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)NTRODUCTION�
The Prym map 

P : 'R9 -+ A9-1 

sends a pair ( C, C) E 'R.9 , consisting of a curve C E M 9 and an unram-
ified double cover C, to its Prym variety 

P = P(C, C):= ker0(Nm: J(C)-+ J(C)). 
Prym varieties and the Prym map are central to several approaches to 
the Schottky problem, e.g. [B1], [D3-D5], [Deb1], [vG], [vGvdG], [I], 
[M2], [W]. The purpose of this work is to describe the fibers of the Prym 
map. When g = 5 or 6, these fibers turn out to have some beautiful, 
and perhaps unexpected, structure. We spend much of our effort in 
§§4, 5 on analyzing the picture in these two cases, both generically and 
over some of the natural special loci in A4 and As. In §6 we summarize 
some of what is known in other genera. 

Here are some of the results. When g = 6, the map is generically 
finite of degree 27 [DS]. We show that its monodromy group equals 
the Weyl group W E6 , and that the general fiber has on it a structure 
which is equivalent to the incidence correspondence on the 27 lines on 
a non-singular cubic surface (Theorem ( 4.2) ). The map fails to be fi-
nite over some of the interesting loci in As, such as .:Js (5-dimensional 
Jacobians) and C (intermediate Jacobians of cubic threefolds). Finite-
ness is restored when Pis compactified (§1.3) and blown up (§4.2); the 
resulting finite fibers can be described very explicitly ((4.6), (4.7)). A 
similarly explicit description of the fibers is available over the locus of 
intermediate Jacobians of Clemens' quartic double solid ( ( 4.8), follow-
ing [C1], [DS]). The latter is the branch locus of P : 'R.6 -+ As [D6]. 
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THE FIBERS OF THE PRYM MAP 57 

When g = 5, we show (Theorems (5.1)-(5.3)) that the fiber p-1(A), 
over generic A E A4 , is a double cover F(X) of the Fano surface F(X) 
of lines on a cubic threefold X. The correspondence between A E A4 

and the pair (X, 6) E nc+ consisting of the cubic threefold X and the 
non zero, "even", point 6 of order 2 in J(X), is a birational equiv-
alence of the moduli spaces. It also turns out that R 5 has an invo-
lution ). which com~utes with P, inducing the sheet interchange on 
the double cover F(X). This ). is quite exotic; for example, it inter-
changes double covers of trigonal curves with "Wirtinger" double covers 
of nodal curves (5.14). Again, we can describe the fiber in more detail 
over the three distinguished divisors in A4 : Jacobians, the boundary 
(=degenerate abelian varieties), and the locus Bnull of abelian varieties 
with a vanishing thetanull: in all three cases, the cubic threefold be-
comes nodal, and the covers ( C, C) in the fiber can be described. A par-
ticularly pretty picture arises for 'P-1(A), where A E A 4 is the unique 
4-dimensional, non-hyperelliptic PPAV with 10 vanishing thetanulls. 
Varley (V] showed that all Humbert curves (with their natural dou-
ble covers) are in this fiber. We observe that the corresponding cubic 
threefold is Segre's 10-nodal cubic ( 4.8); this leads quickly to a complete 
description of the whole fiber, (5.17). 

For other values of g, the picture does not seem to be quite as rich. 
For g ~ 4, one can give a rather elementary description of the fibers 
using Masiewicki's criterion (Ma] and Recillas' trigonal construction 
(R]. When g 2 7, the map is generically injective ([FS], [K], [W]), but 
we show that it is never injective (§6). 

The main tool used to analyze the Prym map is the tetragonal con-
struction (§2.5), a triality on the locus of curves with a 9! in R9 , which 
commutes with P. We exploit it consistently, together with standard 
facts (ACGH] on the existence of 9! 'son curves of low genus, to estab-
lish the various structures on the fibers of P. In genus 5 this fits into a 
larger symmetry, indexed by the finite projective plane P 2(F2), which 
we describe in §5.2 and use to find the cubic threefold. 

Almost all the results in this work were announced in [D1]. Since 
then, several preliminary manuscripts have circulated, but most of these 
results have not been published before. Several interesting recent de-
velopments concerning closely related questions, especially Clemens' 
notes [C2] and Izadi's thesis [I], convinced me that these ideas may 
still be useful, and should be published. The present work, then, pro-
vides the details for almsot everything in [D 1]. The main exception are 
the results on the Andreotti-Mayer locus, which have since appeared 
(in a corrected form) in [Debl] and in [D5]. I include here only the 
underlying idea, which is the systematic application of the tetragonal 
construction to double covers of bielliptic curves (§3). 
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58 RON DONAGI 

As mentioned above, several beautiful extensions of our results have 
recently been obtained by Clemens (C2] and Izadi (I]. Their basic idea 
is that the cubic threefold X associated to an abelian variety A E A 4 

can be realized concretely inside the van Geemen-van der Geer linear 
system R��� on A, through use of Clemens' quartic double solids. The 
period map :T for these is analyzed in (D6], and the fiber :T-1(A) turns 
out to be a certain cover of the cubic threefold X. Clemens constructs 
a map 

c: :T-1(A) -+ roo 
whose image is X. He conjectures, and Izadi proves, that the projective 
dual X* of X can be recovered as an irreducible component of the 
branch locus of the rational map from A to r 00 determined by the 
linear system r 00• This concrete model of X leads to several interesting 
applictions: 
• Over A E 8A5 , which is a C*-extension of A0 E A4 , Izadi obtains 
the cubic surface (of Theorem ( 4.2)) as hyperplane section of the cubic 
threefold X of A0 • (cf. (4.9) for some more details.) 
• The Abel-Prym models of the six genus-5 curves making up a 0��&�2)-
diagram (§5.2) can be realized as the intersection 8a n 8_a n H of two 
theta-translates with a divisor in roo 
• Izadi is able to describe precisely where our birational map A4 "' nc+ 
fails to be an isomorphism. 

• She is also able to verify some of the (vGvdG] conjectures in genus 4. 
A second area of current activity is conjecture (6.5.1), which says 

that all non-injectivity of the Prym maps is due to the tetragonal con-
struction. For non-hyperelliptic, non-trigonal and non-bielliptic curves 
of genus ;:::: 13, this was proved in [Deb2]. The generic bielliptic case, 
g ;:::: 10, is in (N]. Radionov [Ra] has recently proved that for g ?. .7 the 
graph of the tetragonal construction provides at least an irreducible 
component of the non-injectivity locus of P. 

Some of the results of the present work were used in [D3] and [D4] 
to study the Schottky-Jung loci. This leads to a proof, which I hope to 
publish in the near future, of the Schottky-Jung conjecture in genus 5, 
i.e. that the Schottky-Jung equations in genus 5 characterize Jacobians. 
An exciting new idea in [vGP] is the interpretation of Schottky-Jung 
and tetragonal-type identities via rank-2 vector bundles; we wonder 
whether the results on the geometry of the Prym map will also admit 
interpretations in terms of the geometry of the moduli space of vector 
bundles. 

It is a pleasure to acknowledge many beneficial conversations on the 
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subject of Prym varieties which I have had over the years with Arnaud 
Beauville, Roy Smith, Robert Varley, and especially Herb Clemens, 
who introduced me to Prym geometry and to his double solids, and 
who has had a profound motivating effect on my thinking. 

Notation 
Moduli Spaces: 

Mg: 
Mg: 
Ag: 
Jg: 
QcM6: 
c cA5: 
RAg: 
Rg,RQ,RC: 

Rg: 

Rg: 

Maps 

curves of genus g. 
the Deligne-Mumford compactification. 
g-dimensional principally polarized abelian varieties (PPAV). 
the closure in Ag of the locus of Jacobians. 
plane quintic curves. 
(Intermediate Jacobians of) cubic threefolds. 
pairs (A, J.L), A E Ag, f.l E A2 a non-zero point of order 2. 
the pullback of the cover RAg - Ag to Mg, Q, C respectively. 
the Deligne-Mumford compactification of R 9 . 

the open subset of Rg of Beauville-allowable double covers 
(§1.3). 

P: Rg- Ag_1: the Prym map. 
P : Rg- Ag_1: Beauville's proper version of P. 
P : Rg - Ag_1: a compactification of P, where Ag-1 denotes (Satake's 

compactification, or) an appropriate toroidal compactifica-
tion. 

<I>, \II, cp, 'lj;: canonical, Prym canonical, Abel-Jacobi and Abel-Prym 
maps of a curve. 

We work throughout over the complex number field C. 

§1 Pryms. 

§1.1 Pryms and parity. 

Let 
1r:C-+C 

be an unramified, irreducible double cover of a curve C E M 9 • The 
genus of Cis then 2g- 1, and we have the Jacobians 

J := J(C), J := J(C) 

of dimensions g, 2g- 1 respectively, and the norm homomorphism 

Nm: J--+ J. 
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60 RON DONAGI 

Mumford shows [M2] that 

Ker(Nm) = PUp-

where P = P( C, C) is an abelian subvariety of J, called the Prym 
variety, and p- is its translate by a point of order 2 in J. The principal 
polarization on J induces twice a principal polarization on the Prym. 
This appears most naturally when we consider instead the norm map 
on line bundles of degree 2g - 2, 

Nm : Pic29- 2( C) ---+ Pic29- 2( C). 

Let we E Pic29- 2( C) be the canonical bundle of C. 

Theorem 1.1 (Mumford [Ml], [M2]) 

(1) The two components P0 , P1 of Nm- 1(wc) can be distinguished by 
their parity: 

mod. 2}, 

(2) Riemann's theta divisor e' c Pic29- 2( C) satisfies 

e' => P1 

and 
G' n P0 = 23' 

i = 0, 1. 

where 3' C P0 is a divisor in the principal polarization on P0• 

§1.2 Bilinear and quadratic forms. 

Let X E A9 be a PPAV, and let Y be a torser (=principal homo-
geneous space) over X. By theta divisor in Y we mean an effective 
divisor whose translates in X are in the principal polarization. X acts 
by translation on the variety Y' of theta divisors in Y, making Y' also 
into an X-torser. In X' there is a distinguished divisor 

0' := {0 c Xl0 3 0} c X' 

which turns out to be a theta divisor, 0' E X". In particular, we have a 
natural identification X"~ X sending 0' to 0. Let X2 be the subgroup 
of points of order 2 in X. Inversion on X induces an involution on X~; 
the invariant subset X~, consisting of symmetric theta divisors in X, is 
an X2-torser. Let (, } denote the natural F 2-valued (Weil) pairing on 
X2. On X~ we have an F2-valued function 

q = qx : X~ ---+ F 2 Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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THE FIBERS OF THE PRYM MAP 61 

sending 0 E X' to its multiplicity at 0 E X, taken mod. 2. 

Theorem ����[Ml] The function qx is quadratic. Its associated bilinear 
form, on X2, is {, ). When (X, 0) vary in a family, qx(0) is locally 
constant. 

When X is a Jacobian J = J( C), these objects have the following 
interpretations: 

J' ~ Pic!I-1(C) (use Riemann's theta divisor) 
J2 ~ {L E Pic0(C) = J I L2 ~ CJc} ~ H 1{C,F2) {semi periods) 
J~ ~ {L E Pic!I-1(C) I L2 ~we } (theta characteristics) 
q(L) = h0(C, L) mod. 2 (by Riemann-Kempf) 

Explicitly, the theorem says in this case that for v, u E J2 and L E J~: 

(1.3) (v,u) _ h0(L) + h0(L ® v) + h0(L ® u) + h0(L ® v ® u) 

mod. 2. 
We note that non-zero elements J.L E J2 correspond exactly to irre-

ducible double covers 1r : C -t C. Let X be the Prym P = P( C, C), 
which we also denote P(C,J.L), P(C,C), P(C/C) etc. Now the divisor 
'3' C Po of Theorem 1.1 gives a natural identification 

P' ~Po c ]'. 
The pullback 

11"*: J---+ J 

sends J2 to 12. Since Nm o 7r* = 2, we see that 

7r*(h) c p2 u p2-. 

Let (J.L)l. denote the subgroup of h perpendicular to J.L with respect to 
{' ). 
Theorem 1.4 [M2] 

��	� For T E J2, 1r*r E P2 iff T E (J.L)l.. 

(2) This gives an exact sequence 

0 -t (J.L) -t (J.L)l. ~ p2 -t 0. 

(3) In (2), 7r* is symplectic, i.e. 

(v,u)J = {7r*v,7r*u)p, 
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This equality of bilinear forms can be refined to an equality of 
quadratic functions. The identifications 

convert the pullback 

1r*: Pic9- 1(C)-+ Pic29- 2(C) 

into a map of torsers 
7r*' : J' -+ ]' 

over the group homomorphism 

7r* : J-+ J. 

Let 

the refinement is: 

Theorem 1.5 [D4] 
(1) (J-l)J.' is contained in J~ and is a (p)l.-coset there. 

(2) 1r*1 : (J-l)J.'-+ P~ is a map of torsers over 7r* : (p)l. -+ P2. 

(3) In (2), 1r*' is orthogonal, i.e. 

§1.3 The Prym Maps. 

Let R 9 be the moduli space of irreducible double covers 1r : C -+ C 
of non-singular curves C E M 9 • Equivalently, R9 parametrizes pairs 
( C, J-l) with J-l E J2( C)\(0), a semiperiod on C. The assignment of the 
Prym variety to a double cover gives a morphism 

Let t be the involution on Cover C. The Abel- Jacobi map 

induces the Abel-Prym map 

'1/J: C-+ Ker(Nm) 

X f---+ cp( X) - cp( lX ). 
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THE FIBERS OF THE PRYM MAP 63 

The image actually lands in the wrong component, p-, but at least 1/J 
is well-defined up to translation (by a point of order 2). In particular, 
its derivative is well-defined; it factors through C, yielding the Prym-
canonical map 

\II: C-+ pg-2 

given by the complete linear system lwc ® J.tl· Beauville computed the 
codifferential of the Prym map: 

Theorem 1.6 (Bl] The codifferential 

dP: T;Ag-1 -+ T(c.~t)'Rg 

can be naturally identified with restriction 

\II*: S2H0(wc ® J.t)-+ H 0 (w~). 

In particular, Ker(dP) is given by quadrics through the Prym-canonical 
curve w{C) c pg-2. 

Let Ag denote a toroidal compactification of Ag· Its boundary o.Ag 
maps to Ag-l 1 and the fiber over generic A E Ag-1 C Ag-l is the 
Kummer variety K(A) := A/{±1). In codimension 1, this picture is 
independent of the toroidal compactification used. 

