  the proof of Lemma 4.2.2 there is a Zariski-open 
subset 7~/~ of 7~6,e which is finite (of degree 5) over an open ~ 0  in ~/o. Let  HS~e.6 be 
the fifth Cartesian product, with open subvariety II5~~ Let  HS~0~~ be the relative 

Cartesian product, i.e. the subvariety of I IS~~  parametrizing quintuplets mapping to 
single points in 7~ ~ Let  7~ ~ be the unique "off-diagonal" component of HS~07~.6, and 
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its closure in HSme.e. The action of S 5 on IISme.e clearly restricts to an action on ~ 0 ,  
hence also on ~ .  By Remark  4.2.3(ii), this action commutes with the action of G on p15, 
hence the quotient 

m' =~/G 

is birationally equivalent to ~ .  By standard arguments, the quotient m '  is a reduced, 
irreducible projective variety. 

4.3. Structure of m ' .  

PgOPOSITIO~ 4.3.1. (i) The pro~ective variety m '  is birationally equivalent to ~ e  
via the natural map 

e: m'-~ me. 

(ii) For generic X E m5 and all C Ee- l (ms  0 ms) over X, the germ o] m '  at C is naturally 
isomorphic to the base M o/the versal deformation o/C', where C' is the partial normalization 
o/C given by its proper trans/orm in the quintic del Pezzo sur/ace S. 

(iii) I / C  (as ablve) is nodal (i.e. ~ (C)Ems~ ms.s) then e is a local isomorphism at C. 
(iv) I] C (as above) is cuspidal (i.e. e(C)c ms)  then on a neighborhood o/ C E 7n', e 

consists o/three successive blowups (along the cuspidal locus m'c c m')  /ollowed by two dis- 
]oint blowdowns (onto the loci m~ar, m~.a.~ ~ ~6).  

4.3.2. Statement  (i) was proved in 4.2. We prove (ii) and (iii) next. We fix a generic 
X, and restrict C to be a singular curve lying over X as in (ii). By  definition there is a rela- 
tive curve over p15, embedded as a hypersufface in p15x p2. This induces, by definition 
of the versal deformation, a map from the germ of p15 at  C to M. Since G acts on pl~ freely 
near C, the map can be reinterpreted as 

Claim. ~ is an isomorphism. 

Proo/. The five-to-one map 

induces a five-sheeted cover of the base of any family of genus-6 curves, in particular M.  
On the one hand, this cover can clearly be identified with (PI~/S4)]c; on the other, by  
Remark  4.2.3(ii) the five sheets over M are disjoint (whenever the four double points 
at  C, in our case e 1 ... . .  e4, are distinct) so tha t  each one of them, given by (P15/G)[c, is 
mapped isomorphically onto M by  ~. Q.E.D. 
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This proves statement (if) for all C such that  

'm' lo  ,~ (P15/~) I o 

i.e. when the five 1, C' g4 s on are distinct. 

Claim. For generic C E ~ z  over X, the 5 g~'s are distinct. 

Pro@ Recall from Par t  I tha t  on X there is a 1-parameter family of g~'s parametrized 
by ~(X) = ~)sl~ (J(X)), a double cover of the plane quintie parametrizing singular ( = rank  4) 
quadrics containing the canonical image q)(X)cP4; choosing a g~ on X is equivalent 
to choosing a singular quadric and a plane-system on it, cutting the g~ on X. This gl lifts 
to C =X/(t~Nq) if and only if it maps 1o, q to the same point in p1  that  is, if and only if 

- -  5 1'S the line pq in p4 is contained in a plane of the system. Thus the g4 on C correspond to 
the 5 singular quadrics, generically distinct, in the pencil of quadrics in 1 )4 containing 
(I)(X) and its chord pq. Q.E.D. 

Similarly we see that  for C=X/(2p) euspidal, the 5 1, g4 s correspond to the singular 
quadrics in the pencil of quadrics containing (I)(X) and its tangent line at  (I)(p). For all 
but  finitely many 1o E X, these are distinct. 

Claim. For all C over X, at least one of the five sheets of e is disjoint from the others 
(=unramified). Hence ~ ' ] c  is mapped isomorphically to M. 

Pro@ The first statement follows from the previous claim by an easy dimension- 
count (keeping in mind that  our claim is only for generic X). The map ~': ~ ' l c - ~  ~ is 
constructed like ~ above, replacing P151c and its relative curve by ~ l  c and the relative 
curve pulled back from ~ . e ] c  where it exists by the first statement. The inversion of 
$' is the same as for ~. Q.E.D. 

(If 2 of the 5 sheets of ~ .  ~ come together, then the 120 sheets of 77n fit in 60 2-sheeted 
components, and there is a unique element of G interchanging the sheets in each pair, so 
the quotient ~ '  is nnramified; similarly in the other possible cases, as long as one sheet 
remains apart.) 

This completes the proof of (if); (iii) follows from (if) and the isomorphism 

/~: M - ~ I o ,  
discussed in 2.4. Q.E.D. 

4.3.3. Before proving (iv) we t ry  to make it plausible by the following description. 
In a neighborhood of Fx .~c  ~ E c  ~ ,  the essential features are: The 2 hypersuffaces ~ ,  
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7/$s, meeting transversally (by 2.5) along ~E,s; the codimension - 2  loci ?//hat, 7?/e.a.~. in 
ME, parametrizing curves whose elliptic tail is harmonic, respectively eqnianharmonic; 
and the fibration of 7/IE over ~/~E.s (or ~rar, ~/~.a.h.) by PZ's, the curves Fx.r. This whole 
configuration is taken by e -1 to a neighborhood, in ~ ' ,  of the euspidal C. Here the only 
feature is the hypersurface of singular curves, which has a cuspidal singularity (Exam- 
ple 2.2(2)) along ~/~c. 

Now think of ~/ '  as being "essentially two-dimensional"--by taking a generic plane 
section, or by considering instead the local deformation Mlooal of the cusp. (Example 2.2(2).) 
We describe e on this plane. (See Fig. 2.) 

Start: Cuspidal curve in the plane. 

First blowup: An exceptional divisor (self-intersection - 1) and a smooth curve meeting 
it tangentially at a unique point. 

Second blowup: Two exceptional divisors (self-intersections - 2 ,  - 1 )  and a smooth 
curve, all passing pairwise transversally through a common point. 

Third blowup: An exceptional divisor of self-intersection - 1 ,  met transversally at 
three distinct points by two exceptional divisors (self-intersections - 3 ,  - 2 )  and the original 
curve. 

Blow-downs: The first two exceptional divisors contract to a triple point (the equian- 
harmonic taft) and a double point (the harmonic tail). The last exceptional divisor para- 
metrizes, in ~ ,  elhptic tails. The original curve meets it transversally, and still para- 
metrizes the singular curves. 

