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INTRODUCTION

This paper gives the first steps in a purely algebraic version (in all characteristics
except two) of the Riemann—Prym—Wirtinger—Schottky—Jung theory of double
coverings of one curve (or compact Riemann surface) over another. It also tries to
incorporate some of the interesting generalizations of this theory in the thesis of
Fay [4]. The basic idea is this:

n: C——— C

is a double covering, where C and € are nonsingular complete curves with Jacobians
J and J. The involution 1: ¢ —— & interchanging sheets extends to i: J —— J,
and up to some points of order two, J splits into an even part J and an odd part P,
the Prym variety. The Prym P has a natural polarization on it, but only in two cases—
where n has zero or two branch points—do we get a unique principal polarization
on P, hence a theta divisor E < P. This is discussed in the first part of this paper
(Sections 1-3).

The surprise comes, however, on a closer analysis of the relations between the theta
divisors ® « J and ® < J: It turns out that they are related in a much tighter way
than would be expected from looking only at the configuration of Abelian varieties
and homomorphisms present. In the case of zero or two branch points this leads
finally to identities relating (J, ®) and (P, E) discovered by Schottky and Jung [15]
(cf. also Riemann [13] and Farkas and Rauch [3]). The point is that the existence of
any (P, E) standing in this relation to (/, ®) means that if g > 4, J is not the most
general Abelian variety of dimension g! Unfortunately, an efficient method of trans-
lating this into an equivalent polynomial identity on the theta nulls of J is only
known at present for g = 4. These matters are discussed in the second part of this
paper (Sections 4 and 5).

In the other direction, the curves C and ¢ and their geometry can be used to com-
pute things about P. The importance of this is that jt is usually quite hard to make
detailed computations on the geometry of the theta divisor in a general principally
polarized n-dimensional Abelian variety [which has in(n + 1) moduli]; those which
are Jacobians of curves of genus n (with 3n — 3 moduli) are much better understood.
However, by taking the Pryms for unramified double coverings € — C, genus
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C=n+1, we get a bigger family of principally polarized n-dimensional Abelian
varieties which can be closely studied (depending on 3n moduli). For instance, for
n =2, 3 a generic principally polarized Abelian variety is a Jacobian; and according
to Wirtinger, for n =4, 5 a generic principally polarized Abelian variety appears to
be a Prym but not of course a Jacobian. Moreover Pryms occur sometimes as the
Intermediate Jacobians of unirational but not rational 3-folds (cf. Clemens and
Griffiths [2], and Murre [12]). In the final part of the paper (Sections 6 and 7) with
these applications in mind we compute the dimension of singular locus of the theta
divisor in a Prym using results of Martens [8].

In a sequel to this paper we would like to discuss (a) how close the Schottky-Jung
identities come to characterizing Jacobians among all Abelian varieties, and (b) ways
of utilizing the Schottky-Jung identities in the two-branch-point case.

NOTATIONS

k the algebraically closed ground field: always of char. #2 -
R(X) field of rational functions on a variety X _ _
Pic(X) group of divisor classes, line bundles, or invertible sheaves on a variety X
Pic®(X) connected component of 0 € Pic(X)
X another notation for Pic®(X) if X is an Abelian variety (called the ¢ dual” Abelian
variety)
Ap: X —— X the homomorphism x ——» [divisor class of T;'D — D], where D is a divisor
on an Abelian variety X
A polarization of an Abelian variety X is a homomorphism A: X ——— X such that A = A, for some
ample D: in this case D is determined modulo Pic®(X); A is a principle polarization if X is also an
isomorphism, in which case A = A, for a positive ample D, unique up to a translation. (See my book
[10] for a general reference for the facts on Abelian varieties.)

1. DOUBLE COVERINGS OF CURVES
The main object of our study is a morphism
n: C—C,
where C and C are nonsingular complete curves and = is of dggree two, i.e., 7w is
surjective and via n*, R(C) is a quadratic extension of R(C). In fact, in this case C

has an open covering by affines U, = Spec R, such that n~*(U,) = Spec S,, where
S, is an R, -algebra of the form

Sa = Ra[ra]/(taz - ﬁa)ﬂ ﬁa € Ra .

Or, sheaf-theoretically, we may put this in the equivalent form € = Spec(¥), where
& is a sheaf of 0 algebras of the form

S 20.®L

with L an invertible sheaf of 0. modules. Multiplication is given by

(@+D-b+m)y=@ b+ ¢(@m)a - m+b-1I),
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a, b sections of O, I, m sections of L, for some

~

$: L} ——— @C(—. 'lei) c 0.

Then the zeros of B., or equivalently the poinfs P; where ¢(L?) # O, are the branch
points of n. Since C is nonsingular, they are all simple zeros (equivalently, Y P,
has no multiple points); and because

# branch points = —deg L? = 2(—deg L),

“there are an even number m = 2n of them.

Let J and J be the Jacobians of C and €: By definition, we take this to mean
J = Pic®(0), J = Pic°(C).