Let nAg denote the level moduli space parametrizing pairs {A, J.t) 
with A E Ag , J.t E A2\{0), and let RAg be a toroidal compactifica-
tion. In (D3] we noted that its boundary has 3 irreducible components, 
distinguished by the relation of the vanishing cycle {mod. 2), .X, to the 
semiperiod J.t: 

(1.7) 
a1 : A=J.t 
an : .X::JJ.t, {A,p) = 0 E F2 
am : {.X 1 J.t) ::J 0. 

Let Mg, 'Rg denote the Deligne-Mumford stable-curve compactifi-
cations of Mg and Rg. At least in codimension one, the Jacobi map 
extends: 

Mg -+ Ag I Rg -+ RAg. 

We use aMg I aiRg (i = I, II, III) to denote the·intersections of 
Mg, Rg with the corresponding boundary divisors in Ag, RAg. 

In (B1], Beauville introduced the notion of an allowable double cover. 
This leads to the construction ((DS] I, 1.1) of a proper version of the 
Prym map, 

Roughly, one extends P to 
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64 RONDONAGI 

then restricts to the open subset ft9 C 'R-9 of covers which are allowable, 
in the sense that their Prym is in A9 _ 1. This condition can be made 
more explicit: 

Theorem 1.8 (Bl) A stable curve C with involution t, quotieEt C, is 
allowable if and only if all the fixed points of t are nodes of C where 
the branches are not exchanged, and the number of nodes exchanged 
under t equals the number of irreducible components exchanged under 
l. 

We illustrate the possibilities in codimension 1: 

Examples 1.9 

(I) X E M 9-1, p, q E X, p ::/; q; let Xo, X1 be isomorphic copies of 
X. Then C := Xj(p"' q) is a point of 8M9 • The Wirtinger cover 

C := (Xo II XI)/(Po"' q~,p1 "'qo) 

gives a point 
(C,C) E a1ft9 

which is allowable. The Prym is 

P(C, C)~ J(X) E Ag-1· 

(II) Start with (X --+X) E R 9 _~, choose distinct points p, q E X, let 
Pi, Qi ( i = 0, 1) be their inverse images in X, and set 

Then 
( c, C) E anng 

is an unallowable cover. Its Prym is a C* -extension of P(X, X); 
the extension datum defining this extension is given by 

1/J(po) - 1/J( qo) E P(X, X), 

which is well defined modulo ±1 (i.e. in the Kummer), as it should 
be. 

(III) X,p, q as before, but now X --+ X is a double cover branched at 
p, q; consider Beau ville's cover 

C := Xf(p"' q), C :=X f(p rv q) 

where p,ij are the ramification points in X above p, q. Then 
( c, C) E amng is allowable. Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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THE FIBERS OF THE PRYM MAP 65 

In [Ml], Mumford lists all covers ( C, C) E R 9 whose Pryms are in the 
Andreotti-Mayer locus (i.e. have theta divisors singular in codimension 
4). A major result in [Bl] (Theorem ( 4.10)) is the extension of this list 
to allowable covers in R9 • We do not copy Beauville's list here, but we 
will refer to it when needed. 

e�� 0OLYGONAL�CONSTRUCTIONS�

e���� The n-gonal constructions 

Let 
1:C--+K 

be a map of non singular algebraic curves, of degree n, and 

1r:C--+C 

a branched double cover. These two determine a 2n-sheeted branched 
cover of K, 

1 .. C--+ K, 
whose fiber over a general point k E K consists of the 2n sections s of 
1r over k: 

s: 1-1(k)--+ 7r-l 1-1(k), 7r 0 s = id. 

Th:_ curve 1 .. C can be realized, for instance, as sitting in Picn( C) or 
snc: 
(2.1) 1 .. C ={DE snc I Nm(D) = 1-1(k), some k E K}. 

(If we think of Cas a local system on an open subset of C, this is just 
the direct image local system on I<, hence our notation 1 .. C.) On f,.C 
we have two structures: an involution 

t : t .. c --+ 1 .. c 
obtained by changing all n choices in the section s via the involution 
(also denoted t) of C, and an equivalence relation 

1 .. C --+ K --+ K 

where K is a branched double cover of K: two sections 

are equivalent if they differ by an even number of changes. 

For even n, the involution t respects equivalence, so we have a se-
quence of maps Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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66 RONDONAGI 

(2.1.1) j.C-+ j.C/t-+ K-+ K 

of degrees 2, 2n-2, 2 respectively. For odd n the equivalence classes are 
exchanged by t, so we have instead a Cartesian diagram: 

j.C 

/ ~ 
(2.1.2) J.C/t K 

~ / 
K 

Remark 2.1.3 In prctice we will often want to allow C to acquire some 
nodes, over which 1r may be etale (as in (1.9 II)) or ramified (as in 
(1.9 III)). We will always consider this as a limiting case of the non-
singular situation, and interpret the n-gonal construction in the limit 
so as to make it depend continuously on the parameters, whenever 
possible. We will see various examples of this below. 

§2.2 Orientation 

We observe that the branched cover K -+ K depends on f o 1r : 

C-+ K, but not on j, 1r or C directly. More generally, to an m-sheeted 
branched cover 

g:M-+K 

we can associate an m!-sheeted branched cover (the Galois closure of 
M) 

g!: M!-+ K, 

with an action of the symmetric group Sm; the quotient by the alter-
nating group Am gives a branched double cover 

O(g): O(M)-+ K 

which we call the orientation cover of M. We say M is orientable (over 
K) if the double cover O(M) is trivial. One verifies easily that the 
double cover K-+ K (obtained in §2.1 from the maps C ~ C L /{as 
quotient of j.C) is the orientation cover 0(! o 1r) of C. 

Corollary 2.2 If Cis orientable over K then j.C = C0UC1 is reducible: 

(i) For n even, the involution L acts on each ci with quotient ci of 
degree 2n-2 over K, i = 0, 1. 
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THE FIBERS OF THE PRYM MAP 67 

{ii) For n odd, t exchanges Co, Cl. Each ci has degree 2n-l over K. 

Lemma 2.3 Branch (K/K) =/.{Branch (C/C)). 

This means: if one point of f- 1(k) is a branch point of C -+ C, 
then k is a_ branch point of K-+ K; if two points of f- 1(k) are branch 
points of C -+ C, then k is not a branch point of (the normalization 
of) K-+ K, but the two sheets of K there intersect; etc. In particular, 
the_.Iamification behavior of f : C -+ K does not affect the ramification 
ofK. 

Corollary 2.4 Let f : C-+ P 1 be a branched cover, 1r : C-+ Can 
{unramified) double cover. Then Cis orientable over P 1• 

(More generally, the conclusion holds whenever 

j.(Branch(1r)) = 2D 

for some divisor D on P 1, since the normalization of 0( C) is then an 
unramified double cover of the simply connected P 1, by (2.3). In this 
situation we say that 1r has cancelling ramification.) 

Remark 2.5 Assume I<= P 1 and 1r unramified. The image of j.C in 
Pic(C) is: 

{L E Picn(C) I Nm(L) = j*Op1(l), h0(L) > 0}. 

This is contained in a translate of 

Nm-1(wc) =Po U Pt, 

and the splitting (2.2) of j.C is "explained", in this case, by the split-
ting (1.1) of Ker(Nm), i.e. after translation: 

i = 0, 1, 

cf. (Dl, §6], (B2]. 

Remark 2.6 The splitting of j.C can also be explained group theo-
retically. Let WCn be the group of signed permutations of n letters, 
i.e. the subgroup of S2n centralizing a fixed-point-free involution of 
the 2n letters. Let W Dn be its subgroup of index 2 consisting of even 
signed permutations, i.e. permutations of n letters followed by an even 
number of sign changes. (These are the Weyl groups of the Dynkin 
diagrams Cn, Dn.) Over an arbitrary space X, we have equivalences: Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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{ n-sheeted cover Y---+ X } ~ { Representation 1r1(X)---+ Sn } 

{ n-sheeted cover Y ---+ X } { } ~ Representation 1r1(X) ___. WCn 
with a double cover Y---+ Y 

{ 
n-sheeted cover Y---+ X } 
with a~ orientable double ~ { Representation 1r1(X)---+ WDn } 
cover Y---+ Y 

The basic construction of JJ5 then corresponds to the standard 
representation 

p: wen<--+ s2"· 
The existence of the involution t on JJ5 corresponds to the factoring 
of p through 

WC2 .. -1 c S2"· 

The restriction p of p to W Dn factors through 

explaining the splitting when C is orientable. 

§2.3 The bigonal construction 

The case n = 2 of our construction ( "bigonal") takes a pair of maps 
of degree 2: 

and produces another such pair 

Above any given point k E K, the possibilities are: 

(i) If/, g are etale then so are f' and g'. 

(ii) If f is etale and g is branched at one of the two points f-1 ( k), 
then f' is branched at k and g' is etale there. 

(iii) Vise versa, iff is branched and g is etale then f' is etale and g' is 
branched at one point of f'- 1(k). 

(iv) If both f and g are branched over k then so are f', g'. 
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(v) Iff is etale and g is branched at both points f- 1(k), then K will 
have a node over k, and r/ : j.C --+ K will be a am degeneration, 
i.e. will look like (1.9 III). 

(vi) Vice versa, we .can extend the bigonal construction by continuity, 
as in (2.1.3), to allow g : c --+ c to degenerate to a am-cover. 
This leads to f' which is etale and g' which is branched at both 
points of f'-1(k). 

The following general properties are immediately verified: 

Lemma 2.7 

(1) The bigonal construction is symmetric, i.e. if it takes C ~C.!... K 

to C'.! C' £ K then it takes C'--+ C'--+ I< to C--+ C--+ K. 

(2) The bigonal construction exchanges branch loci: 

Branch(g') = /.(Branch(g)), Branch(!) = g~ (Branch(!')). 

(As in lemma (2.'3), this requires the following convention in case (vi) 
above: the local contribution to Branch(!) is 2k, and the contribution 
to Branch(g) is 0). 

The symmetry group of this situation, WC2 , is the dihedral group 
of the square: 

wc2 = (r,f I / 2 = r4 = (rf? = 1). 

(r = 90° rotation, f =flip around x-axis, in the 2-dimensional represen-
tation.) It has a non-trivial outer automorphism (=conjugation by a 
45° rotation), which explains why conjugacy classes of representations 
(of 1r1(X)) in WC2 come in {bigonally related) pairs. We list all conju-
gacy classes of subgroups of wc2 in the following diagram ("' denotes 
conjugate subgroups): 
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Correspondingly, we obtain the diagram of curves and maps of de-
gree 2: 

~ 

c 

/l~ 
c c X[( C' C' 

������	� l /1 ~ 1 
C C" C' 

~1/ 
/{ 

Here the two sides are bigonally related. 
Note that C' is 0( C); so if C is orientable (e.g. if I< = 0�� and g is 

unramified) then everything splits: 

C' =Co 11 cl -+ /{ 11 /{ = C', 

C is Galois over I< with group (Z/2Z)2 and quotients 
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c 
/J~ 

Co C C1 

~J/ 
K 

(cf. [Ml]), and (2.8.1) simplifies to: 

CIIC 

/]~ 
C CIIC ColiC1 

(2.8.2) l/l~l 
C C KIIK 

~]/ 
]{ 

Given an arbitrary branched double cover C ---+ C, we form its Prym 
variety 

P(C/C) := Ker0(Nm: J(C)---+ J(C)). 

It is an abelian variety (for C, C non-singular), but in general not a 
principally polarized one. Nevertheless, there is a simple relationship 
between the bigonally-related Pryms P( C /C) and P( C' /C') : in the 
case K =pi, Pantazis [P] showed that these abelian varieties are dual 
to each other. 

§2.4 The trigonal construction. 

The case n = 3 of our construction was discovered by Recillas [R]. 
Start with a tower c .!!.t c L pi 

where f has degree 3, and C ---+ C is an unramified double cover. By 
Corollaries (2.4) and (2.2), f*C consists of two copies of a tetragonal 
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curve g : X -+ P 1. Since f and g have the same branch locus by 
Lemma (2.3), we find from Hurwitz' formula: 

genus( X) = genus( C) - 1. 

All in all, we have constructed a map: 

T . { trigonal curves C of _ } { tetragonal curves } 
· genus g with a double cover C -+ X of genus g - 1 · 

We claim that this map is a bijection (except that sometimes a 
nonsingular object on one side may correspond to a singular one on 
the other): given g : X -+ pi, we recover C as the relative second 
symmetric product of X over pi, 

- 2 I C := 5pt X -+ P , 

whose fiber over p E P 1 consists of all unordered pairs in g-1(p); this 
has an involution t (=complementation of pairs), giving the quotient 
c := C/t. 

0 0 X I I 0 0 

X 5~Ix and its involution 

In the group-theoretic setup of Remark (2.6), i5 induces an isomor-
phism 

WD3 ~54. 

(This is the standard isomorphism, reflecting the isomorphism of the 
Dynkin diagrams D3 , A3.) Recillas' map T then corresponds to com-
position of a representation with this isomorphism. 

We list a few of the subgroups of 54 : 
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((1)) 

/~ 
((12)) ((12)(34)) 

~/ 
((12), (34)} K 

/ 
D 

~/ 
D: The dihedral group ((12), (1324)} 
K = D n A4 :- The Klein group «12)(34), (13)(24)). 

The corresponding curves are: 

y 

3 

X 

pl 

0 ~ O(X) ~ O(C): The orientation 
Y ~ (.! Xpt X)\ {diagonal) 
Z ~ C Xpt 0. 

73 
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Using either of these constructions, we can easily describe the be-
havior of X, C, C around various types of branch points. Keeping X 
non-singular, there are the following five possible local pictures, cf. [DS, 
III 1.4]. 

X 

c 

c 

(i) (ii) (iii) 

c E 
c= E c E 
c= E 

Legend 

unramified sheet E 

(iv) (v) 

c ~ c 
~ {~ ···c= 
>< c 

I 

' 

ramification point 
of index 2 

simple ramification 

node (two unramified 
sheets glued together) 

~ ramification point 'c::::::.. of index 3 

two ramified sheets 
glued together 

glueing of two sheets 
of different 
ramification indices 

(i) J, 7r, g are etale. 

(ii) f and g have simple ramification points, 7r is etale. 