Proo] o] (iv). What  is needed is a method to determine, given a family of plane sextics 
degenerating to a euspidal curve, which elliptic tail appears as the limit of the corresponding 
family of stable curves. The answer becomes evident when we replace again "plane sextics" 
by their complementary "four-sheeted branched-covers of pl,,: 

In a branched cover, a double point (resp. cusp) appears as two (resp. three) ramifica- 
tion points coming together. After replacing the base by a finite cover if necessary, we can 
assume the 18 branch points of curves in our family to be single-valued functions 

al(t) ..... a~s(t) 

of the parameter t in the family, and say 

al(O)-%(O)=aa(O)=O, a~(0)#0, i > 3 .  
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Fig. 2 

We obtain an equivalent family, for t~=0, by composing the covering map with a linear 
map on p1 taking al(t), as(t), a3(t ) to 0, 1, oo. In the limit all the as(0), i>3 ,  will go to the 
same point ~ ~p1. The required elliptic taft is clearly the double cover of 1 '1 branched at 
0, 1, c~,y.  

I t  now becomes straightforward to verify the proposition. For example, to check that  
the first exceptional divisor goes entirely to the equianharmonie point: In the (a, b)-plane 
of Mlooa~ (Example 2.2(2)) we approach the origin along a straight line of generic slope 
b/a=c;  say 

a = t b = c t  

then the three coinciding branch points are given, modulo higher terms, by the three 
solutions of 

0 = x a + a x + b  = x 3 + t x + c t  

and as t->0 the ratio of any two solutions tends to a cubic root of 1; hence the limit curve 
is eqnianharmonic. Similarly we get harmonic curves from b ~ t 2, and finally by  setting 

a = t  2 b =cta 

we get triplets (x v x2, x3) whose ratio is independent of t and varies with c, showing that  
the third exceptional divisor maps birationally to the modulus-curve of elliptic curves. 

Q.E.D. 
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Remarl~ 4.3.4. Inspection of the proof of (iv) shows tha t  the g~ on the degenerating 
family (global data on C) is not fully used. In  fact, all tha t  is needed is its local piece near 
the cusp, a two-sheeted cover of a neighborhood of the origin branched a t  three (moving) 
points. This data is local, in fact can be read off the local deformation of the cusp. Con- 
sequently the proof is valid in any genus, provided ~ '  (or locally, ~) can be constructed 
and satisfy (ii). (Same situation for (iii).) 

4.4. The factor maps. 

4.4.1. Whenever the space ~ '  exists , in particular in genus 6, we can construct the 
analogous object ~ ' ,  a branched-cover of ~ '  parametrizing allowable double covers of 
curves C C ~ ' .  We discuss ~ '  first, leaving the construction to 4.4.2. (In arbi trary genus 
we settle for the germ R of ~ ' ,  described in 2.6.) 

The only difference between "allowabIe" here and in Beauville's definition is tha t  
C, C are "plane curves" instead of "stable curves". Thus the condition on the double-cover 
C is tha t  its (arithmetic) genus be 2f f -1 ,  and tha t  P(C, C ) = k e r  ~ (Nm~)  be an abelian 
variety. For a cuspidal C one can describe all the allowable C as in the proof of Lemma 5.1 
of [B1]. The only double cover ~ we are interested in is the degeneration of the Writinger 
covers on nearby singular curves. Thus, for 

C = X/(2p)  
we have 

C = X 1 I_[ X2/(2Pl N 2p2), 

that  is, C consists of two copies of X meeting tangentially over p. On each X i the map 
~: C-~C is the normalization of C. 

One checks tha t  the double cover ~: C-~C is allowable; indeed the (generalized) 
Jacobian of C is an extension of J ( X )  by the 1-dimensional additive group Ga; similarly, 
J(C) is a Gg-extension of J ( X )  • J (X) .  The norm map is the identi ty on the fibers Ga of 
the normalization maps; hence ker (Nm) is an abelian variety, isomorphic, of course, to J ( X )  

]~ear C, ~ '  is a 3-sheeted branched cover of ~ ' ,  branched along the hypersurfaee in 
~ '  of singular curves. The 3 covers of a nearby smooth curve which appear in ~ '  corre- 
spond to the 3 non-zero (Z/2Z)-homology 1-classes which are vanishing cycles for the cusp. 
(The vanishing subspace of Hi(C, Z/2Z) is a 2-dimensional Z/2Z vector space, containing 
3 non-zero elements.) For  a nearby singular curve, the 3 covers correspond, in the notat ion 
of 2.6(i), to /~s and one of the ramified two-sheeted components Rod a. Over the whole 
neighborhood of C, ~ '  can be identified with the 3-sheeted cover of ~ '  given by  the 3 
coinciding ramificat ion--points  of the complementary g~, as in 4.3.3. (Similarly for R ~ M  

in all genera, using Remark  4.3.4.) I f  a, b are local coordinates on M1oo~ 1, as in Example  2.2(2) 
then a, x are local coordinates on R1ooal, where x s +ax  + b = O. 

6-802907 Acta mathematica 145. Imprim5 1r 4 Mai 1981 
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4.4.2. We pause to sketch a construction for ~' ,  based on the existence of compactified 
Picard schemes as constructed in [AK]. 

Given a family C ~  S, one has the classical family J(C) of "generalized Jacobians" 
over $. The fiber corresponding to a curve C is an algebraic group parametrizing invertible 
sheaves on C. In particular, this is not complete unless C is smooth: One obtains extensions 
of Jaeobians (of the normalization _NC) by the groups Gin, Ga corresponding to nodes, cusps 
in C, etc. 

In order to obtain a compactification J(C) of this family, Altman and Kleiman con- 
sider rank-1 torsion-free sheaves on C instead of only locally-free sheaves. Under very 
general conditions they obtain a projective scheme J(C) parametrizing equivalence-classes 
of these. The singular locus of this compactification is precisely its boundary, parametrizing 
non-locally-free, torsion-free, rank-1 sheaves. 

The easiest example is obtained from the standard family C of plane cubics, 

y2 = xa + a x  + b. 

Since these all pass through a fixed point (at co ), the family of Jacobians (away from the 
discriminant locus) is isomorphic to the original family, if the fixed point is taken as origin. 
We see now that  the family of generalized Jaeobians embeds naturally in C as the comple- 
ment of the locus of singular points, and the compactification is C itself. For a nodal cubic 

y2 = (X -4-2t)(X - - t )  2 

the non-invertible sheaf is the ideal-sheaf of the node, deforming along either branch. 
(The generalized Jacobian is Gm and its compactification a nodal p1.) For a cuspidal cubic 

y2 : X3 

the generalized Jacobian is Ga, its compactification a cuspidal p1, and the funny sheaf is 
(s, s 2) Oc, where s is a coordinate on the normalization near the origin (so x=s  2, y=s3). 
These represent the main phenomena that  occur in arbitrary genus. 