Now fix base points x, € C, and %, € C such that n(%,) = x,. Then we get the
Albanese mappings:

t: C——J via x — divisor class (x — x;)
and | |
i: C——J via  x+~——— divisor class (X — %,).
Moreover, define
- Nm: J——J
by either (a) the restriction of the map Nm,

J < HN(C, 05*) = HY(C, (n, 02)*)

le

J C » HY(C, 0.*)

or (b) the induced map on divisor classes given on divisors by W ——— 7(A) (A a
divisor on €). Then we get a commutative diagram:

C——J
C LA J.
Now this diagram defines a second by applying the functor Pic°:
- )
J = Pic®(€) —— Pic°(J) =.J
) N
}'rr* Nm* or Nm

t*
J = Pic%(C) «+—— Pic°()) =, J
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where J and J are the “duals™ of J and J, respectively. By the standard theory of -
Jacobians, #* and 7* are isomorphisms and, in fact, if @ cJ, & — J are the theta
divisors, then

)7 = 4o,  (#)7'= -l

(where for any divisor D on an Abelian variety X, Ap: X —— X is the homo-
morphism given by x — [divisor class T;'(D) — D]). Thus the principally
polarized Abelian varieties (J, ®) and (J, ©®) are related by two maps:

mt: J——J,  Nm: J——0y
and the main result is that these have two properties:
(i) =* and Nm are dual to each other:
N
Nm = 4g - n*- 151, f* = Ag - Nm - jgt.
(i) Nm-z*:J— Jis multiplication by two.

Proof of (if). If Wis a divisor class of degree Zero on C; and « is the corresponding
point of J, then n~Y(2) represents n*x € J and n(n~'9A) represents Nm(n*«). But
n(n”'A) =2A. Q.E.D. ' ' '

Rather than studying in detail the implications of (i) and (ii) in this special case,
it seems easier at this point to study such a situation in general, and afterward to
specialize the study to the case of Jacobians.

2. A CONFIGURATION OF ABELIAN VARIETIES

Suppose (X, 0y) and (Y, 0y) are two principally polarized Abelian varieties: Thus
0x and 0y are positive divisors on X and Y, given only up to translations, however,
such that 4, and 49, are isomorphisms. (It is well known then that 0y and 6y are
ample and are the only positive divisors D such that Ap = A, OF Agy-)

| DATA 1. Suppose ¢: X—— Yisa homomorphism and assume that
o*(0y) algébraically equivalentto 26, 2.1
ie., ¢*0y — 20y € Pic®(X). This is equivalent to saying
| Aprory = 209 5 (2.2)

hence (since Ay = ¢ - Ap * @), it is equivalent to having the following diagram com-
mute:

Aay o
Y —> Y
¢]\ $ (2.3)

T,
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Thus if we define Y: ¥ —— X to be the dual 15! - - 4y, of ¢, we get - ¢ =
mult. by two: exactly the situation of Section 1.

I claim that all triples ((X, 0y), (Y, 0y), ¢) satlsfymg (2.1)—call these Data I—
and only such triples arise in the following way.

DATA Il
(i) (X, 0y) is a principally polarized Abelian variety.
(i) Pand p: P —— P is some Abelian variety and a polarization of P.
(iii) H, < H; < X, are subgroups of points of order two, and y: H,/H, ——
ker p is an isomorphism.
These data should satisfy: _
(iv) With respect to the skew-symmetric multiplicative pairings induced by the
Riemann forms of 0y and p

ey x: Xy x X, —— {£1}, e,: kerpxkerp—»{-_i—l},

b
we have the following:

@ ey x(a, p)=1,alla, ﬁeHo
(b) H; = Hy', where Hy" = {a e X,|e, y(x, f) =1, allﬁeHo}

(C) e,(Vo, YP) = e, x(«, B), all «, B H;.
In this case we set ¥ = X x P/H, where
H = {(o, Yo) | o € Hy}
and let ¢ be the cdmposition of canonical maps:
| X— s XxP——Y.

Moreover, if ¢: X x P——— Y isthe canonical map, then the polarization Aoy
is determined by the requirement that the diagram

29, X
Xxplx"P, XxP

al ]6
AOY S

Y ——mMm— Y

commutes. | ¢

In other words, we find that whenever one has such a ¢, then up to a small group H
of points of order two, Y and its polarization split into a product of two natural blocks,
one being X and the other we call P—which in the case of curves will be the “Prym
variety.” Moreover, to tie the two types of data together, I claim that:

(v) Hy=ker ¢.
(vi) There is an involution 1 on Y such that

P=Im(ly — 1) =ker(ly +1)°,  ¢(X)=Im(ly + 1).= ker(1, — 1)°.
In fact, if ¢ = A5} - ¢+ Ay,: ¥ —» X, then |
ker(ly — 1) = X x P,/H = ¢(X) x (Z/22)**"%, kery = X, x P/[H= P x(Z22)*"°
[for a,b,c see (viii)]. |
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(Vi) Ifo: XX P—— Y is the canonical map and t: ¥ —— x x p i the
map 7(x) = (Yx, x — 1x), then :
0°T=2y, T°0=2y,p.
(vii) If dim X =a, dim Y= q + b, # ker ¢ =2°7¢, then dimP =5, # g —
207, # Hy =2%¢ » kerp =22 and 0 <c < min(a, b).