(iii) f and g each have a ramification point of index 2, 1r is etale. 

(iv) g has two simple ramification points, 1r is a Beauville cover: 
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branched at p,q: 7r-1(p) = p, 1i"-1(q) = ij; and we have C = 
Nf(p""' q), C = N /(p""' ij), and 7r: C--+ C, f: C--+ 0 �� are 
induced by 7r, f. 

(v) g has a ramification point of index 3, 1r is Beauville, f is ramified 
at one of the two branches of the node of C. 

Considering first the first three cases, then all five, we conclude: 
Theorem 2.9 The trigonal construction gives isomorphisms 

rnO • nTrig "' MTet,O 
1- . g --+ g-1 

and 
T. ftTrig ..:::+ MTet 

• g g-11 

where: 
M;:.\ is the moduli space of {non-singular) curves of genus g- 1 

with a tetragonal line bundle. 
M;~tio is the open subset of tetragonal curves X with the property 

that above each point of 0 �� there is at least one etale point of X. 

n;rig is the moduli space of etal ~double covers of non-singular curves 
of genus g with a trigonal bundle. 

n;rig is the partial compactification of n;rig using allowable covers 
in Rg of type am {cf (1.9.III)). 

Examples �����

(i) Cis the trivial cover, C = C0 II C1, iff X is disconnected, 
X= P 1 II C, with f = 9lc, idp1 = glp1. 

{ii) Wirtinger covers (Co II CI) / (po "' q1, qo "'pi) --+ Cf(p"' q), 
where {p, q, r} form a trigonal fiber in C, correspond to reducible 
X = 0 ��Ur C, the two components meeting at r E C. 

(iii) C is reducible: C = H U Pi, with H hyperelliptic, and 
C = H U 0 �� with H--+ Hand 0 � 

�� 0 �� branched over 
B := H n 0��� This situation corresponds tog: X--+ P 1 factoring 
through a hyperelliptic H'. Indeed, such a pair ( C, C) is uniquely 
determined by the tower H--+ H--+ 0��� The trigonal construction 
for Cis reduced to the bigonal construction for H, which then gives 
X = H' --+ H' --+ 0��� In particular: 
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(iv) C = H II P 1 is disconnected iff X = H0 II H1 is disconnected with 
hyperelliptic pieces, and then C = H II P 1 II P 1, where H is the 
Cartesian cover: 

H = H0 Xp1 H 1• 

So far, we have only used the fact that C is an orientable double 
cover of a triple cover. We now use our two assumptions, that 1r is 
unramified and that the base f{ equals P 1, to obtain an identity of 
abelian varieties. Namely, by Remark 2.5 we have a map, natural up 
to translation. 

a: X-+ P(C/C). 
The result, due to S. Recillas, is: 

Theorem 2.11 [R] If X is trigonally related to (C,C), then the above 
map a induces an isomorphism 

a.: J(X) .:+ P(C/C). 

Proof. 
By naturality of a and irreducibility_ of MJ:.\, it suffices to prove 

this for any one convenient X. We take C -+ C to be a Wirtinger cover 
as in (2.10)(ii), so 

X= P 1 Ur C'. 

where p + q + r is a trigonal divisor on C', and C = C' j(p"' q). We 
have natural identifications: 

J(X) ~ J(C') ~ P(C/C), 

in terms of which a becomes the Abel-Jacobi map <p on C', and collapses 
P 1 to a point. The induced a. is therefore the identity. 

QED 

Corollary 2.12 All trigonal Pryms are Jacobians, and all tetragonal 
J acobians are Pryms. 

§2.5 The tetragonal construction 

Consider now a tower 
- I c-+ c-+ P 1 

where f has degree 4 and Cis a double cover (unramified) of C. The 
general construction yields a sequence of maps of degrees 2, 4, 2: 

J.C- J.C/t- P1 - P 1. 
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By (2.2) and {2.4) again, 0�� is unramified, hence we have splittings: 

~A II~} 
Co II C1 

pl -
f,.C -

J,.CJt - Co II C1. 

The tetragonal construction thus associates to a tower 

c _; c ~ 0 ��

two other towers 
- 1 ci- ci- 0�� i = 0,1 

of the same type. 

,EMMA� ����� The tetragonal construction is a triality, i.e. starting 
with C0 --. C0 --. 0 �� it returns C --. C --. 0 �� and 
- 1 c1- c~- 0��

On the group level, the point is this: Our tower C --. C --. 0 ��

corresponds to a representation (of 1r1(P1\ (branch locus))) in WD4 • 

Now the Dynkin diagram D4 has an automorphism of order 3: 

I 
'-------~~ 

This corresponds to an outer automorphism of W D4 , of order 3. Hence 
representations in W D4 come in packets of three. The various groups 
involved are described in some detail in the proof of Lemma (5.5}, 
below. 
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,OCAL�PICTURES������Given the local behavior of C and Cover a point 
OF�0 ��� it is quite straightforward to compute J*C and hence ci, ci ( i = 
����	� over the same point. Since these local pictures are needed quite 
frequently, we record the simplest ones here. 

��	� c, c unramified =:} ci, ci are also unramified. 

��	� C has one simple ramification point (and two unramified sheets), 
c -+ c unramified =:} ci, ci have the same local picture as c, c 
respectively. 

��	� C has two distinct simple ramification points, C-+ C unramified 
=> One pair, say C0 , C0 , has the same local pictures as C, C, while 
the other is a Beauville degeneration: C1 is unramified but two of 
its four sheets are glued, C1 -+ C1 is ramified over these two sheets 
(and the ramification points are glued) while the other sheets are 
unramified. 

( 4) C is unramified but two of its sheets are glued, C -+ C is ramified 
over these two sheets => ci has two distinct ramification points, 
Ci -+ Ci is unramified ( i = 0, 1 ). (This is the same triple as in 
(3).) 

(5) C has a simple ramification point and the other two sheets are 
glued, cis ramified EVer the glued sheets=:} ci, ci have the same 
local pictures as C, C. 

(6) C has a ramification point of index 2 (i.e. 3 of its sheets are 
permuted by the ~ocal monodromy), C-+ C unramified => same 
local picture for Ci -+ Ci. 

��	� q_ has a ramification poin~ of index 3 (all 4 sheets permuted], 
C-+ C unramified =>Co, C0 have the same local picture as C, C, 
but C1 has a simple ramification point glued to an unramified 
point, so cl must be simply ramified over each. (I.e. cl has a 
point which is simply ramified over 0 ��� glued to a point which has 
ramification index 3 over 0�1 !) 

We note that in examples (3) and (7), the tetragonal construction 
applied to (C-+ C) E 'RM9 produces an (allowable) degenerate cover, 
(Cl-+ CI) E am(nMg)· 
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---------
c- ~ c: 
c= c= c 
- - -- - -

c c § c c -c c= - - -- - - c= c:: -
---- c= c= C" c c )< 
----

- - -- - - c c --
- - - - - -

(1) (2) (3,4) 

~ ~ ~ c c c c c c 

- - -- - -
E E E 
E ~ E 

~ ~ .~ 
~ ~ 

:c 

>< X >< 
c= c c 

- - -

E E E ~ ~ c 
_,__ -

- - - - - - - - -
(5) (6) (7) 

c Co c1 

c Co c1 

pl pl pl 
(pattern) 
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%XAMPLES� �����

��	� It is perhaps not terribly surprising that the trigonal construction 
is a degenerate case of the tetragonal construction. Start with 
C -+ C the split double cover of the curve C with the tetragonal 
map f : C ~ PI?� Then j.C splits into 5 components, of degrees 
��� 4, 6, 4L �� respectively over PI?� The c~mponents of degree 4 
make up CI-+ CI, which is isomorphic to C-+ C. The remaining 
components give 

0 ��II T II 0 �� -+ T II 0 ��

where (T, T) is associated to C by the trigonal construction. Vice 
versa, starting with an (unramified) double cover 
pi II T II pi of T II PI�� the tetragonal construction produces 
C II C-+ C, twice. 

��	� Let p + q + r + s be a tetragonal divisor on C. Then Cf(p"' q) 
is still tetragonal. Tacking a node onto the previous example, we 
see that the Wirtinger cover 

( C' II C")f(p'"' q", q' ,...., p") -+ C f(p,...., q) 

is taken by the tetragonal construction to : 
• Another Wirtinger Cover, 

(C' II C")/(r',...., s", s',...., r")-+ Cj(r,...., s), 

and to: 
• 0 ��U1• T Ut" 0 �� -+ T U1 0 ��� where (T, T) is associated by the 
trigonal construction to C. (Each copy of 0 �� meets T or T in 
the unique point indicated. t E T corresponds to the partition 
{{p, q}, {r, s} }.) 

��	� We will see in Lemma (3.5) that if C-+ 0 �� factors through a hy-
perelliptic curve, so do C0 , C1. An interesting subcase occurs when 
G_ = H 0 U H 1 has two hyperelliptic components, cf. Proposition 
(3.6). 

( �	� Let X be a non-singular cubic hypersurface in 0<�e c X a line, 
and X the blowup of X along e, with projectiou from e: 

1r: X-+ p2_ 

This is a conic bundle [CG] whose discriminant is a plane quintic 
curve Q c 0 � �� The set of lines e' c X meeting e is a double cover 
Q of Q. Now choose a plane A c 0�� meeting X in 3 lines e, e', e"; Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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we get 3 plane quinties Q, Q', Q", with double covers Q, Q', Q". 
Note that f, f." map to a point p E Q, hence determine a tetragonal 
map f : Q --+ P 1, given by OQ(l)( -p), and similarly for Q', Q". 
Our observation is that the 3 objects 

( Q, Q, f) ; ( Q', Q', !') ; ( Q", Q", !") 
are tetragonally related. Indeed, the 3 maps can be realized si-
multaneously via the pencil of hyperplanes S c P 4 containing A. 
Such an S meets X in a (generally non-singular) cubic surface Y. 
A line in Y (and not in A) which meets f.', also meets 4 of the 8 
lines (in Y, not in A) meeting f., one in each of 4 coplanar pairs. 
this gives the desired injection Q' ~ f*Q. 

Our main interest in the tetragonal construction stems from: 

Theorem 2.16 The tetragonal construction commutes with the Prym 
map, 

Proof 

As in Remark (2.5), we have a map 

a: C; ~ f*C--+ Pic( C), i = 0, 1. 

The image sits in a translate of P( C /C), so we get induced maps 

and by restriction 
(J: P(C;jC;)--. P(C/C). 

By Masiewicki's criterion [Ma], (J will be an isomorphism if we can 
show: 

( 1) The image a( C;) of C; in P( C /C) is symmetric; 

(2) The fundamental class in P( C /C) of a( C;) is twice the minimal 
class, (g~l)! (8]9- 1. 

Now (1) is clear, since the involution on C; commutes with -1 in 
P( C /C). The fundamental class in (2) can be computed directly, as 
is done in (B2]. Instead, we find it here by a degeneration argument: 
it varies continuously with ( C, C) E RM~et, which is an irreducible 
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parameter space, so it suffices to do the computation for a single ( C, C). 
We take 

C = TUtP 1, 
- 1 - 1 C = 0� Ut' T Ut" 0� , _ 

as in Example (2.15)(2). Then ( Ci, Ci) is a Wirtinger cover, i = 0, 1, 
and the normalization of Ci is the tetragonal curve N associated to 
(T, T) by the trigonal construction. We have identifications 

J(N) ~ P(T/T) ~ P(C/C) 

(Theorem (2.11)), in terms of which a( Ci) consists of the Abel-Jacobi 
image cp(N) C J(N) and of its image under the involution. Thus the 
fundamental class is twice that of cp(N), as required. 

(Note: since this argurment works for any double cover T ---+ T, 
and since any semiperiod on a nearby non-singular C specializes to 
a semiperiod on T Ut 0 �� which is supported on T, we need only the 
irreducibility of MJet, instead of RM'Jet.) 

QED 

e�� "IELLIPTIC�0RYMS��

As a first application of the tetragonal construction, we show 
that some remarkable coincidences occur among the various loci in 
Beauville's list [Bl]. The central role here is played by Pryms of biellip-
tic curves. We see in (3.7), (3.8) that the bielliptic loci can be tetrago-
nally related to various other components in Beauville's list, and there-
fore give the same Pryms. As suggested in [D 1], this leads to a complete, 
short list of the irreducible components of the Andreotti-Mayer locus 
in genus ~ 5, and of its intersection with the image of the proper Prym 
map for arbitrary g. We do not include here the complete analysis 
of the Andreotti-Mayer locus itself, since this has already appeared in 
[Debl] and [D5] (together with some corrections to the original list in 
[Dl]). Nevertheless, we could not resist describing explicitly the oper-
ation of the tetragonal construction on Beauville's list, as it is such a 
pretty and straightforward application of the results of §2. 

We recall Mumford's results on hyperelliptic Pryms. Let 

i = 0,1 

be two ramified double covers of a curve K. The fiber product 

c := C0 x/( C1 
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has 3 natural involutions: T;( i = 0, 1 ), with quotient Ci, and 
T := TooT1, with a new quotient, C. This all fits in a Cartesian diagram: 

If the branch loci of f0 , ft are disjoint, then 

1r:c-c 
is unramified. We say that a double cover obtained this way 1s 
Cartesian. 

Lemma 3.1 Let f : C -t J{ be a ramified double cover. A double 
cover 

1f: c -t c, 
given by a semi period 7J E h( C), is Cartesian if and only if 
f.,(ry) = 0 E l2(K). 

Proof: apply the bigonal construction. 

Proposition 3.2 [M1] 

(1) Any double cover C of a hyperelliptic Cis Cartesian. 

QED 

(2) Any hyperelliptic Prym is a product of 2 hyperelliptic Jacobians 
(one of which may vanish): If C arises as C0 Xp1 C 1 then 

Proof: (2) follows from (1), (1) follows from lemma(3.1) with K = P 1. 

QED 
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A bielliptic curve (aka elliptic-hyperelliptic, superelliptic, ... ) 
is a branched double cover of an elliptic curve. In this section we 
apply the tetragonal construction to find various identities between 
bielliptic Pryms and Pryms of other, usually degenerate, curves. Some 
of the results extend to bihyperelliptic curves, i.e. branched double 
covers of hyperelliptic curves. To warm up, we consider Jacobians of 
bihyperelliptic curves. Example (2.10)(iii) can be restated: 

Lemma 3.3 The trigonal construction gives a bijection between: 
• Bihyperelliptic, non singular curves C: 

cL H ~ P 1· , 
• Reducible trigonal double covers X--+ X: 

X C' u H 

1 1 1 
X H' u pl 

where 

X = H' U P 1 is reducible 
r : X --+ P 1, the trigonal map, has degree 2 on H' and 1 

on P 1. 

r(H' n P 1) = Branch(g) 

X--+ x·is allowable of type am at each point of H' n P 1. 