To construct R', we start with a "universal curve" C'-+ 7~l'. (This exists in a neighbor- 
hood of our cuspidal curves by Proposition 4.3.1(ii), and globally after replacing ~ '  by 
an appropriate finite branched cover ~ . )  Over ~ (=smooth  curves) ~ is the kernel of 
the squaring map in the corresponding family of Jacobians, or the (non-zero) points of 
order 2. We now define ~ '  to be the closure, in J(C') ,  of ~. 

To describe this R' near nodal or singular curves, note that  given an extension 

O-+ E-+ A-+ J-+ O 
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of J by an elliptic curve E, the points of order 2 in A map onto those in J with fiber (Z/2Z)~; 
When E degenerates to a nodal p1, say with 0, oo identified, half of these 2 ~g points remain 
apart while the others join in 2 ~g-~ pairs corresponding to the double point in E; in addi- 
tion there is a marked non-trivial point of order 2 mapping to 0 6 J ,  namely the point 
- 1  s  These latter 2~g-1+1 points correspond to the sheets of ~' ,  as in 2.6(i). We leave 

the details to the reader, as well as the verification that  near cuspidal C, ~ '  behaves as 
claimed in 4.4.1. (Hint. given an unordered pair 0, oo 6px and a point 16P 1, one has the 
harmonic point - 1. Fixing 1 and letting 0, oo come together, we see that  - 1 also acquires 
the same limit as 0, ~o. Thus the isolated sheet and one ramified pair of sheets, on the 
nodal curve, all come together on the cuspidal!) 

COrOLLArY 4.4.3. The natural map 

p: ~-~ ~' 

is birational. For generic X and all q 6 X ,  arbitrarily small neighborhoods o] [ x. ~ in ~ contain 
p-1 o/some neighborhood o /C=X/(2q)  in ~'. p can be factored in a sequence o/blowups/ol- 
lowed by blowdowns, so that the total trans/orm o/ ~E c ~ under the blowups is eventually 
blown down into the cuspidal locus ~c C ~'. On a neighborhood o/ ~ Z ~ E . S ,  P is biregular. 

In fact, from the previous description of ~ '  and Proposition 4.3.1(iv), one can easily 
write down the precise sequence of blowups-blowdowns, as in 4.3.3. 

In a neighborhood of -Px.~ in ~, we have: The hypersufface ~E (mapping 3 to 1 to 
W/E) (the infinitesimal version RE is described in 2.6(ii)), the two hypersurfaces ~z, ~odd 
(mapping onto W/z with degrees 1, 2) (cf. 2.6(i)), meeting ~E transversally in RE.s, ~E.odd; 
three codimcnsion-2 loci in ~E, one for equianharmonic tails and two for the harmonic tails 
(since monodromy there interchanges two semi-periods and fixes the third), and the fibra- 
tion by rational curves/~x, q. 

In a neighborhood of (C, C) in ~ '  we have two hypersurfaces ~odd, ~s (over the cuspidal 
hypersurface ~ parametrizing singular curves), each smooth, meeting tangentially along 
the cuspidal locus ~c- (W/z is the branch locus for ~'-~ 77t', ~odd the ramification.) In local 
coordinates (a, b on Mxooa~; a, x on R,ooal, as above) the equations are: 

Ms: 4a a + 27b 2 = 0 
Rs: 4a + 3x 2 = 0 
Rodd: a + 3X 2 = 0. 

(cf. Example 2.2(2)) 

Finally, the steps of blowing up and down correspond naturally to those in 4.3.3, 
replacing loci in W/by their analogues in ~. 
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4.4.4. I t  remains to construct the map 

p': ~-~ A~_~. 

We use the notation of 4.4.2. The family 

lifts to 
C'-~ ~' 

and this relative curve admits a double cover 

:~': C ' ~  C' 

such that  over a point of ~ '  we have the double cover it parametrizes. We form the families 
J(C') ,  J(C') over ~ '  of generalized Jacobians, ~dth the norm map 

Nm: J(C') ~ J(C') 

induced by ~'. We define P (C ' )=ke r  ~ (Nm). A priori this is a family of algebraic groups, 
but  by the restriction to allowable covers, all of these are abelian varieties, varying nicely 
over R', inducing the desired map ~ ' .  By Beauville's theorem (cf. Theorem 1.1.1 and 1.1.3) 
~ '  is a proper map. 

Clearly the composition 
~)'op 

equals ~ on a punctured neighborhood of ~ in ~, hence equals ~ everywhere by con- 
tinuity. For g = 6, since p is birational 

deg ~ = deg p 

so we only need compute the (local) degree of ~ along ~s, as claimed. 

PROPOSITIO~T 4.4.5. _For ( C, C)E R'eus~ over a generic X E ~g-1, ker (~'*) consists o/ 
quadrics in the canonical space o I X containing ~P(X) and its tangent line Tp ~P(X) at the 
normalization o I the cusp. 

Proo]. We use the notation and method of w 3. For U near Co=X/(2p), the codif- 
ferential is 

~*: S2T*(P(C}} -~ T c ~' 
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as before, T*(P((7o) ) ~ T*J(X) ~H~ cox) ~H~ eoc~174 However, there are two dif- 
ferences: 

(1) ~/is no longer locally-flee at  p, but  rather 

v ,  ~ (t, t~) O~ = O, 

which is only torsion-free (cf. 4.4.2). 
(2) T * o ~ ' ~ T ~ o ~ ' .  Here ~ '  is a 3-sheeted cover of ~ '  (cf. 4.4.1, Example  2.2(2)) 

branched along the hypersurface 
4a 3 § 27b 2 = 0 

and a, x are the coordinates on Rloo~ I corresponding to a, b on Mlooal. (xa§ b=O.) 
Letting ~: _R-+M (or ~ ' ~  ~ ' )  denote the natural  projection, we have 

re* da = da 

7r* db = - x d a  - (3x 2 +a)  dx. 