We note that C' --+ H' --+ P 1 is bigonally related to C --+ H--+ P 1. 

Corollary 3.4 The Jacobian of a bihyperelliptic curve C, 

c L H ~Pi, 

is isogenous to the product 

J(H) X P(g.C, t) 

of a hyperelliptic Jacobian and a bihyperelliptic (branched) Prym. 

We move to the Pryms of bihyperelliptic curves. First we note 
that this class is closed under the tetragonal construction: 
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Lemma 3.5 Let ( Ci, Ci) be tetragonally related to ( C, C), with C non-
singular. If C--+ P 1 factors through a (possibly reducible) hyperelliptic 
H, so do the Ci: 

C. J; H· Yi pi ,--+ ,--+ ' i = 0, 1. 

Proof. 
The bigonal construction applied to 

c~c.!..H 

yields 
f*C--+ H--+ H, 

and when applied again to 

H--+ H ~ P 1 

yields 
g*H--+ pl--+ pl. 

Since 1r is unramified, so are H--+ H and P1 --+ P 1. Hence P1 splits: 

pl = p~ II PL 
and this splitting climbs its way up the tower: 

(g 0 f)i5 = CoiiC1 
l 

CoiiC1 
l 

HoiiH1 
l 

PAIIP~ 
l 

pl 

QED 

Remark 3.5.1 The rational map h : C1 --+ H1 can, in a couple of cases, 
fail to be a morphism; this is easily remedied by identifying a pair of 
points in H1. Among the local pictures (2.14), the ones that can occur 
here are (1), (2), (7) and (3) : 

• In cases (1), (2), the hyperelliptic maps g, go, g1 are all unramified 
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• In case (7), g and g0 are ramified, g1 is not, f and / 0 are (rami-
fied) morphisms, but !I is not, since C1 is singular above a point 
where H 1, as constructed above, is nonsingular. To make !I into 
a morphism, we must glue the two points of g!1(k). 

• In case (3) we find two possibilities: 

(3a) g is etale, f is ramified at both points of g- 1(k); then g0 , g1 

are also etale, /o is ramified at both points of g()1(k), cl has 
a node but fi is still a morphism. 

(3b) g is ramified, f is etale; then g0 is ramified, fo is etale, g1 is 
etale, but the two branches of the node of C1 are sent by !I 
to opposite sheets of H 1, so fi is again not a morphism. 

Proposition 3.6 Let C -+ C be a Cartesian double cover of a bihy-
perelliptic C: 

c ~ H .!4 P 1, c =co xll c 1. 

The tetragonal construction applied to C -+ C-+ P 1 yields: 

• A similar Cartesian tower C0 -+ C0 ~ H ~PI, same H. 
• A tower C1 -+ C1 -+ P 1 where: 

C1 is reducible, C1 = H 0 U H1, 
H0 , H1 are hyperelliptic, 
H 0 n H 1 maps onto B := Branch(g) C P 1, 

C1 = H 0 U H1 is allowable over C1, 

Ci -+ H -+ P 1 is bigonally related to Hi -+ Hi -+ P 1, i = 1,2. 

Vice versa, the tetragonal construction takes any tower 
C1 -+ C1 -+ P 1 as above to two Cartesian bihyperelliptic towers 

C-+ C-+ H-+ P 1 and C0 -+ C0 -+ H-+ P 1. 

The proof is quite straightforward, and we will simply write down 
a few of vhe relationships involved, using the notation of the previous 
proof: 

• H splits into two copies of H, by (3.1). Hence: 

• g .. H ~ H U P 1 U P 1, say Ho ~ H, H1 = R0 U R1, Ri ~ P 1, i = 0, 1. 

• Let Hi, Hi be the inverse image of Ri in C1, C1 respectively. Then 
Hi -+ Hi -+ P 1 is bigonally related to Ci -+ H -+ P 1. 

• The intersection properties of the Hi (or Hi) can be read off the 
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• Finally, let c : H-+ H be the hyperelliptic involution. A cover 
C 1 -+ H determines a mirror-image c"'C1. The remaining tower 
C0 -+ C0 -+ H -+ P 1 is given by the Cartesian diagram: 

87 

QED 

Remarks 
(3.6.1) Since the branch points of Ci -+ H map to the branch points 
of Hi -+ P 1, we have the relation between the genera: 

(3.6.2) The possible local pictures are exactly the same as in (3.5.1). 
(The use of C0 , C1 in (3.6) is consistent with that of (2.14).) 
(3.6.3) Another way of proving both lemma (3.5) and proposition (3.6) 
is based on lemma (5.5), which says that the three tetragonal curves 
C, C0 , C1 which are tetragonally related are obtained, via the trigonal 
construction, from one and the same trigonal curve X (with three dis-
tinct double covers). Lemma (3.3) characterizes the possible curves 
X, hence proves that the locus of bihyperelliptics is closed under the 
tetragonal construction, lemma (3.5). To complete the proof of propo-
sition (3.6), one simply needs to characterize the double covers X which 
correspond to Cartesian covers of C. 

For the rest of this section, we specialize to the case where the 
hyperelliptic His an elliptic curve E, i.e. Cis bielliptic. First, we write 
out explicitly the content of Proposition (3.6) in this case: 

Corollary 3. 7 The Pryms of double covers 1f : C -+ C where 

• C is bielliptic, C .L E ~ P 1, 

• C -+ C is Cartesian, C = C0 x E C1, C0 is of genus n, 

are precisely (via the tetrago;:al construction) the Pryms of the follow-
ing allowable double covers X -+ X: 
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n = ��� X is obtained from a hyperelliptic curve by identifying 
two pairs of points, X= Hf(p"' q, r"' s). 

n = 2: X= X0 U X 1 , Xo rational, X 1 hyperelliptic, 
#(XonXI)=4. 

n ~ 3: X= X0 U X 1, each Xi hyperelliptic, g(X0 ) = n- 2, 
g(XI) = g(C)- n- 1, #(X0 n XI)= 4, and both 
hyperelliptic maps are restrictions of the same tetragonal 
map on X (i.e. they agree on X0 n X 1). 

Everything here follows directly from the proposition, except that 
for n =_!.__we need to use (twice) the following observation of Beau ville. 
Let 1r: X -t X be an allowable double cover where 

X =YUR, R rational, Yn R = {a,b} 

X= Y u R, R = 1r-1(R) rational, Y n R = {a, b} 
and 1r is ramified at a, b, which map to a, b. Construct a new cover 
Z -t Z where 

z := YJ(a "'b) 
Z := Yj(a rv b). 

Then this is still allowable, and 

P(Z/Z) ~ P(X/X). 

(Indeed, there are natural isomorphisms of generalized Jacobians 

J(Z) ~ J(X), J(Z) ~ J(X) 

commuting with 1r. and inducing the desired isomorphisms.) 

QED 

We are left with the Pryms of non-Cartesian double covers of 
bielliptic curves. The result here may be somewhat surprising: 

0ROPOSITION� 3.8 Pryms of non-Cartesian double covers of bielliptic 
curves are precisely the Prym~ of Cartesian covers (of bielli ptic curves) 
with n( := g( C0 )) = 1. (The isomorphism is obtained through a se-
quence of 2 tetragonal moves.) 

The point is that if X = H f(p"' q, r "' s) with H hyperelliptic, 
and X --+ X is an allowable double cover, then P(X J X) is the Prym of 
a Cartesian cover (with n = 1) of a bielliptic curve, as we've just seen; Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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but X has another g!, and applying the tetragonal construction to it 
yields a non-Cartesian double cover of a bielliptic curve. 

The g! is obtained as follows: map H to a conic in P 2 (by the 
hyperelliptic map), then project the conic to P 1 from the unique point 
x in P 2 (and not on the conic) on the intersection of the lines pq and 
rs. 

,. f""'lJ 

<f J.~,.~ r-
~ - proj-ec iio"-

@It· t· ~ ~ > r ·c. .,.. /ro- x 
'Y",., .s 

s 

H /Pl. 1ft 

We should now check that the tetragonal construction yields a 
non-Cartesian cover of a bielliptic curve, and that all covers arise this 
way. We leave the former to the reader, and do the latter. 

Let C -+ C be a non-Cartesian cover of C, which is bielliptic: 

C .L E .!4 P 1. 

Let (G\, C;), i = 0, 1, be the tetragonally related covers. By lemma 
(3.5), C; is bihyperelliptic: 

C. f; H· g; pl I-+ I-+ • 

By the local pictures (2.14), 

B := Branch(g) = B0 II B 1, B; := Branch(gi). 

(As we saw in Remark (3.5.1), the possible pictures are (1), (2), (7), (3a) 
and (3b). Of these, (7) and (3b) contribute to B, and each contributes 
also to one of the B;.) Since #B = 4 (E is elliptic), and #B; is even 
and > 0 (non-Cartesian!), we find 

#B; = 2, i = 0, 1, 

hence H; is rational and C; is hyperelliptic. Again by the local pictures, 
C; will have two nodes, at points lying over B1_;. 

QED 
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We observe that the last argument works not only for bielliptics 
but also for branched double covers of hyperelliptic curves of genus 2, 
since now 

#Bo > 0, #B1 > 0, #Bo + #B1 = 6, #Bi even => 
either #Bo = 2 or #B1 = 2. 

However, the resulting hyperelliptic curve with 4 nodes does not carry 
other gl 's and is not necessarily related to any other covers. 

We leave one more corollary of proposition (3.6) to the reader. 

Corollary 3.9 Let K be hyperelliptic, K--+ K a double cover with 2 
branch points. Then P(K j K) is a hyperelliptic Jacobian. 
(Hint: take both H and C0 in proposition (3.6) to be rational, show 
P(Cl/C1) ~ J(C1) and C1 = KU(2 points) P 1 , K hyperelliptic.) 

§4 Fibers of P : R 6 ---+ As. 

§4.1 The structure 

We recall the main result of [DS]: 

Theorem 4.1 (DS] P: R 6 --+ A5 is generically finite, of degree 27. 
Recall that Mget denotes the moduli space of curves of genus 6 with 

a gl. The forgetful map Mget --+ M 6 is generically finite, of degree 5 
[ACGH]. By base change we get a corresponding object Rget, with map 

RJet--+ R6 

of degree 5. The tetragonal construction gives a triality, or (2,2)-corres-
pondence, on Rget. The image in~ is then a (10,10)-correspondence: 

(4.1.1) 

Theorem 4.2 The correspondence Tet induced by the tetragonal con-
struction on the fiber p-1(A), for generic A E A4, is isomorphic to 
the incidence correspondence o~ the 27 lines on a non-singular cubic 
surface. The monodromy group of R 6 over A 5 (i.e. the Galois group 
of its Galois closure) is the Weyl group W E6 , the symmetry group of 
the incidence of the 27 lines on the cubic surface. 

This was conjectured in [DS] and announced in [D 1]. The proof will 
be given below. For the symmetry group of the line incidence on a 
cubic surface, or other del Pezzo surfaces, we refer to [Dem]. Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



THE FIBERS OF THE PRYM MAP 91 

( 4.3) The blown up map 

Let Q C M6 denote the moduli space of non-singular plane quintic 
curves, RQ its inverse image in R6 • By Theorem (1.2), it splits: 

RQ=RQ+ U RQ-

with (Q,p,) E RQ+ (respectively, RQ-) iff h0 (p, ® OQ(l)) is even (re-
spectively, odd). The point is that OQ(l) gives a uniform choice of 
theta characteristics over Q, hence the spaces of theta characteristics 
and semiperiods over Q are identified. 

Let :J be the closure in As of the locus of Jacobians of curves, and 
let C denote the moduli space of non-singular cubic threefolds. Via the 
intermediate Jacobian map, we identify C with its image in As. 

The Prym map sends RQ+ to :J and RQ- to C. Since the fiber 
dimensions can be positive, it is useful to consider the blownup Prym 
map 

where :J,C on the right are blown up to divisors :J,C, while on the 
left we blow up nQ+' nQ-' as well as the locus nrrig of double covers 
of trig£nal cuE_ves. The result is a morphism which is generically finite 
over :J and C. We recall the geometric description of points of the 
various loci, and give the map in these geometric terms. This is taken 
from [CG], [T] and [DS]. 

( 4.3.1) A point of C is given by a non-singular cubic threefold X C P 4 • 

A point of Cis given by a pair (X, H), HE (P4)* a hyperplane. 

(4.3.2) A point ofRQ is given by (Q,p,,L), or (Q,Q,L), where Q C 
P 2 is a plane quintic, L E (P2)* a line, and p, a semi period on Q (or Q 
the corresponding double cover). 

(4.3.3) The fiber p-1(J(X)) C RQ- over a cubic threefold X can 
be identified with the Fano surface F(X) of lines I! C X. (Projection 
from I! puts a conic bundle structure 7f : X - - --+ P 2 = P 4 /I! on X; 
the corresponding point of RQ- is ( Q, Q), where the plane quintic Q is 
the discriminant locus of 1r, and its double cover Q parametrizes lines 
I!' E F(X) meeting 1!.) 

(4.3.4} The fiber j3-1(X, H) corresponds to the lines I! in the cubic 
surface X n H. For general X, H, there are 27 of these. The corre-
sponding objects are of the form (Q,Q,L) where (Q,Q) are as above, 
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( 4.3.5} A point of Ji£rig is given by a curve T E M6 wi.!_h a trigonal 
line bundle .C E Pic3(T), h0 (.C) = 2, and a double cover T ---t T. The 
fiber of j[frig above it is given by the linear system lwr@ .c-21, a P 1. 

( 4.3.6} A point of :T is given by the Jacobian of a curve C E Ms. 
The canonical curve <I>( C) c P 4 , for general C, is the base locus of a 
net of quadrics: 

Av c P\ p E P 2 = P 2( C). 

A point of :T above C is then given by a pair ( C, L ), where L is a line 
in P 2 ( C). (Choosing such a line is the same as choosing a quartic del 
Pezzo surface 

containing <I>( C).) 

( 4.3. 7} Consider the map 

a : M5 ---t RQ+ 

sending C E M 5 to a( C)= (Q, Q), where: 

Q := {p E P 2 ( C) I Avis singular} C P 2( C), 

and Q is the double cover whose fiber over a general p E Q corresponds 
to the two rulings on the rank-4 quadric Av· This a is a birational 
isomorphism; its inverse is the restriction to RQ+ of P. 

The fiber p-l ( C, L) over generic ( C, L) E :Tis given by the following 
27 objects: . 

• The quintic object (Q,Q,L) E RQ+, where (Q,Q) = a(C) and Lis 
the given line in P2(C). 
• Ten trigonals T{, 1 ~ i ~ 5, E = 0, 1, each with a double coverT{: 
each of the 5 points p; E Q n L determines two g! 's on C, cut out by 
the rulings Ri on Av;, and the (Tt, rn are associated to these by the 
trigonal construction. 

• Sixteen Wirtinger covers (Xi, Xi) E (]I R 6 : the quartic del Pezzo 
surface S L contains 16 lines l!i [Dem], each meeting <I>( C) in two points, 
say Pi, qi, and then 

Xi= C/(Pi "'qi) 

and Xi is its unique Wirtinger cover (1.9.1). 

( 4.3.8} We observe that the generically finite map Rtet ---t ~ has 
!-dimensional fibers over both RQ and n'Jfig_ After blowing up and Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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normalizing, we obtain finite fibers generically over the exceptional loci. 
In the limit: 

• Over ( Q, L ), the 5 gl 's correspond to projections of the plane quintic 
Q from one of the 5 points p; E Q n L. 

• Over (T, D), with T a trigonal curve, C the trigonal bundle, and 
DE lwT ® £,-21, four of the gl's are of the form C(q) with qED (i.e. 
they are the trigonal£, with base point q); the fifth Yl is WT ® c-2• 

• Given X= Cf(p rv q) E BMs, there is a pencil L c P2(C) of 
quadrics Ap, p E L, which contain both ~(C) and its chord pq. Among 
these there are 5 quadrics Ap; which are singular, generically of rank 4. 
Each of these has a single ruling R; containing a plane containing pq. 
These R; cut the 5 gl 's on X. 

We conclude that the tetragonal correspondence Tet of (4.1.1) lifts 
to 

Tet c n6 X~ 
which is generically finite, of type (10,10), over each of our special loci. 

Theorem 4.4 Structure of the blownup Prym map. 
Over each of the following loci, the blownup Prym map P has the 

listed monodromy group, and the lifted tetragonal correspondence Tet 
induces the listed structure. 

(1) C: The group is W E6 , the structure is that of lines on a general 
non-singular cubic surface. 

(2) :1: The group is W Ds, the symmetry group of the incidence of 
lines on a quartic del Pezza surface, or stabilizer in W E6 of a line. 
The structure is that of lines on a non-singular cubic surface, one 
of which is marked. 

(3) B= the locus of intermediate Jacobians of Clemens' quartic double 
solids of genus 5 [C1]: The group is WAs = S6 , the structure is 
that of lines on a nodal cubic surface. 
[Note: B is contained in the branch locus of P [OS, V.4] and in 
fact ([06], and compare also [SV], [I]) equals the branch locus. 
The monodromy along B acting on a nearby, unramified fiber is 
(Z/2Z) X s6, or the symmetry group of a double-six, which is a 
subgroup of W E6 • The group S6 thus occurs as a subquotient of 
WE6.] 

( 4) ( cf. [I]) P extends naturally to the boundary a = BAs; the mon-
odromy is W E6 and the structure is that of lines on a general cubic 
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We will prove parts (1), (2) and (3) in §4.2. In the rest ofthis section 
we show that theorems (4.1) and (4.2) follow from (4.4). 

(4.5) Proofs of Theorem (4.2). 

By Theorem (2.16), Tet commutes with P, therefore Tet commutes 
with P. To identify this structure over a generic point, it suffices to do 
so over any point over which P and Tet are etale. These conditions hold, 
e.g., over a generic (X, H) E C, where (4.4.1) identifies the structure. 
This implies that the monodromy is contained in W E 6 , but we get all 
of W E 6 already over C (by ( 4.4.1) again), so we are done. 

We can work instead over :1: again, P and Tet are etale over generic 
( C, L) E :1, and Tet has the right structure there by ( 4.4.2). This shows 

W D5 C Monodromy C W E6. 

As there are no intermediate groups2_J;he monodromy must equal W Ds 
or W E 6 • But if it were the former, 'Rt; would be reducible (since W D 5 

is the stabilizer in W E6 of one of the 27 lines), contradiction. 

QED 

Remark 4.5.1 Along the same lines, we can also reprove Theorem 
-i -

( 4.1 ). Let Tet denote the i-th iterate of the correspondence Tet. On 
nQ- we have: 

-2 
Tet has degree 27, 
-i -2 
Tet = Tet fori 2: 2. 

Since Tet is etale there, these properties persist generically on 'Rt;. Let 
"' be the equivalence rel~tion generated by Tet. We conclude that "' 
has degree 27, and that P factors through a proper quotient: 

P' : 'R6/ rv---+ As. 
We still need to verify that deg(P') = 1. There are several possibilities: 

• We can work over :1; as we will see in (4.7), the fiber of P there 
consists of a unique rv-equivalence class; so we need to check that P' 
is unramified at that equivalence class. This reduces to seeing that 
P is unramificd at least at one point of the fiber; this is trivial at 
the plane-quintic point. (This argument avoids some of the detailed 
computations of the codifferential on the boundary, [DS, Ch., IV], but 
is still very close in spirit to [DS].) 

• We could instead work over any other point of As over which we 
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from bielliptic Pryms, as in §3. (This was proposed in [Dl], as a way 
to avoid the boundary computations.) 
• Izadi [I] applies a similar argument over boundary points, in BAs. 
This lets her reduce the degree computation over As to her results on 
A4 , cf. ( 4.9). 

§4.2 Special Fibers 

In this section we exhibit the cubic surface of theorem ( 4.2) explicitly 
over three special loci in As. We do not know how to do this at the 
generic point of As. 

(4.6) Cubic threefolds 

From ( 4.3.4) we have an identification of f5- 1(X, H), where XC P 4 

is a cubic threefold and H C P 4 a hyperplane, with the set of lines 
f on the cubic surface X n H. For Theorem (4.4.1) we need to check 
that two of these, say f, f' E F(X), intersect each other if and only if 
the corresponding objects ( Q, Q, L ), ( Q', Q', L') correspond under Tet. 
If the lines e, f' intersect, we are in the situation of (2.15.4), so the 
corresponding objects 

( Q' Q' f), ( Q'' Q'' !') 
(notation of (2.15.4)) are tetragonally related. Since f, f' are both cut 
out by hyperplanes through the span A of f, f', we find points 

p E Q n L, p' E Q' n L' 

(namely, the projection of A from f, f' respectively) such that j, f' 
are the projections of Q from p and of Q' from p', respectively. The 
description of RJet in ( 4.3.8) then shows that 

((Q,Q,L),(Q',Q',L')) E Tet, 

as required. Since both the line incidence and Tet are of bidegree 
(10,10), and we have an inclusion, it ~ust be an equality. 

This shows that Tet induces on f5- 1(X, H) the structure of line 
incidence on the cubic surface X n H. Fix the ambiant P 4 and the 
hyperplane H, and let the cubic X vary. We clearly get all cubic 
surfaces in Has intersections X n H; therefore the monodromy group 
is the full symmetry group of the line configuration. This completes 
the proof of ( 4.4.1 ), hence also of Theorem ( 4.2). 
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( ����	� *�a co bians 

Start with (C, L) E .J. The fiber f5- 1(C, L) consists of the 27 objects 
listed in (4.3.7). Each of these comes with the 5 g!'s given in (4.3.8). 
These give the correspondence Tet, which we claim is equivalent to the 
line incidence on a cubic surface. 

Let S = S L be the quartic del Pezzo surface determined by ( C, L ), 
as in ( 4.3.6). Let S' be its blowup at a generic point r E S. Then S' is 
a cubic surface; its lines correspond to: 

• fQ, the exceptional divisor over r. 
• 10 conics through r inS; these correspond naturally to the 10 rulings 
'Rf (as in ( 4.3. 7)). (Each 'Rf contains a unique plane through r, which 
meets Sin a conic through r.] 

• The 16 lines fi in S. 

There is thus a natural bijection between the lines of S' and 
p-1( C, L ). We need to check that this correspondence takes incident 
lines to covers w!Iich are tetragonally related to each other through 
the gl 's of ( 4.3.8). To that end, we list the effects of the tetragonal 
constructions on our curves. The details are straightforward, and are 
omitted. 

������	� The quintic (Q,Q), with the g!: OQ(1)(-pi), PiE Q n L, 
is taken to the two trigonals 

(T;c,f'n, c=O,l, 

each with its unique base-point-free gl, wr 0 c-2• 

(4.7.2) The trigonal (T{, rn with its base-point-free g! goes to (Q, Q) 
with OQ(l )(-pi), and to (T/-E, f'/-E) with the base-point-free g!. 

Consider (T{, rn with the g! £;(p). The actual 4-sheeted cover of 
0 �� in this case is reducible, consisting of the trigonal T;E together with 
a copy of P 1 glued to it at p. We are thus precisely in the situation 
of Example (2.15.2): both tetragonally related objects are Wirtinger 
covers (Xj,Xj)· 

������	� A Wirtinger cover (Xj,Xj) with the g! cut out by the ruling 
'Rf on the singular quadric Ap;, is taken to the trigonal (T;E, T{) and to 
another Wirtinger cover. 
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(4.8) Quartic double solids and the branch locus of P. 
The fiber of P over the Jacobian J(X) E B of a quartic double solid 

X of genus 5 is described in [DS, V.4], following ideas of Clemens. It 
consists of 6 objects ( C;, G\), 0 ~ i ~ 5, each with multiplicity 2, 
and 15 objects ( C;i, C;i ), 0 ~ i < j ~ 5. The monodromy group 
S6 permutes the six values of i: clearly the two sets { Ci} and { C;i} 
must be separately permuted, and any permutation of the C; induces a 
unique permutation of the Cii· The situation is precisely that of lines 
on a nodal cubic surface: the C; correspond to lines f; through the 
node; and the plane through f;, fi meets the cubic residually in a line 
f;,j. 

The best way to see the symmetry is to consider Segre's cubic three-
fold Y C P 4 , image of P 3 by the linear system of quadrics through 
5 points p;, 1 ~ i ~ 5, in general position in P 3 . (cf. [SR] for the 
details.) Y contains six irreducible, two-dimensional families of lines, 
which we call the "rulings" R;, 0 ~ i ~ 5: For 1 ~ i ~ 5, R; consists 
of proper transforms of lines through p;; while Ro parametrizes twisted 
cubics through p1, • • • ,p5 • Y also contains 15 planes Il;j, 0 ~ i < j ~ 5 
( = the 5 exceptional divisors and the proper transforms of the 10 planes 
PiPiPk); the ruling R; is characterized as the set of lines in P 4 meeting 
the 5 planes II;j, j =/= i. The symmetric group S6 acts linearly on P\ 
preserving Y, permuting the R; and correspondingly the IT;i. 

The quartic double solids in question are essentially the double cov-
ers 

(:X-+Y 

branched along the intersection of Y with a quadric Q c P 4• The Prym 
fiber is obtained as follows: 

• C; := { lines f E R;, tangent to Q} 
C; := { irreducible curves f' C X such that ((£') = f E C;} 

Thus ( C;, C;) is the discriminant of a conic-bundle structure on X 
given by (-1(RJ The Prym canonical curve ll!(C;) c P4 is traced by 
the tangency points of e and Q; in particular' Ill ( C;) c Q' so ( C;' C;) is 
a ramification point of P, by (1.6) . 

• ( cij, cij) is similarly obtained as discriminant of a conic bundle struc-
ture on X given by projection from IT;i, cf. [DS, V4.5]. 

(4.9) Boundary behavior 

In [I], Izadi uses results on the structure of P : R 5 -+ A4 t~find the 
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over boundary points of the toroidal compactification A5 . The picture 
is as follows: 

p 14,- As 
u u 

ap 81174, -- BAs 

·] ]~ 
p Rs-A4 

Over general A E A4 , the fiber p-1(A) is isomorphic to the Kummer 
variety A/(±1). Over (C,C) E R 5 , the fiber of a is S2C/t, and 8P 
becomes ( cf. [D3, ( 4.6)]) the map 

X + y H '1/J( X) + 1/J(y) 
s2c-A 

I l 
S2Cjt- A/(±1) 

where 'ljJ is the Abel-Prym map C ~A. All in all then, we are consid-
ering the map 

2-
ap : u(c,c)EP-l(A)s c =: E -----+ A. 

Theorem ( 4.1) says that its degree is 27, and Theorem ( 4.2) predicts 
an incidence structure on its fibers, i.e. a way of associating a cubic 
surface to each point a E A. 

In §5 we associate to A E A4 a cubic threefold X= ~~:(A) C P 4 such 
that p-1(A) is a double cover of the Fano surface F(X) of lines in X. 
For generic a E A, we are looking for a cubic surface; it is reasonable 
to hope that this should be of the form H(a) n X, where H(a) is an 
appropriate hyperplane in P 4 . We thus want a map 

such that 
pr((8Pt1(a)) ={lines in H(a) n X}. 
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E ----'81'"-'------- A 

~ 
pr p-l(A) H 

/ 
F(X) 

Izadi's beautiful observation is that such an H is given by the linear 
system roo (sections of 1281 vanishing to order ~ 4 at 0). The identifi-
cation of r 00 with the ambiant P 4 of X uses a construction of Clemens 
relating his double solids to r00 , and the interpretaton of (a cover of) X 
as parametrizing double solids with intermediate Jacobians isomorphic 
to A, cf. [D6] or [I]. 

§5 Fibers of P : Rs --+ A4. 

§5.1 The general fiber. 

Our main result in this section is: 

Theorem 5.1 For generic A E A4 , the fiber P-\A) is isomorphic to 
a double cover of the Farro surface F = F(X) of lines on some cubic 
threefold X. 