This means tha t  over •', ~ * T * ~ '  is the subsheaf of T*R' whose sections have a vanishing 
rib-coefficient along R'ousp. Instead, we think of sections of T*R'  as certain meromorphie sec- 
tions of ~ * T * ~ ' ,  a locally free sheaf whose fiber over 0E ~ '  is H~ ~c| 

We can now compute ~*. As in w 3, ker (~*) is contained in the space of quadrics 
containing (b(X). (This reflects the fact tha t  " ~  looks the same near all (generic) X "  so 
p .  surjeets a t  least onto T . Y z _ t c  T ,  Ag_I.) Since for CeTtlz~TtlE.s we know tha t  p* 
vanishes on quadrics containing Up(X) and the relevant chord ~P(p), O(q), the same follows 
at  a cuspidal C o for quadrics containing qb(X) and its tangent  line at  p, by  continuity. 
Hence, ker (~*) must  be either the system of quadrics through ~P(X), or its codimension-1 
subsystem of quadrics through T~(I)(X). We claim it is the latter. 

Fix a quadrie Q, containing up(X) but not T~(I)(X), hence not containing nearby chords 
either. Consider a family of singular curves C t with common normalization X,  degenerating 
to C o. (C,=C/(pl(t)~p2(t)) where in local coordinate s on X near p, 19,(t) is the point with 
coordinate s~(t) = § This family maps to Mlooal by a(t) = - 3 t  e, b(t) =2t  ~ (clearly satisfy- 
ing 4aS+27be=0) and lifts to Rloea~ by x(t)= - 2 t .  By  Proposition 3.4.1, a t  C,, ~*(Q) is a 
torsion-section of H~ ~| hence in the deformation Me, it vanishes on the local 
deformation of the node and must  be a multiple of d (4a s + 27b 2) = 12a ~ da + 54b db = 108t 4 da + 
1089db. As t->0, this should acquire a first-order pole. Hence, up to an invertible factor, 
D*(Q) gives 

da § t-l  db 
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in H~174162 and therefore by applying ~* 

3da - 9t dx 

as a section of T*R'. In particular as t~O we see that  O*(Q) is a non-zero multiple of da, 
as required. Q.E.D. 

w 5. The degree 

As in Parts II,  III ,  we restrict to the case g = 6 and compute the local degree of 
along ~s, using the previous results on ker (~*). 

THeOReM 5.1. The local degree o/the Prym map 

P: A5 
at the boundary equals 16. 

Proo/. By Lemma 1.4, the relevant components are ~s, RE and ~ T ~  ~T" The latter is 
part  of the trigonal component extending into ~6 itself, and was treated in part  III .  By 
Corollary 4.4.3, ~ is blown down into ~ 'o~ in ~', so we only need compute the degree 
along ~s c ~' .  By Propositions 3.4.1 and 4.4.5, for C =X/ (p  ,~ q) where p, q E X  are distinct or 
coincide, ker (0'*) is 2-dimensional: (I)(X) is the complete intersection in pa of 3 quadrics 
in general position, and the line pq (tangent at p, if q =p)  imposes one linear condition on 
these quadrics. 

By Lemma 1.3.2, the degree of 0 '  can be computed after blowing up Ysc J45 and 
restricting to the exceptional fiber. By Lemma 1.3.1, this is the projectivization of the dif- 
ferential ~ . .  (Since ~s is a hypersurface, it need not be blown up.) 

Restricting to the fiber over a fixed, generic, X E ~/15, the map becomes 

/: S2X ~ p2. 

Here the symmetric product SeX parametrizes singular C over X, and p2 is the projective 
normal space to ~ 5  in ~5 at  X. As in Par t  II,  w 5, this is dual to the p2 parametrizing the 
quadrics through (I)(X). The map / takes (p, q)ES2X to the pencil of quadrics through 
(])(p), r so that  deg (/) equals the number of chords of (I)(X) contained in the inter- 
section of two of the quadrics, in general position. 

L ~ M M A 5.2. The intersection o/two (transversal) quadrics in p4 contains precisely 16 lines. 

L ~ M A  5.3. The canonical curve ~P(X) meets each o] the 16 lines, twice. 

The combination of these two lemmas will clearly complete the proof of the theorem. 
Lemma 5.2 is classical: the number of lines on any del Pezzo surface is computed in [SR], 
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in particular the intersection of 2 quadrics in p4 is shown there to be the blowup of P~ at 5 
points in general position so that  the 16 lines are given by the 5 exceptional divisors, 10 
lines joining pah~ of points, and the unique conic through all 5. (More directly, perhaps, 
one can use Schubert claculus to compute the number 4 n of linear spaces p~-i in the inter- 
section of 2 quadrics in p~n cf. [Do].) 

Recalling that  (I)(X) is the complete intersection 

Q0 rl Q1 I1 Q2 

of three quadrics and letting 1 be a line in Q1 n Q2, Lemma 5.3 follows immediately: 

#((P(X) fl l)Q, nQ~ =#(Q0 A [)p* = 2. Q.E.D. 

Remark 5.4. Precisely the same local picture holds in all g: ~ factors through R' 
(or at least infinitesimally through R) and the factor map ~ '  looks like 

/ = S2X ~ P((quadrics through (D(X))*). 

But  for g >~ 7, / is generically inj ective (the space on the right has dimension ((g - 3) (g - 4)/2) - 
1, which is >~ 5 for g >17). 

Part V. Applications 

w 1. Cubic threetolds 

In much of Prym theory, a recurrent difficulty is the presence of sporadic loci, provid- 
ing counterexamples to desired statements or preventing "generic" identities from holding 
everywhere. The point of our main result 1.2.1 is to ensure, under favorable conditions, 
that  no such sporadic components may pass undetected. In this section we prove a typical 
example. 

T ~ O R ~  1.1. For a generic cubic three]old X c  p4, i] the intermediate Jacobian J (X)  
is isomorphic (as principally polarized abelian varieties) to P(C, ~]) /or some (C, 7) 6 ~s, then 
C is a plane quintic curve and ~ an odd semi-period, (C, 7) 6 ~c. 

To prove this, we apply the technique developed in Parts  II ,  III ,  IV to compute the 
degree of ~ along 

Rx = O-I(J(X)) (~ Re. 

We see below that  this degree is 27. Moreover, the codifferential is of maximal rank so 
Rx is isolated in ~-I(J(X)) ,  in other words it is a connected, as well as irreducible, com- 
ponent, hence there can be no collapsing components such as R~ in Par t  IV. These two 
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facts together imply ~z  = ~-I(J(X)). In the next  section we shall see moreover that  all 
of ~c is mapped by ~ to intermediate Jacobians of cubic threefolds. 

1.2. We recall some standard facts on cubic threefolds. The original work [CG] or the 
expository [T1] are good references for the projective-geometric facts, while the identifica- 
tions of cotangent spaces etc. are paraphrased from [G]. 

Let  X c p 4  be a smooth cubic hypcrsurface. X contains a two parameter family of 
lines, parametrized by the 2"ano sur/ace F(X). (Proo[. A generic hyperplane section of X 
contains a finite number (27) of lines.) The intermediate Jacobian J(X) is isomorphic, as 
principally polarized abelian varieties, to A~ the Albanese variety of zero-cycles on 
2"(X) of degree zero, modulo abeli~n equivalence. Fixing a line 1E F we obtain a map 

by 
Qz: 2"(X) ---> J(X) 

e: l ~ - ~  [/1] - [/] .  

The @-divisor in J(X) is the image of 2' • F under the induced map 

O: 2, x 2, ~ J(X) 

Under ~ the diagonal in F x 2 ,  collapses to O~J(X) which is a triple point of the 
image @, in fact its only singularity. The projectivized tangent space 

P(T0(J(X))) 

can be naturally identified with the ambient p4. (This identification leads to Torelli's 
~heorem for cubic threefolds: X can be recovered as the tangent cone to O at its (only) 
triple point.) 

1.3. The relation with Pryms is via Mumford's conic-bundle theory, cf. [B2] or the 
appendix to [CG]. Let  )~z be the blowup of X along l, and 

~he projection map. 
(i) / makes )~z into a conic-bundle: for generic p e P  2, ]-l(p) is a conic in X (meeting 

in two points). F o r p  in a curve Ccp2 ,  
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is the union of two lines coplanar with I. Thus there is an isomorphism 

J(X) ~ O(C, C, n) 

where ~ is the double cover of C given by the two components in / - l (p) , /oEC,  and ~ the 
corresponding semi-period. 

(ii) C is a plane quintic, smooth for generic l. (Proof. A generic hyperplane section of 
X contains 5 line-pairs coplanar with 1.) Similarly, C is smooth and ~r: C-+C unramified 
for generic l, and allowable in any case. 

(iii) The map 
~ :  O-~P 4, 

sending p E C to the intersection 

l~(p) n 12(p) e X  = p4, 

is the Prym-canonical map of (C, ~). Indeed the Abel-Prym map 

y~: C -> ~O(U, ~) ~ J(X) ~ Ao(F) 

is just the restriction to C= F(X) of ~. The Prym-canonical image of ll(p) E C is the deriva- 
tive of F at ll(p) (as in 1.4.3) and corresponds to a point o f / l (p )cP4 .  We conclude as in 
Proposition III.1.5 tha t  ~F(p) is indeed ll(p) N 12(p), by repeating the argument for 12(p). 

(iv) We now see that  ~ is odd so that  (C,~)E~c.  Indeed Or*(])[c| has a unique 
effective divisor (compare note after Lemma II.3.2) given by the 5-point intersection 
1 N 1F(C), since W is given by 

while after projection from l, C is mapped to P~ by 

O~,(l)lc. 

1.4. I t  follows from the foregoing that,  as abstract varieties, 

F(X) ~ ~ = Rx. 

We let ~ c c  Re denote the closure of the union of ~ for all smooth cubic threefolds X. 
This is clearly an irreducible 12-dimensional subvariety of ~c. (In w 2 we will see that  
actually ~ = ~c-) Let  ,~c~-~5 denote the closure of the locus of intermediate Jacobians 
of cubic threefolds. To compute the local degree of ~) along ~ ,  and prove the theorem, 
we are led as in III.3.2 to the blowup diagrams: 
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and on exceptional loci, 

R .  D O I ~ A G I  A N D  R .  C. S M I T H  

D: 0 , i5 

I 1 
~ e: ~ t  

Po: R~ , Ao 

where 7/: 1 is a P~-bundle-map and z2 a P4-bundle-map. 
For a cubic threefold X, the fiber 7~I(J(X))  can be identified with the dual of the 

ambient p4 of X, as follows: The cotangent space 

T.7*(x).,45 = S~T~ ( J ( X ) ) 

consists of all quadrics in p4 =P(T~(J(X) ) ) .  Among these, Griffiths shows in [G] that  the 
conormal space 

/V*(x)(Ac\ As) 

corresponds to those quadrics X~ polar to points p of p4 with respect to X. Hence naturally 

and 
P(N*) ~ p4 

~"~2l(X) ~:~ P(.~V) ~-, (p4)*. 

Since ~ is an unramified cover of MQ (the moduli space of plane quintics) we can 
identify the fiber of ~1 over (C, 77) E ~c, as in Par t  II ,  w 5, with the dual of the ambiant p2 
of C. Fixing X, we can describe this P~ in terms of the line 1EF(X):  P~ is the space of 
planes through 1 in Pa, and (P~)* is the subspace of (p4)* dual to 1. 

--1 t Let  ~x  denote Zl (~z), and # z  the restricted map. One might guess the following: 

LEMMA 1.5. The map 

l e F ( X )  

is the natural injection on each (P~)*. 

Proof. By 1.3(iii) the p4 ambiant for X is also ambiant for the Prym-canonieal IF(C), 
so that  Proposition 1.4.1 applies to this Pa: the codifferential ~)* is the restriction of quadrics 
from p4 to ~F(C). The lemma is equivalent to the following dual statement: For p E P a ~  
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l, O*(Xp) is the divisor on C cut by the quartic Cp, polar with respect to C to the point 
p'E P~ =P4/1 corresponding to p. This is clear, recalling that  for q E C, 

and that  
tF(q) E X ~  the line pVf,(q) is tangent to X at tF(q)-~pE T,r(q)X, 

q E C~,~ the line p'q is tangent to C at  q ~  p'E Tq C 
<:~p 6span (1, T,r(q)tF(C)) = Tw(q)X. Q.E.D. 

1.6. The proof of the theorem can now be completed. By Lemma 1.5, De has the maxi- 
mal possible rank. Its degree is 27 since a generic hyperplane section of X contains 27 lines, 
hence comes from 27 planes (P~)*. This is the total degree of ~,  so we have exhausted the 
fiber ~-l(Ac).  Q.E.D. 

w 2. Explicit construction 

In appendix C to [CG], Clemens and Griffiths suggest tha t  a cubic threefold should 
be recoverable from the data of a plane quintic C with an odd semi-period ~]. This is known 
for those (C, ~) tha t  come from cubic threefolds X, so the question is essentially one of 
irreducibility (almost-all (C, 7)E ~c arise from cubics) and degeneration. Our treatment,  
though, is purely synthetic. 

2.1. Let  
~F: C ~ P  ~ 

be the Prym-canonical map of (C, ~), and 

D : P I +  ... +P5 

the effective divisor in I OF2(1)]c| The 5 points 1F(pl) arc colinear in p4, since projec- 
tion from them yields the planar C. Let  1c pa be the corresponding line. 

We build up a skeleton for X. X should contain ~F(C) and l, and for each qE~(C) two 
lines through q meeting l; hence 

TqX = span (1, Tq~(C)). 