Let RC denote the inverse image in RA5 of the locus C of (interme-
diate Jacobians J(X) of) cubic threefolds X. We recall from [D4] that 
it splits into even and odd components: 

(5.1.1) nc = nc+ nne-, 
distinguished by a parity funciton. This follows from the existence of 
a natural theta divisor 3 C J(X), characterized (cf. [CG]) by hav-
ing a triple point at 0 : 3 translates the parity function q of (1.2), on 
theta characteristics, to. a parity on semi periods. More explicitly, pick 
(Q,a) E p-1(J(X)) c nQ-; Mumford's exact sequence (Theorem 
(1.4)(2)) says that any 8 E J2(X) is 1r*v for some v E (a).L C J2(Q). 
The compatibility result, theorem (1.5), then gives (cf. (D4], Proposi-
tion (5.1)): 
(5.1.2) qx(8) = qQ(v) = qQ(va). 

In case 8 is even, we end up with an isotropic subgroup 
(v, a) C J2( Q), with a odd and v, va even. The Pryms of the latter 
are therefore Jacobians of curves: 
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(5.1.3) P(Q,v) ~ J(C), P(Q,vu) ~ J(C'), 

and the image of u gives semiperiods p. E J2( C), p.' E J2( C'). 
Reversing direction, we can construct an involution 

and a map 
"' : 'Rs ---+ nc+' 

as follows: Start with ( C, p.) E 'R5 , pick the unique ( Q, v) in 
p-1(C)n'RQ+, and let u,vu E J2(Q) map top. E J2(C). Then formula 
( 1.3) reads: 
(5.1.4) 0 = 3 + even+ q(u) + q(vu) (mod. 2), 
so after possibly relabeling, we may assume 

(Q,u) E 'RQ-, (Q,vu) E 'RQ+ 

so that there is a well-defined curve C' E M 5 and a cubic threefold 
X E C such that 

P(Q,u) ~ J(X) 

(5.1.5) 
P(Q,vu) ~ J(C'). 

We can thus define ,\ and K by: 

..\(C,p.) := (C',p.') 
(5.1.6) 

K(C,p.) :=(X, b), 

where p.' E J2(C'), b E J2(X) are the images of v E J2(Q). The 
precise version of our results is in terms of ,\ and K: 

Theorem 5.2 

(1) (C,p.) is related to ..\(C,p.) by a sequence of two tetragonal con-
structions. Hence ,\ commutes with the Prym map: 

Po..\ = P, ..\ o ,\ = id. 

(2) "'factors through the Prym map: 
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Recall the Abel-Jacobi map (CG], 

AJ: F(X) -+ J(X), 

which is well-defined up to translation in J(X). (It can be identified 
with the Albanese map of the Fano Surface F(X).) A point{; E J2(X) 
determines a double cover of J(X), hence of F(X). 

Theorem 5.3 For generic A E A4 , set 

(X, b):= x(A) = K(P-1(A)) E nc+. 

Let F(X) be the Fano surface of X, F(X) its double cover deter-
mined by b via the Abel-Jacobi map. 

(1) There is a natural isomorphism 

(2) The action of A on the left corresponds to the sheet interchange 
on the right. 

(3) Two objects (C,J-t),(C',J-t) E p-1(A) are tetragonally related if 
and only of the lines f., f.' E F(X) which they determine intersect. 

Remark 5.4 Izadi has recently analyzed the birational map x, in [I]. 
In particular, she shows that X is an isomorphism on an explicitly 
described, large open subset of A4 • 

§5.2 Isotropic subgroups. 

By isotropic subgroup of rank ron a curve C we mean an 
r-dimensional F 2-subspace of J2( C) on which the intersection pairing 
( , ) is identically zero. Choosing an isotropic subgroup of rank 1 is 
the same as choosing a non-zero semiperiod. 

Start with a trigonal curveT E M 9+1, with a rank-2 isotropic sub-
group W C J2(T) whose non-zero elements we denote Vi, i = 0, 1, 2. 
The trigonal construction associates to (T, Vi) the tetragonal curve 
Xi E M 9 • Mumford's sequence (1.4)(2) sends W to an isotropic sub-
group of rank 1 on Xi, whose non-zero element we denote f-ti· 

Lemma 5.5 The construction above sets up a bijection between the 
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• A trigonal curveT E M 9+1 with rank-2 isotropic subgroup. 
• A tetragonally related triple (Xi, J-Li) E 'R9 , i = 0, 1, 2. 

0ROOF��
We think of W D4 as the group of signed permutations of the 8 

objects {xr}, 1 :S i :S 4. Start with a tetragonal double cover 
Xo --+ Xo --+ 0 ���It determines a principal W D4-bundle over 0 ��\(Branch). 
The original covers X0 , X0 are recovered as quotients by the following 
subgroups of W D4: 

Ho := Stab(xt), 

Ho := Stab(xr), 

Consider also the subgroup 

G := Stab{{xi,xt}, {x!,x2}}. 

It has index 12 in W D4 • Its normalizer is: 

f.V(G) = Stab{{xr,xi},{x~,x~}}, 
of index 3. The quotient is 

N(G)/G ~ (Z/2Z)2 , 

so there are 3 intermediate groups Gi, i = 0, 1, 2. We single out one 
of them: 

Go:= Stab{xr,xi}. 

The three subgroups Gi are not conjugate to each other, but can be 
taken to each other by outer automorphisms of W D4 • In fact, the 
action of Out(W D4 ) ~ 53 sends G, and hence also N( G), to conjugate 
subgroups; it permutes the Gi transitively, modulo conjugation; and 
it also takes H0 , H0 to non-conjugate subgroups Hi, Hi, i = 1, 2. 
We illustrate each of these subgroups as the stabilizer in W D4 of a 

corresponding partition of ~ :_ ~ ~ : ( x+ x+ x+ x+) 
xi x2 x3 x4 
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I rn o.--o---o---o =>< o----o-----o---
Ho H1 H2 

:_rn o----o-----o---

~ 0 0 0 0 

Ho H1 H2 

D D 
N(G) 

D 0 0 o--o o--o o--o X 0 0 o--o o--o o--o 
Go G1 G2 

o--o 0 0 

o--o 0 0 

G 

Let xi,xi,T,T,t (i = 0,1,2) be the quotients of the principal 
W D4-bundle by the subgroups Hi, Hi, N( G), G, Gi respectively, com-
pactified to branched covers of P 1. We see immediately that: 
• The trigonal construction takes X0 ---t P 1 to T0 ---t T ---t P 1. 

• The double cover X0 ---t X0 corresponds via (1.4)(2) to the double 
cover T ---t :ro. 
• The tetragonal construction acts by outer antomorphisms, hence ex-
changes the three tetragonal double covers xi ---t xi ---t P 1. 

Applying the same outer automorphisms, we see that the trigonal 
construction also takes Xi ---t P 1 to fi ---t T ---t P 1, i = 1, 2. To a 
tetragonally related triple (Xi ---t Xi ---t P 1) we can thus unambiguously 
associate the trigonal T ---t P 1 together with the rank-2, isotropic 
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subgroup corresponding to the covers t. This inverts the construction 
predecing the lemma. 

QED. 

Note 5.5.1 The basic fact in the above proof is that the 3 tetragonals 
Xi yield the same trigonal T. This can be explained more succinctly: 
outer automorphisms take the natural surjection a 0 : W D4 -t-t S4 to 
homomorphisms a 1 , a 2 which are not conjugate to it. But the compo-
sition f3 o ai : W D4 -t-t Sa, where f3 : S4 -t-t Sa is the Klein map, are 
conjugate to each other. 

Construction 5.6 Now let T E M 9+1 be a trigonal curve, together 
with an isotropic subgroup of rank 3, 

We think of V as a vector space over F 2 ; the projective plane P(V) 
is identified with V\(0). For each i E P(V), the trigonal construction 
gives a tetragonal curve Y; E M 9 • Mumford's sequence (1.4)(2) gives 
an isotropic subgroup of rank 2, 

with a natural identification Wi ~ Vj(i). 
Let U C V be a rank-2 subgroup, so P(U) C P(V) is a projective 

line. Lemma (5.5) shows that the 3 objects 

i E P(U) 

are tetragonally related. In particular, they have a common Prym 
variety 

Pu ~ P(Y;,Uj(i)) E .49-I, ViE P(U). 

Applying {1.4) twice, we see that the original rank-3 subgroup V de-
termines a rank-1 subgroup 

VjU c (Puh, 

so we let Pu E (Pu h be its non-zero element. Altogether then, we have 
a map 

P(V)* ---+ RA9-1 

U ~----+ (Pu, Pu ). 

(5.6.1) Assnme now that one of the Y; happens to be trigonal. (This 
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Cu E M 9_ 1 such that Pu ~ J( Cu ). Lemma (5.5), applied to (Yi, Wi), 
shows that the 3 objects 

are tetragonally related, so they have a common Prym variety 
A= Pv E Au-2· 

(5.6.2) Assume instead that g = 6 and that Pu happens to be a Ja-
cobian J(Cu) E :15 , for some U E P(V)*. Of the three Yi, i E U, we 
claim two are trigonal and the third, a plane quintic. Indeed, by ( 4. 7), 
the tetragonal triples above J( Cu) consist either of a plane quintic and 
two trigonals, as claimed, or of a trigonal and two Wirtingers. The 
latter is excluded since the isomorphism 

J(Y;) ~ P(T, i) 

implies that Y; is non-singular for each i E P(V). 

Assume from now on that g = 6. Our data consists of: 
• T E M 7 , trigonal, with V C h(T) isotropic of rank 3. 
• For each i E P(V), a curve Y; E M 6, with a rank-2 isotropic subgroup 
wi c J2(1~). 

• For each U E P(V)*, an object (Pu,JJu) E 'R.As 

• An abelian variety A= Pv E A4. 

We display P(V) as a graph with 7 vertices i E P(V) and 7 edges 
U E P(V)*, in (3,3)-correspondence. We write T (or Q) on aver-
tex corresponding to a trigonal (or quintic) curve, and C on an edge 
corresponding to a Jacobian. We restate our observations: 

(5.6.3): Edges through aT-vertex are C-edges. 

(5.6.4): On a C-edge, the vertices are T, T, Q. 

It follows that only one configuration is possible: 
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4�

T~--~~----~~~~-----------r 

Q 

&IGURE�����

Thus four of the Y; are trigonal, the other three are quintics, and six 
of the Pu, corresponding to the straight lines, are Jacobians of curves. 
Let U0 E P(V)* correspond to the circle. ForiE U0, Y; is a quintic Q. 
Through Q pass two C edges and U0 , and the semi periods corresponding 
to the C-edges are even; by (1.3), the semi period U0 /( i) corresponding 
to U0 must be odd, so there is a cubic threefold X E C such that 

Puo ~ J(X). 

Finally, theorem (1.5), or formula (5.1.2), shows that the semiperiod 
b := J.Lu0 E h(X) is even. 

We observe that the three tetragonally related quintics correspond 
to 3 lines on the cubic threefold which meet each other and thus form 
the intersection of X with a ( tritangent) plane. We are thus exactly in 
the situation of (2.15.4). 

e���� 0ROOFS��

����]�Theorems (5.1 ),(5.2) and (5.3) all follow from the following state-
ments: 

Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



THE FIBERS OF THE PRYM MAP 107 

(1) ( C, J.L) is related to >..( C, J.L) by a sequence of two tetragonal con-
structions. 

( 2) K is invariant under the tetragonal construction 

(3) For (X, b) E nc+, K-1(X, b) ~ F(X), the isomorphism takes>.. 
to the involution on F(X) over F(X), and two objects on the left 
are tetragonally related iff the corresponding lines intersect. 

(4) Any two objects in p-1(A), generic A E At, are connected by a 
sequence of (two) tetragonal constructions. 

Indeed, (1) is (5.2)(1); (2) and (4) imply the existence of 
x : A4 ~ nc+ such that "" = X o P, while (3) shows that any two 
objects in a K-fiber are also connected by a sequence of two tetragonal 
constructions, so x must be birational, giving (5.2)(2). This gives an 
isomorphism p-1(A) ~ K-1(X, b), so (5.3) follows. 

(5.9) We let R 2Q+, R 2Q- denote the moduli spaces of plane quintic 
curves Q together with: 

• A rimk-2, isotropic subgroup W C J2( Q), containing one odd and 
two even semiperiods, and 

• a marked even (respectively odd) semiperiod in W\(0). 
Exchanging the two even semiperiods gives an involution on R 2Q+, 

with quotient R 2 Q-. The birational map 

a:M5~RQ+, 

of (4.3.7), lifts to a birational map 
(5.9.1) Ra: R5~R 2 Q+. 

From the construction of>.. in (5.1.6) it follows that the involution on the 
right hand side corresponds to >.. on the left, so we have a commutative 
diagram: 

(5.9.2) 

Start with ( C, J-l) E R5 and any 9! on C. The trigonal construc-
tion produces a trigonal Y E M 6 with rank-2, isotropic subgroup Wy. 
On Y we have a natural 9!, namely wy ® L - 2, where L is the trigo-
nal bundle; so we bootstrap again, to a trigonal T E M1 with rank-3 Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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isotropic subgroup V. Applying construction ( 4.6) we obtain a diagram 
like ( 5. 7), including an edge for ( C, J1) and on it a vertex for ( Q, W Q) := 
1rna( C, J1 ). But then A.( C, J1) and K( C, J1) also appear in the same dia-
gram, as the two other edges (the line, respectively the circle) through 
Q! Statement (5.8.1) now follows, since any two edges of (5.7) which 
meet in a trigonal vertex are tetragonally related. (5.8.2) also follows, 
since any ( C', 11') tetragonally related to ( C, J1) will appear in the same 
diagram with (C,Jl) (for the obvious initial choice of gl on C), so they 
have the same K. 

From the restriction to nQ- of the Prym map we obtain, by base 
change: 

(5.9.3) 

nc+-c 
Combining with (5.8)(1),(2) and (5.9.2), we find that K factors 

(5.9.4) 

nc+ 

We know p- 1(X) from ( 4.6), so by (5.9.3): 
(5.9.5) nP-1(X, b) ~ p-1(X) ~ F(X), 

and K- 1(X, blJ.s a double cover, which by the following lemma is iden-
tified with F(X). (The compatibility with ). follows from (5.9.4); line 
incidence in F(X) corresponds by ( 4.6) to the tetragonal relation among 
the quintics, which by figure ( 5. 7) corresponds, in turn, to the tetrag-
onal relation in n5 , so the proof of (5.8)(3) is complete.) 

Lemma 5.10 The Albanese double cover F(X) determined by 
fJ E h(X) is isomorphic to 1f- 1nP- 1(X, b) (notation of (5.9.4)). 

Proof. 
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The second isomorphism in (5.9.5) sends a line .e E F(X) to the 
object ( Q~., Q~.) E p-1(X), where the curves Ot, Ql parametrize ordered 
(respectively, unordered) pairs f!, f.'' E F(X) satisfying: 

(sum in J(X)). 

We may of course think of Ot as sitting in F(X), since f! uniquely 
determines .f": Ot is the closure in F(X) of 
�������	� {f.'EF(X) �� en.e:p¢,f!:j;.e}. 

~ ~ 

The corresponding object of nP-1(X, b) is (Qb Ot, Qt), where Ql is 
the inverse image in F(X) of Ot. embedded in F(X) via (5.10.1). Now 
to specify a point in 1f-1nP-1(X, b) we need, additionally, a double 
cover Q~ -+ Q e satisfying: 

�������	�

We need to show that a choice off E F(X) over .e E F(X) determines 
such a Q~. Recall that F(X) -+ F(X) is obtained by base change, via 
the Albanese map, from the double cover J(X) --+ J(X) determined by 
fl. Q~ can thus be taken to parametrize unordered pairs f!, t' E F(X) 
satisfying: 

(sum in J(X)) . 
The fiber product in (5.10.2) then parametrizes such ordered pairs, so 

~ 

the required isomorphism to Q,_ simply sends 

Q.E.D. 

Finally, we prove (5.8)( 4). Let P : 1?.5 --+ A4 be the proper Prym 
map. By (5.8)(3) it factors 

where t: nc+ -+ A4 is a rational map, which we are trying to show is 
birational. It suffices to find some A E A4 such that: 

--1 (1) Any two objects in P (A) can be related by a sequence of tetrag-
onal constructions. 

(2) The differential dP is surjective over A. 

In §5.4 we see that ( 1) holds for various examples, including generic 
Jacobians E .]4: for generic C E M4, P\J(C)) consists of Wirtinger Licensed to Humboldt Universitat zu Berlin.  Prepared on Wed Oct 16 07:50:01 EDT 2019for download from IP 141.20.217.63.
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covers C -+ C' (with normalilzation C) and of trigonals T, and the 
two types are exchanged by ..\. It is easier to check surjectivity of dP 
at the Wirtingers: by theorem {1.6), this amounts to showing that the 
Prym-canonical curve 'll(X) c P3 is contained in no quadrics. By [DS] 
IV, Propo. 3.4.1, 'l!(X) consists of the canonical curve <I>( C) together 
with an (arbitrarily chosen) chord. Since <I>( C) is contained in a unique 
quadric Q, which does not contain the generic chord, we are done. 
[Another argument: it suffices to show that no one quadric contains 
w(T) for all trigonal Tin p-1(J(C)). By [DS], III 2.3 we have 

Ur'li(T) J <I>(C), 

so the only possible quadric would be Q. Consider the gJ on C given 
by wc(-p-q), where p, q E Care such that the chord <I>(p), <I>(q) is not in 
Q. LetT be the trigonal curve associated to (C,wc(-p-q)), and choose 
a plane A C P 3 through <I>(p), <I>(q), meeting Q and <I>( C) transversally, 
say 

4 
An <I>( C)= <I>(p + q +I: xi), 

i=l 

then by [DS],III 2.1, w(T) contains the point 

<I>( xi), <I>(x2) n <I>(x3), <I>(x4) 

which cannot be in Q.] 

§5.4 Special fibers. 

Q.E.D. 

We want to illustrate the behavior of the Prym map over some 
special loci in A4. The common feature to all of these examples is that 
the cubic threefold X given in Theorem {5.1) acquires a node. We thus 
begin with a review of some results, mostly from [CG], on nodal 
cubics. 

�����	� Nodal cubic threefolds 

There in a natural correspondence between nodal cubic threefolds 
X C 0�� and nonhyperelliptic curves B of genus 4. Either object can 
be described by a pair of homogeneous polynomials F2, F3, of degrees 
2 and 3 respectively, in 4 variables x1, ... , x4 : X has homogeneous 
equation 0 = F3 + xoF2 (in P4), and the canonical curve <I>(B) has 
equations F2 = F3 = 0 in P 3. 
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More geometrically, we express the Fano surface F(X) in terms of 
B. Assume the two gJ's on B, £'and£", are distinct. They give maps 

r', r": B..__. S2B 

sending r E B top+ q if p + q + r is a trigonal divisor in 1£'1, 1£"1 
respectively. We then have the identification 
(5.11.1) F(X) ~ S2Bf(r'(B) 'V r''(B)). 

Indeed, we have an embedding 

T : B ..__. F(X), 

identifying B with the family oflines through the node n = {1, 0, 0, 0, 0). 
This gives a map S2 B -t F(X) sending a pair f 1, f 2 of lines through 
n to the residual intersection with X of the plane (£1 ,£2 ). this map 
identifies r'(B) with r''(B), and induces the isomorphism (5.11.1). 

(5.11.2} A line f. E F(X) determines a pair (Q,Q) E 'RQ-, which 
must be in aunQ-, i.e. for generic f. we obtain a nodal quintic Q with 
etale double cover Q. We can interpret (5.11.1) in terms of these nodal 
quintics: Start with a divisor p + q E S2 B. Then w8 ( -p-: q) is a gl on 
B, so the trigonal construction produces a double coverT -t T, where 
T E Ms comes with a trigonal bundle £. The linear system lwr ® c-11 
maps T to a plane quintic Q, with a single node given by the divisor 
lwr ® c-21 on T. 

(5.11.3) In the special case that there exists r E B such that 
p + q = r''(r), i.e. p + q + r E 1£"1 is a trigonal divisor, our gl acquires 
a base point: 

WB( -p- q) ~ £'(r). 
As seen in (2.10.ii), the trigonal construction produces the nodal trig-
onal curve 

T := Bf(p' 'V q') 

with its Wirtinger double coverT, where p', q' E Bare determined by: 

p' + q' + r E 1£'1, 
i.e. p' + q' = r'(r). In this case, the quintic Q is the projection of ~(B) 
from ~( r ), with 2 nodes p 'V q, p' 'V q', and Q is the reducible double 
cover with crossings over both nodes. 

(5.12) Degenerations in nc+. 
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X E C (X, b) E nc+ 
(Q,u) E 'R,Q-, (Q,v), (Q,vu) E 'R,Q+ 
{C,p,), {C',p,') E 'Rs 
AEA4 

and these objects satisfy: 

P(Q, u) = J(X) , 
P(Q,v) = J(C) , 
P(Q,vu)= J(C'), 

P( C, p,) = P( C', p,') =A 
A(C,p,)= (C',p,') 
K(C,p,)= (X,o). 

V, V(J 1-+ 0 
(J' V(J 1-+ f.L 
v, (J 1-+ p,' 

Now let X degenerate, acquiring a node, with E E J2(X)\(O) the 
vanishing cycle mod. 2. From (5.11) we see that Q also degenerates, 
with a vanishing cycle E which maps (via. (1.4)) to[. Lemma (5.9) of 
[D4] shows that E, hence also t, must be even. 

There are 3 types of degenerations of (X, b), distinguished as in (1.7) 
by the relationship of 8, t. (A fourth type, where Q degenerates but 
X does not, is explained in (5.13).) The possibilities are summarized 
below: 

(I) If t = 8 then either E = v or E = vu, which gives the same 
picture with C, C' exchanged. In case E = v, ( Q, v) undergoes a ar 
degeneration, while ( Q' V(J) is au. (The notation is that of ( 1. 7).) 
Thus A is a Jacobian. 

The double cover F(X) is itself a a1 cover. In terms of the curve 
B of (5.11), we have 

F(X) = (S2B)oll(S2Bh I (r'(B)o rv r"(B)I, r"(B)o rv r'(B)t). 

This is clear, either from the definition of F(X) via the Albanese 
map, or by considering the restriction to RP-1(X, 8) of the double 
cover 

R2Q+ ~ R2Q-

of (5.9). One of the components parametrizes the trigonal objects 
( C, f.L ), the other parametrizes the nodals ( C', p,'). 
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(II) a is always perpendicular to c, v, and the condition (t, b) = 0 
implies (c-,v) = 0 by (1.4.3). Both (Q,v) and (Q,va) then give 
an-covers, so C, C' are nodal. Again by (1.4.3), both ( C, J-l) and 
( C', 1-t') are an, so their common Prym A is in a..44 • 

From the Albanese map we see that F(X) is an etale cover 
of F(X). Indeed, b comes from a semiperiod 8' on B, giving a 
double cover jj with involution t; the normalization of F(X) is 
then S 2Bjt, and F(X) is obtained by glueing above r(B). 

(III) In this case both ( Q, v) and ( Q, va) are am, so C, C' are non-
singular. The node of Q represents a quadric of rank 3 through 
<I>( C), so C is cut out by the unique ruling. By the Schottky-Jung 
relations [M2], the vanishing theta null on C descends to one on 
A. 
The double cover F(X) is again a am-cover, in the sense that 
its normalization is ramified over r'(B), r'(B), the sheets being 
glued. Each of the quintics in (5.11.2) gives two points of F(X), 
while the two-nodal quintics (5.11.3) land in the branch locus of 
71" (5.9.4). 

Degeneration Degeneration 
type of type of 

(X,8) (Q, a, v, va) (C,J-L) ( C', J-L') A 

I: t= 8 c-=v nonsingular nodal, a1 :14 
trigonal 

II:t=/=8, (c, a, v) nodal an , nodal an 
' a.A4 

(t, 8) = 0 rank 3 
isotropic 
subgroup 

III : (t, 8) =/= 0 (c-,a) = 0 nonsingular, nonsingular, Bnull 

{t:,v}=/=0 has vanishing has vanishing 
thetanull £, thetanull £', 
£(J-L) even £' (J-L') even 

IV: {t:,v)=O nonsingular, 
nonsingular {t:,a) =/= 0 nodal an 

' has vanishing A4 
thetanull £', 
£' (J-L') odd 
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�����	� Degenerations in 'R.2 Q+. 
We have just described the universe as seen by a degenerating cubic 

threefold. From the point of view of a degenerating plane quintic, there 
are a few more possibilities though they lead to no new components. 
We retain the notation: Q, v, a, E etc. 
0. E cannot equal a, since E is even, a odd. 

I. E = v reproduces case I of (5.12), as does: 

I'. E = va. 

II. Excluding the above, v, a, E generate a subgroup of rank 3. If 
it is isotropic, we are in case II above. 

III. If (c, a) = 0 but (c, v) = (c, va) =F 0, we're in case III. 
The only new cases are thus: 

IV. 
N.' 

(c, v ) = 0 =F (c, a), or: 
(c, va) = 0 =F (c, a), 

which is the same as IV after exchanging C, C'. 

In case IV, we find: 

• X is non-singular, in fact any X can arise. What is special is the 
line f E F(X) corresponding to Q : it is contained in a plane which is 
tangent to X along another line, f'. 
• ( Q, v) is a an degeneration, so C is nodal, and ( C, J-L) is a an degen-
eration . 

• On the other hand, ( Q' va) is am' so C' is non-singular' and has a 
vanishing theta null .C' (corresponding, as before, to the node of Q). 

• This time though, .C'(J-L') is odd, so A E A4 does not inherit a vanish-
ing theta null. In fact, any A E A4 arises from a singular quintic with 
degeneration of type IV. 

So far, we found three loci in .44 which are related to nodal cubics: 

p o K:-1(a1nc+) 
Po K:- 1(annc+) 
p o K:- 1(amnc+) 

We are now going to study, one at a time, the fibers of P above 
generic points in these three loci. We note that related results have 
recently been obtained by Izadi. In a sense, her results are more precise: 
she knows ( cf. Remark 5.4) that X is an isomorphism on the open 
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complement U of a certain 6-dimensionallocus in A4 • In [I] she shows 
that for A E U, x( A) is singular if and only if 

A E J4 U Onull· 

Her description of the cubic threefold corresponding to A E 34 comple-
ments the one we give below. In general her techiques, based on f 00 , 

are very different than our degeneration arguments. 

(5.14) Jacobians 

Theorem 5.14 Let B E M 4 be a general curve of genus 4, and let 
(X, b)= x(J(B)). 

(1) X is the nodal cubic threefold corresponding to B (5.11). 

(2) (X, 6) E 81 , so F(X) is reducible, each component is isomorphic 
to S2B. 

(3) Let ( Q, a, v) be the plane quintic with rank-2 isotropic subgroup 
corresponding to some f E F(X). Then Q is nodal, with trigonal 
normalization T, v is the vanishing cycle, and 
( Q, a) = ( Q, va) E 811 • 

(4) p-1(J(B)) is isomorphic to F(X). The component corresponding 
to v (respectively va) consists of trigonal curves Tp,q (respectively 
Wirtinger covers of singular curves Sp,q), (p, q) E S2 B. 

(5) The tetragonal construction takes both Sp,q and Tp,q to Sr,s and 
Tr,s if and only if p + q + r + s is a special divisor on B. The 
involution ). exchanges Sp,q, Tp,q· 

(6) Any two objects in p- 1(J(B)) can be connected by a sequence of 
two tetragonal moves (generally, in 10 ways). 

Proof 
Since at least some of these results are needed for the proof of 

(5.8)(4), we do not use Theorem (5.3). For (p,q) E S2B, we consider: 

• Tp,q --+ Tp,q, the trigonal double cover associated by the trigonal con-
struction to B with the g! given by wB(-p-q) . 

• Sp,q --+ Sp,q, the Wirtinger cover of Sp,q := B j(p rv q). (When p = q, 
this specializes to B Up R, where R is a nodal rational curve in which 
p is a non singular point.) 
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These objects are clearly in p-1(J(B)). Beauville's list ([B1], ( 4.10)) 
shows that they exhaust the fiber. This proves part (4). Now clearly 
K, as defined in (5.1.6), takes any of these objects to our (X, 6); so 
the analysis in (5.12)(1) applies, proving (1)-(3). (Note: this already 
suffices to complete the proof of (5.8)(4)!) 

Let r + s + t + u be an arbitrary divisor in lwn( -p- q)l. Projection 
of <I>(B) from the chord <I>(t), <I>(u) gives (the general) gl on Sp,q· The 
tetragonal construction takes this to the curves Ti,u and Sr,s· (The 
situation is that of (2.15.2).) 