:Next we recover the pencil of quadrics X~ polar to X with respect to points p El= X. 
The system of cubics in p2 through D maps P~ birationally to a (quartic del Pezzo) surface 
S = P  ~. The image of C under this map spans p4 and the restricted linear system is ~c |  
so this p4 can be identified with the Prym-canonical space. Thus we have 
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and S is the transversal complete intersection of two quadrics in p4 (cf. [SR] and compare 
the discussion following Lemma IV.5.2). Note that  for the desired X, S should be the base 
locus of the pencil of polar quadrics Xv, p el: Each Xv should contain 1F(C) and 1 since the 
tangent spaces to X at points of ~(C), l contain l, and any quadric containing ~F(C) must 
contain S. 

LEMMA 2.2. In  the system pa4 o/cubic three/olds in p4 there is a subsystem plo of cubics 
through ~F(C). All of these contain 1. There is a unique X/or  which all Xv(p El) contain ~(C). 

Proof. Consider the restriction map 

//~ 0(3))~Bo(s, 0(3)Is) 

since S is p2 with D blownup, 

and is of dimension 

On the other hand, 

H~ O(3)[s) ~ H~ 2, 0(9)|  

dim H~ 4, 0(3)) = 35 

and the kernel of restriction is 10 dimensional, consisting of cubics of the form 

H1Q1 + H~ Q2 

where H~ are linear and QI, Qs are two distinct quadrics through S. Hence restriction is 
surjective. 

The further restriction 

H~ 2, 0(9)| ~ H~ O(3) Is) -~ H~ (We) 3 | 

has a 1-dimensional kernel, the only nonic curve with triple points at  D being 

C+2.A 

where A is the unique conic meeting C tangentially along D, 

C.A =2D.  

(Conics in P2 cut the complete ]wel on C.) 
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Altogether, there is an l l-dimensional subspace in H~ 4, 0(3)) restricting to 0 on C, 
or a system p10 of cubics containing IF(C). All of these contain 1 since they meet  it in >~5 
points. 

To prove the existence of X, it suffices to check tha t  for fixed p E1, the condition 
"X~ contains W(C)" imposes 5 linear conditions on a cubic X '  EP 1~ (containing l, iF(C)), 
so the same condition for all pE1 imposes ~< 10 conditions. (The X~ vary  linearly in p.) 
Indeed, the quadric X~ cuts on C a divisor in H~ (eoc) 2) which contains D=IN~F(C), 
hence residually a divisor in H~ coo| which is 5-dimensional, so there is a subspace in 
pl0 of codimension ~<5 of cubics X '  such tha t  X~ ~ F ( C ) ,  as required. 

Finally, the uniqueness of X up to projective automorphisms follows from the fol- 
lowing result and the Torelli theorem proven in [CG]. The absolute uniqueness follows, 
since all conditions on X are linear, while no non-trivial linear family of cubics can be of 
constant projective type (since, for example, it contains singular cubics). Q.E.D. 

PROPOSITIO~ 2.3. For the cubic X o/Lemma 2.2, 

J (X)  ~ p(C,  ~). 

In/act, rio(C) is the Prym.canonically embedded plane quintic derived/tom X, l. 

Proo/. For each pEC, the plane H=<l,~F(p)> is contained in T~(v)X; hence Yi N X 
consists of l and a conic singular at  p. Q.E.D. 

As the rich get richer, the existence of our construction proves another one. 

PROPOSITIO~ 2.4. For ( C, 7) E ~c (odd double cover o/ a plane quintic curve), the branch 
locus o/the Gauss map 

C: | ~ (p4)* 

on the theta divisor 0 o/ ~)(C, 7), is the projective dual variety o~ a cubic three/old X c p 4 ,  
and J(X) ~ O(C, 7)" 

Proo/. Clemens and Griffiths prove this for those (C, 7) which arise from an X. Q.E.D. 

w 3. The structure of the tiber 

We saw in w 1 tha t  for a cubic threefold X, ~-I(J(X)) ~ Fx, the Fano surface of lines 
in X. After blowup, we found the fiber 
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to have cardinality 27. In  fact, this fiber comes equipped with an extra structure, tha t  of 
the incidence-correspondence for lines on a cubic surface. Thus given one of the 27 objects 
in (~e)-l(A),  the others break into 10 corresponding to the incident lines and 16 corre- 
sponding to skew lines to the original 1. This suggests tha t  the general fiber of ~ might 
also carry some extra structure. 

The results over Jacobians fit with this possibility: the fiber, after blowing up, breaks 
into sets of 1, 10, 16 objects, as would the lines of a cubic surface after one of them is 
marked. The marked line can be blown down yielding a quartie del Pezzo surface, and 
indeed we saw in Par t  IV, w 5, tha t  the 16 double-covers arising from the boundary com- 
ponents correspond naturally to lines on a quartie del Pezzo, hence carry the structure 
induced by the incidence correspondence on the 16 lines on a cubic surface not meeting 
a given one. 

We formahze these indications in the following: 

Conjecture. The Galois group of the P rym map 

as a subgroup of the symmetric group $2~, is isomorphic to the group of symmetries of the 
incidence-correspondence of lines on a smooth cubic surface. 

This group is well-known, el. [Di]. I t  has order 51840, and a subgroup of index 2 (the 
even permutations) which is simple. 

In  w 4 we discuss briefly a family of threefolds, the "double solids", which is larger 
than  tha t  of cubic threefolds, in the sense tha t  any  cubic threefold is a degeneration of 
"double solids". From work of Clemens we knew tha t  the intermediate Jacobians of these 
threefolds form a hypersurface in A5 (containing both Ac, Ys). Further,  Clemens could 
realize each of these intermediate Jacobians in 6 ways as a P rym variety, and by Beauville's 
criterion, Proposition 1.4.1, all of these represented ramification points of the P rym map. 

Comparing with our conjecture, i t  seemed tha t  the intermediate Jacobians of Clemens' 
double solids formed the locus in z45 where the elusive cubic-surface became singular, thus 
the 27 lines degenerated to 6 double-lines (through the double point) and 15 simple lines. 
The 6 available Prym-constructions represented the double lines, and the other 15 were 
yet  to be found, with a few hints as to where to look coming from a numerological compari- 
son of the lines on a singular cubic with various objects at tached to a double-solid. 

To us, the conjecture became believable when we received Clemens' letter, providing 
a conic-bundle construction for the missing 15, fitting perfectly with the expected sym- 
metries: each of the 15 lines is contained in the plane spanned by a unique pair of the 6, 
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so we expect one of the 15 simple double-covers to correspond to a unique pair of the 

"ramified" 6. We sketch this in w 4. 

The conjecture has recently been proven by one of us. I ts  proof will appear elsewhere. 

w 4. Clemens'  double  solids 

4.1. Everything in this section is due to H. Clemens. We let X denote the double cover 

(~" X - * P  3 

of p3, branched along a quar~ic surface F c p a  with 5 ordinary double points Pl ..... P5 in 
general position. These and more general double-covers of pa are studied in [C]. I t  is shown 
there that,  in this case, J(X) is a 5-dimensional, principally polarized abelian variety, 

J(X) e.45. 

The fastest way to see this is to exhibit J(X) as a Prym variety, via a conic-bundle construc- 
tion. Let 

~t: X -~ p2 

be the composition of ~ with projection (a rational map, blowing up Pi) 

1 ~ :  p a ~ p ~  

from p ~ . ~  is clearly a conic-bundle map: a point IEP 2 can be identified with a line in pa 
through p~, and ~-1(/) consists of a conic or pair of lines according as l meets F transversally 
or tangentially. 

Thus we have 
J(X)  ~ 0(04, C,, ~l) 

where C~ c p3 is the branch locus of projection 

from p~, a two-to-one map. The 2 points of Ci over pEC~ correspond, by Stein factoriza- 
tion, to the components of ~-l(pp~). 

So far we saw 5 ways of representing X as a conic-bundle. The sixth appears from 

symmetry considerations, analogous to those in IV.4.2. This time we are dealing with a 
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group G of order 6! acting on p3 by  Cremona transformations which preserve the system 
of quadrics through the pt. I t  is generated by  linear transformations and inversion in any 
four of the five p~. Under this G, the quartic F is sent to various quartics, all with 5 ordinary 
double points. Of these there are 6=6!/5! projectively inequivalent types. Applying ~r 1 
to five of these yields the 5 ~z~ on E. The sixth can be described as follows: Instead of ~z~ 
we have the map 

, p 3  __> D 7~0: 

where D is the del Pezzo quintic surface parametrizing twisted-cubic curves in p3 through 
Pl ..... Ps, and ~0 sends p EP a to the unique twisted cubic through Pl ..... P5, P. The resulting 
~0 is equivalent, via transformations in G, to the other qi. 

Using the linear system of quadrics through Pl ..... P5, p3 is mapped to pa (as a "Segre 
cubic primal") and the action of G is linearized. The image of each C~ (i=O, 1, ..., 5) in 
Pa is Prym-canonical (cf. [C]), and there is a quadric in p4 cutting a divisor whose pullback 
in p3 is F. (The map 

H~ 4, 0(2))  --> H~ 3, 0 (4 )  (~) (Ipl+...+p~) 2) 

is injective, hence surjective since both sides are 15-dimensional.) Since C~c_F, we see 
tha t  the canonical images ~F(C~) are contained in quadrics, hence (C~, ~ )  are ramification 
points of ~ ,  by  Proposition 1.4.1. 

We shall need the following: 

L ~ M A  4.2. (i) Let 11, 12 be lines on a smooth cubic sur/ace S c p a ,  meeting at p.  The 
project ion/tom T, 

/: S-+ p2 

has degree 2, blows up T, blows down 11, 1 e to points Pl, P2 CP2, and its branch locus is a quartic 
F passing doubly through the p~. 

(ii) A n y  plane quartic F with 2 double points arises this way. 

Proo/. (i) The ramification curve of / is the space sextic S f] S, ,  where S. is the polar 
quadric of S with respect to p. For p ES, this has a double point at  p, so the branch locus 
E is a quartic. For p = l 1 ~ 12, the ramification curve splits into 11, 12, and a residual quartic 
curve, cut on S, by  another quadric, hence meeting each l~ twice, so the projection in P2 
passes through each p~ twice. 
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(ii) Let  P '  be P~ blown up a t  p~, p~. The proper transform of F in P '  represents an even 
homology class (twice the proper transform of a conic through pl ,  p~) so the double cover 
]: S ' ~ P  ~ can be formed. In  S '  the inverse image of 1 = P I P 2  splits into 2 curves l', l"; we have 
the intersection numbers: 

1'. l" = 2 

( l ' + l " )  ~ = 2 l  ~ = 2 
hence 

l ' .  l '  = l" .  l" = - 1 

so tha t  l" can be blown down to a p o i n t  p yielding a smooth surface S. One sees tha t  the 
linear system 

(where l~ is the inverse image of p~) embeds s as a cubic in Pa, and after projection from p 
the resulting map  is given by I I ' l ,  hence is the original double-cover/ .  Q.E.D. 

4.3. As discussed in w 3, we expect the existence of 15 more conic-bundle structures 
on X, each corresponding to a pair of the previous six. Thus we start, for example, with a 
quartie F as in 4.1, with two of its double points marked, say Pl, P~. (We discuss the other 
possibilities below.) 

Let  l =~1P2, l' and l" the two lines over it in X, and K a variable plane through 1 in 
pa. By  Lemma 4.2, ~-I(K)  is a projected cubic surface, with the p~ blown up and l" blown 
down to the point of projection/o. The cubic is ruled by  the pencil of conics in planes 
through l', and this ruling descends to ~-I(K).  Letting K vary,  we obtain a (birational) 
map of X to p l •  p1 whose fibers are conics or line-pairs, as required. This structure is 
easily seen to differ from the previous six; for example, it is symmetric in Pl, P~ and hence 
differs from the corresponding two structures. 

4.4. The choice of one of the 6 projectively inequivalent quartics _~ corresponding to 
X is equivalent to marking Co, one of the 6 ramification-points C~ of P rym over J ( X ) .  The 
15 pairs ( ~ ,  ~j) then break into 

pairs where i, ?" = 1 ... . .  5 and 5 where ?" =0.  In  4.3 we described the conic-bundle structures 
corresponding to the former 10; the latter can be deduced by  applying transformations of 
G, and are as follows: 

7 - 802907 Acta mathematica 146. I m p r i m 6  le 4 M a i  1981 
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Instead of a 1-parameter family of planes K, one considers the pencil of quadric cones 
in pa, with vertex i~ and through the four other p~, k~i. For each such cone K, ~-I(K) is 
again rational and can be ruled by conics. 

4.5. Both of these cases can be described simultaneously when pa, F are replaced by 
the Segre Cubic Primal Y and the quadric Q cutting 2' on it. I t  is well-known [SR] that  Y 
contains 15 planes (blowups of the 5 p~, and images of the 10 planes PiPjPk) fitting in 6 
ways into quintuplets, each quintuplet intersected by a two-parameter family of lines in 
Y, and the lines of each of these 6 families give a ruling of Y. The foregoing can be restated 
as follows: 

Each of the six curves C~ is obtained as the locus in Y where lines of one of the rulings 
are tangent to Q. 