On Tp,q there are two types of gl's, of the form .C(x) and w®.C-1(-x), 
where £ is the trigonal bundle and x E Tp,q· Now x corresponds to a 
(2,2) partition, say { {r, s }, {t, u} }, of some divisor in lwn( -p-q)!. The 
tetragonal construction, applied to .C( x), yields the curves Sr,s and S1,u; 
while when applied tow® .c-1( -x), it gives Tr,s and Tt,u· Altogether, 
this proves (5). We conclude with: 

Lemma 5.14. 7 Given any p, q, r, s E B, there are points t, u E B (in 
general, 5 such pairs) such that both p + q + t + u, r + s + t + u are 
special. 

Proof 

Let a, (3 be the maps of degree 4 from B to P 1 given by 
lwn( -p- q)l,lwn( -r- s )I. Then 

a x (3 : B -t P 1 x P 1 

exhibits B as a curve of type ( 4,4) on a non-singular quadric surface, 
hence the image has arithmetic genus (4 -1)2 = 9)4 = g(B), so there 
must be (in general, 5) singular points; these give the desired pairs 
(t, u). 

QED 

(5.15) The Boundary. 

The results in this case were obtained by Clemens [C2]. A general 
point A of the boundary a.A4 of a toroidal compactification A4 is a 
C*-extension of some A0 E A3. The extension data is given by a point 
a in the Kummer variety Ao/(±1). 

Given a E A0 , consider the curve 

B = Ba := 8 n 8a c Ao 
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(where X E ea {::} x+a E e), and its quotient B =Baby the involution 
x 1-+ -a - x. We have 

and 
P(B,B) ~ Ao. 

The pair (B, B) does not change (up to isomorphism) when a is replaced 
by -a. 

4HEOREM������ ([C2]) Let A E a.A4 be the C*-extension of 
Ao E A3, a generic PPAV, determined by µa E Ao. Let (X, 6) = x(A). 

��	� X is the nodal cubic threefold corresponding to B = Ba. 

[�	� {X, 6) E a11 , so F(X) is the etale double cover of F(X) with 
normalization S2 B / t, as in (5.12.II). 

��	� The corresponding quintics Q are nodal; all three of CJ, v, VCJ are of 
type a11 • 

=-1 - -( �	� P (A) is isomorphic to F(X), and consists of a11-covers ( C, C) 
whose normalizations (at one point) are of the form (Bb, Bb) for 
b = b1- b2, b1, b2 E 1/;(B). 

0ROOF�
=-1 = -

Clearly P (A) c a11R5 , so consider a pair ( C, C) E an, say 

C = Nj(p"' q), C = N j(p'"' q',p" "'q") 

with (N,N) E R4 • Then P(C,C) is a C*-extension of P(N,N), with 
extension data 

µ(1/J(p') -1/J(q')) E P(N, N)/(±1). 

We see that P( C, C) = A if and only if 
- - 1 �������	� (N, N) E p- (A0 ), 

and: 

�������	� 1/J(p') -1/J(q') =a, p', q' E N. 

Now, (5.15.5) says that (N, N) is taken, by its Abel-Prym map 1/;, 
to (Bb, Bb) for some bE Ao, and then (5.15.6) translates to: 
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which is equivalent to 

(take b1 = a2 +b, b2 = a2 ). This proves (4), and everything else follows 
from what we have already seen. 

QED 

(5.16) Theta nulls 

Let A E A4 be a generic P P AV with vanishing thetanull, and ( C, C) 
a generic element of p- 1(A). By [B1], Proposition (7.3), C has a van-
ishing thetanull. This implies that the plane quintic Q parametriz-
ing singular quadrics through <I>( C) has a node, corresponding to the 
thetanull. The corresponding cubic threefold X is thus also nodal, and 
we are again in the situation of (5.11.III). I do not see, however, a more 
direct way of describing the curve B (or the cubic X) in terms of A. 

(5.17) Pentagons and wheels. 
In [V], Varley exhibits a two dimensional family of double cov-

ers (C, C) E R 5 whose Prym is the unique non-hyperelliptic PPAV 
A E A4 with 10 vanishing thetanulls. The curves C involved are Hum-
bert curves, and each of these comes with a distinguished double cover 
C. As an illustration of our technique, we work out the fiber of P over 
A and the tetragonal moves on this fiber. This is, of course, a very 
special case of (5.12)(III) or (5.16). 

We recall the construction of Humbert curves and their double cov-
ers. Start by marking 5 points p1, · · · ,p5 E P 1. Take 5 copies Li of P 1 , 

and let Ei be the double cover of Li branched at the 4 points Pi, j =/= i. 
Let 

(5.17.1) A := llf=1 Li, B := llf=1 Ei. 

The pentagonal construction applied to 

(5.17.2) B ~A L P 1 

(!is the forgetful map, of degree 5), yields a 32-sheeted branched cover 
j.B-+ P 1 which splits, by (2.1.1), into 2 copies of the Humbert curve 
C, of degree 16 over P 1. 

Let fh, I C S := {1, · · ·, 5}, be the involution of (5.17.2) which fixes 
A and acts non-trivially on Ei, i E /. It induces an involution a1 on 
j.B, hence on its quotient C. Let 
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Then Cis Galois over P 1 , with group G ~ (Z/2Z)4• Let Gi, 1 :5 i :55, 
be the image in G of 

{ a:1li rt I, #(I) = even}. 

Then 

and the quotient map 

becomes multiplication by 2 on Ei. In particular, the Humbert curve 
C has 5 bielliptic maps hi : C-+ Ei. The branch locus of hi consists of 
the 8 points x E Ei satisfying g(2x) =Pi· 

For ease of notation, set E := E5 , p = p5 E P 1 , 

C..!!.. E..!!... P 1, 

and 
{po,pl} := 9-l(p) C E. 

Then for j = 0, i, E has a natural double cover Ci, branched at the 
four points ~pi and given by the line bundle OE(2pi). The fiber product 

(5.17.3) c := C0 XE C1 

gives a Cartesian double cover of C. 

Replacing E5 by another Ei, we get an isomorphic double cover C. 
Here is an invariant description of this cover: 

Let PiJ :=Lin f- 1(pi) E A, and consider the curve 

Q := A/(PiJ ""Pi,i, i ::/= j). 

Then Q can be embedded in P 2 as a pentagon, or completely reducible 
plane quintic curve: embed P 1 as a non-singular conic, and take Li to 
be the tangent line of the conic at Pi· We have two natural branched 
double covers of Q: 

(5.17.4) 

(5.17.5) 
Ou := (U/!=l)=o Li)/(P?J ""P}.i, i ::/= j) 

Qv := B/(PiJ ""Pj,i, i ::/= j), 
where PiJ E Ei is the unique (~·amification) point above PiJ E Li. We 
may think of Ou as a "totally a1" degeneration, and of o~~ as a "totally 
am" degeneration. We then find: 

{5.17.6) (Q,Q 11 ) E RQ+ is the quintic double cover corresponding to the 
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(5.17. 7) The double cover Qu of Q corresponds, via (1.4.2), to the double 
cover C of C. 

We note that Qu is itself an odd cover, so it corresponds to some 
(singular) cubic threefold. A moment's reflection shows that this must 
be Segre's cubic threefold Y which we have already met in ( 4.8). Indeed, 
the Farro surface F(Y) consists of the six rulings Ri, 0 ~ i ~ 5, plus 
the 15 dual planes IIiJ of lines in IliJ (notation of (4.8)). We see that: 

(5.17.8) The discriminant of projection of Y from a line f. E Ri is a plane 
pentagon Q, with its double cover Qu as above. 

- --+ The other covers, Qu, fit together to determine a point (Y, b) E 'RC : 

(5.17.9) (Y, b) = ~< C, C), 
for any Humbert cover (C, C). The tetragonal construction takes any 
(Q,Qu) to any other (in two steps), so we recover Varley's theorem: 

(5.17.10) A := P( C, C) E A4 is independent of the Humbert cover 
(C,C). 

But this is not the complete fiber: we have only used one of the two 
component types of F(Y). We note: 

(5.17.11) The discriminant of projection of Y from a line f c IIii 
consists of a conic plus three lines meeting at a point; the double cover 
is split. 

pentagon wheel 

Consider a tritangent plane, meeting Y in lines f.i E Ri, fi E Ri, 
and fii E IIij· It corresponds to a tetragonal construction involving two 
pentagons and a wheel. The other kind of tritangent plane intersects 
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Yin lines fii E ITii' fkt E I1k1, fmn E IT~n' where {i,j,k,l,m,n} = 
{0, 1, 2, 3, 4, 5}; the tetragonal construction then relates three wheels. 
Theorem 5.18 Let A E A 4 be the non-hyperelliptic PPAV with 10 
vanishing thetanulls. 

(1) x(A) consists of the Segre cubic threefold Y, with its degenerate 
semi-period 8 (5.17.9). 

(2) The corresponding curve BE M 4 (5.11) consists of six P 1's: 

(3) The Fano surface F(Y) consists of the 6 rulings Ri (0 ~ i ~ 5) 
and the 15 dual planes rr;,i. The plane quintics are pentagons, for 
1!. E Ri, and wheels, for £ E ITii' all with split covers u (5.17.4, 
5.17.11). (The v covers are branched over all the double points.) 

=-1 
( 4) The fiber P (A) is contained in the fixed locus of the involution 

,\ : 1?..5 --+ 1?..5 (5.1.6), so it is a quotient of F(Y). 
=-1 

(5) P (A) consists of two components: 

• Humbert double covers C--+ C (5.17.3). 
• Allowable covers XoUX1 --+ X0 UX1, where Xo, X1 are elliptic, 

meeting at their 4 points of order 2. 

All of this follows from our previous analysis, except (5). The new, 
allowable, covers are obtained by applying Corollary (3.7), with n = 3, 
to the Cartesian cover C --+ C in (5.17.3). It is also easy to see that 
the plane quintic parametrizing singular quadrics through the canonical 
curve ci>(Xo U XI) is a wheel, and vice versa, that the generalized Prym 
of any wheel (with its am-cover) is the generalized Jacobian J(X0 UX1) 

of such a curve. Thus every line in F(Y) is accounted for, so we have 
=-1 

the complete fiber P (A). 
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For g ::;; 4, it is relatively easy to describe the fibers of'P : R9 --+ Ag-1· 
Indeed, every curve in M 9 is trigonal, and every A E .A9 _ 1 is a Jacobian 
(of a possibly reducible curve), so the situation is completely controlled 
by Recillas' trigonal construction. Similar results can be obtained, for 
g::;; 3, by using Masiewicki's criterion [MaJ. 

����	� g = 1. Here P sends R1 ~ 0 �� to Ao (= a point). The of P, P 
are then 0 ���C* respectively. 

����	� g = 2. All curves of genus 2 are hyperelliptic, and all covers are 
Cartesian (3.2). An element of R 2 is thus given by 6 points in 0 ��� with 
4 of them marked, modulo PG£(2); an element E of A 1 is given by 4 
points of 0 �� modulo PGL(2); and P forgets the 2 unmarked points. 
The fiber of Pis thus rational; it can be described as S/G where 

S := 5 2 (P1 \ ( 4 points)) \ (diagonal) 

and G ~ (Z/2Z)2 is the Klein group, whose action on S is induced 
from its action on P 1 permuting the 4 marked points. 

We note that S is 0 �� minus a conic C and four lines Li tangent to 
it. To compactify it we add: 

• a 81 cover for each point of C\ U Li, 

• a am cover for each point of Li \ C, and 
• an" elliptic tail" cover [OS, IV 1.3] for each point in the exceptional 

divisor obtained by blowing up one of the points Lin C. (The limiting 
double cover obtained is 

where rv places a cusp at one of the four marked points Pi on E and ~ 
places a tacnode above it. These curves are unstable, and the family 
of elliptic-tail covers gives their stable models, each elliptic tail being 
blown down to the cusp.) 

The resulting S is 0 �� with 4 points in general position blown up, 
and the compactified fiber is SjG, or P2/G with one point blown up. 

(6.3) g = 3. Fix A E A 2 . The Abel-Prym map sends pairs ( C, C) E 

p-1(A) to curves '!f;( C) in the linear system 1281 on A, uniquely de-
fined modulo translation by the group G = A2 ~ (Z/2Z)4 . The fiber 
is therefore, birationally, the quotient P 3/G. Since some curves in 1281 
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are not stable, some blowing up is required to obtain the biregular 
model of 'P-1(A). This is carried out in [Ve]. The quotient P 3 /G is 
identified with Siegel's modular threefold, or the minimal compactifi-
cation .A~ 2 ) of the moduli space of PPAV's with level-2 structure. To 
obtain 'P-1(A), Verra shows that we need to blow .A~ 2 ) up at a point 
A', corresponding to a level-2 structure on A itself, and along a rational 
curve. The 2 exceptional divisors then parametrize hyperelliptic and 
elliptic-tail covers, respectively. 

(6.4) g = 4. 

As we noted in (5.15), the fiber p-1(A), A E A3 , consists of covers 
(Ba, Ba), a E A/(±1): 

Ba =en ea, Ba = Ba/(x"' (-a-x)). 

The fiber is thus (birationally) the Kummer variety A/(±1). 

(6.5) g ~ 7. 
In this case, it was proved in (FS], (K], and (W], that P is gener-

ically injective. The results in §3 show that it is never injective: on 
the hyperelliptic loci there are positive-dimensional fibers, and various 
coincidences occur on the bielliptic loci. In (01] we conjectured: 

Conjecture 6.5.1 Any two objects in a fiber of Pare connected by a 
sequence of tetragonal constructions. 

We state thisJor P, rather than P, since various other phenomena 
can contribute to non-trivial fibers at the boundary. For example, all 
fibers of P on [jl are two-dimensional. On the other hand, from the 
local pictures (2.14) it is clear that the tetragonal construction can 
take a nonsingular curve to a singular one. In fact proposition (3.8) 
shows that it is possible for two objects in R9 to be tetragonally related 
through an intermediate object of 8R9 , so some care must be taken 
in clarifying which class of tetragonal covers should be allowed. The 
conjecture is consistent with our results for g :s; 6. For g ~ 13, Debarre 
[Deb2] proved it for curves which are neither hyperelliptic, trigonal, or 
bielliptic. Naranjo (N] extended this to generic bielliptics, g ~ 10. The 
following result was communicated to me by Radionov: 
Theorem 6.5.2 (Ra] For g ~ 7, R'Jet is an irreducible component of 
the noninjectivity locus of the Prym map, and for generic ( c, C) E n;et' 
p-1(P( C, C)) consists precisely of three tetragonally related objects. 
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