The other 15 structures correspond to the 15 planes in :IT: Given a plane II, we consider 
the family of quadric surfaces K cut on Y, residually to IF[, by spaces pa containing II. For 
each such K, ~-I(K) is the double cover of a quadric branched along its intersection with 
another quadric; projection from a generic point of K reduces to the situation of Lemma 
4.2, so ~-I(K) is ruled by conics, yielding a conic-bundle structure on X. We leave to the 
reader the verification of details and the derivation of 4.3, 4.4 from the present, symmetric 
description. 

w 5. Geometric Schottky Problem 

The Schottky problem asks to find equations in the coordinates on •g ("thetanulls") 
or tIg (periods) characterizing those abelian varieties which are Jacobians. The geometric 
analogue is to find natural hypersurfaces in Ag which contain ~g. 

When g = 5, the branch locus B of 0 is one such hypersurface. Indeed, by the results 
of Par t  IV, w 1, and Part  V, w 1, 0 fails to be finite over 75 and over the locus of inter- 
mediate Jacobians of cubic threefolds, so both of these are in B. Further,  as observed in 
Par t  V, w 4, B contains the intermediate Jacobians of Clemens' double solids. By a dimen- 
sion count these form a hypersurface in ~ ,  hence an irreducible component of B. Easy 
degeneration arguments show that  these can specialize either to Jacobians or to inter- 
mediate Jacobians of cubic threefolds. 

A more careful study reveals tha t  B is irreducible (thus consists of nothing but  inter- 
mediate Jacobians of double-solids and their degenerations); that  Y5 is in fact highly- 
singular in B; and finally, that  Y5 can be recovered from B, yielding a "geometric" solution 
of the Schottky problem in genus 5. The details will appear elsewhere. 
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APPENDIX: FAmilies o |  Polygonal Curves 
BY 

Rort Donagl Marl~ Green 
Univ. of Utah and UCLA 

Let  C be a smooth, automorphism-free algebraic curve of genus g. C is called d-gonal 
if it possesses a base-point free linear system g~, or equivalently if it can be represented 
as a d-sheeted branched cover 

/: C~P I. 

1Por d = 3, 4 etc. we have trigonal, tetragonal etc. (Hyperelliptic curves, d = 2, always possess 
a non-trivial automorphism.) 

A trivial count of degrees-of-freedom, a la Riemann, shows that  modulo automorphisms 
(of p1), the family 3~ of d-sheeted covers of p1 (of given genus 9) depends on 2d + 2 9 - 5  
parameters. This proves: The subvariety ~ 7t~g o/d-gonal curves has codimension >~g- 
2d+2.  (The codimension is precisely g - 2 d + 2  if a generic C6 ~ possesses only finitely 

1' s many ga .) 
In [Fa] Farkas proves that  the precise codimension is 

9 - 2 d  - 1 +h~ O(2D)) 

where D is any divisor in the given 9~ on U. Clearly h~ O(2D))>~3, and one "expects" 
equality, at  least for small d, but  we do not assume this. 

Our purpose is to exhibit the tangent space to ~ ,  at a "nice" C as above. More 
precisely, we use the standard identification 

To~ ~ 111(c, O) ~ (H~ ~))* 

(where E) denotes the tangent sheaf of U) and exhibit the subspace of H~ co~) which is 
the annihilator of Tc~la. The proof depends, naturally, on making the identifications 

explicit, and the simplest way to do this seems to be Kodaira's, reviewed below, which 
works only over C. (The identification can be done homologically, el. [GH2].) 

THEORW~. Let _R be the ra~ni/ication divisor in C o]/: U-+P 1. Then the subsTace 

H~ ~o~(- R)) ~ H~ o)~) 

is the annihilator o / T o ~ ,  under the standard identi]ication. 

Proo]. Since R e lwc| 0 (29) ]  (where D e9~), we have 

h~ o)2o(-R)) = h~ o~c| O ( - 2 D ) )  = (29 -2  -2 d )  - 9 +  1 +h~ O(2D)) 

= g - 2 d -  1 +h~ O(2D)) = codim (7/~). 
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I t  suffices therefore t o  show tha t  all quadratic differentials on C which vanish on R are 
annihilated by  the tangent  vector to any  curve in ~ through C. 

Consider a one-parameter family C-~A deforming C, where A is "a small disc". 
Topologically C is trivial, and we think of C as a family of complex structures on a fixed 
curve C. Such a family can be given, for example, by  a map  _~ (subject to various topo- 
logical restrictions): 

E:C• 

where U is some Riemann surface. (More generally, there could be a family of compatible 
maps F t defined on an open covering of C • A . . . . .  ) For each tE A, ]t = F[z• determines 
the complex structure on Ct = C x {t}. We denote /0  by z and think of it as a complex- 
analytic coordinate on C o ~ C. The quanti ty 

~ ~z| 

Oz 

is a O-valued (0, 1)-form on C, depending (for fixed t) only on the complex structures on 
C o, Ct (that is, does not change when ei ther /0 o r / t  are composed on the right with an 
analytic function) and measuring, in a way, the "distance" between these structures. 
Kodaira shows tha t  the O-valued (0, 1)-form 

COt co ~ 0  

represents the class, in H~(C, 0),  given by  the desired tangent  vector to ~ g  along C. 
Now assume the family C is in ~ ,  so there is an algebraic map E: C ~ P  1 which has 

degree d on each Ct. Via an identification C ~ C • A, we obtain 

E: C • A ~p1 

which can be used as above to measure the variation of complex structure on C along C. 
Let  q =q(z)dz 2 be a quadratic differential on C, and co =co(z)(~/~z)d5 a O-valued (0, 1)-form. 
The pairing 

Hi(C, O) • H~ co~) -~ HI(C, coc) ~ C 
is just integration, 

(co, q} = fcco(z) q(z)dzh dS. 
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I n  our  c&se, 

so we set 

\ ~ /  ~-~ 

= q(z) dz, 

~z 

a s ingular  (1, O)-form 

this  case 

is exact ,  hence 

on C, which is regular  if q vanishes  where ~[/~z=O, i.e. on R. I n  

d ~ = -  q(z) dzdg 

, , ~  / 
= - ~o(z) q(z) dzd~ 

<~, q> = - ~" d~ 0 
J r  

as required.  Q.E.D.  

Remark.  A similar  a rgumen t  shows t h a t  if q is pe rpendicu la r  to  all  possible co(r 
a rb i t r a ry )  then  q m u s t  van ish  on R, reproving  F a r k a s '  resul t .  
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