Much of the verification of the equivalence here is straightforward, so we will
run through only the first part.
Start with Data I. Define

P = }5 !(ker $)°,

and v the number of components of 1, !(ker ¢). Via ¢ and the inclusion of P in Y,
weget o: X x P—— Y. Let H = ker 6. Note that '

(x,y)eH==¢(x)+y=0=='=>43(/10Y(¢(x)))=0=>2x=0?—f>2y=0;

hence H< X, x P,. Since H (0) x P, = (0) x (0), there is a subgroup H cX,
and a homomorphism ¥: H ——— P, such that
H={( yo)|ae H).

Also, if H, = ker ¢, then H, = H,, and ¢ factors as Hi/H, < P,. Moreover, for all
yevy,let :

X = 0, ($(29,(»))-
Then
2y = ¢(x) + 2y — ¢(x))
and
$(o,(2y — p(x))) = 229,(x) — PR, ($(x))) = 0;
hence v - (2y — ¢(x)) € P. Therefore
2v-yedp(x)+ PcImeo

and since Y is a divisible group, this implies that ¢ is surjective. Next, the polarization
Ag, of Y “pulls back” to a polarization of X x P given by the composition:

Doy &

N

Xxp—" ,y o, P— S X x P

which may be considered as being given by a 2 x 2 matrix
((x [;) a X — X, B: P—— X,
v Ty X——>P, 6: P—,p
Also, because any polarization is symmetric, y = f. But by the very definition of P,
the coefficient f is zero. So ? =0, too, and the polarization splits. Note that by as-
sumption (2.1) on Data I, ¢ = 244, . Define p to be 8. Next, the fact that the polariza-

tion (295, ,p) of X x Pis a pullback of a principal polarization with respect to the
isogeny ¢ is equivalent to the condition that ker o, as a subgroup of ker(24,, , p),
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is maximal isotropic for the skew-symmetric form of this polarization (cf.
[10, Section 23]). Hence . Mumford

_ Hc X, xkerp-
and if (a, Ya), (B, Yp) € H, then

ez, x(% B) - e,(Ya, Yff) = 1.

This means that y(H;/H,) < ker p and y is “symplectic” in the sense of (ivi.
Moreover, counting orders, the maximality of H implies _

(# Hy)” = (# H)’ = #(X, x ker p);
hence

_#X, _ #H _ #H,

H*'= == < <
# M # H, #kerp #Imy

Since ker p = H,*, this implies that ¥ maps H, onto ker p and that Hy w [, L hence
H, = H,*. Thus we have Data II. S TR

We leave it to the reader to check now that one can go backward from Data If 1o
Data I and that for corresponding data, (v)—(viii) hold.

3. DEFINITION OF THE PRYM VARIETY

Returning toa covering n: € ——— C and their Jacobians related by n*: ) —, j
we see that J =~J x P/H. In this case there is an involution 1: ¢ —., C‘im:er:
changing the two sheets above any point, which induces an involution ;: J J
Since for any divisor U on C, ’

7 (@A) = A + «(A),
it follows that
m*(Nm x) = x + 1(x), all xeJ.
And since Nm is surjective, this also shows that
(n*y) = n*y, all yeld.

Therefore 1 = +1 on n*J and 1 = —1 on ker Nm. Thus 1 is precisely the involution
introduced in (vi) of Section 2, and we find that

P = (ker Nm)° = ker(l; + 1)° = Im(1; — 1),

i.e., P is'the “odd” part of J, which we call the Prym variety of € over C.
Let g = genus of C and let 2n = # of branch points. Then by Hurwitz’s formula

genusjof C=2g +n—1.
Therefore

dimJ=g, dimJ=29+n-1, dimP=g4n-|,
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To apply fully the theory of Section 2, we need only compute ker(n*) = {div. classes
A on C|n~'A = 0}. But

T UA=0=—=2A=a1"'A=0,

i.e., ker(n*) < J,. If A is any such divisor class, then A defines an unramified double
covering 7y Cyq ——— C by “ Kummer theory,” i.e., Cy is the normalization of C

in R(C)(/f), where 22 = (f), or
Cy = Spec(O: @ 0(N)), mult. given by O(A) x @C(Q.I) —_— 02N = O

Then
T iUA=0 = the double covering Cyx cC of C
splits into two copies of C
= there is 2 morphism S \ /
and hence

C“‘—_’ C(u

n'A=0, A#0 < there is an isomorphism f \ /

This proves

Lemma. If = is ramified, ker n* = (0). If n is unramified, hence C = Cy for
some 2, then ker n* = {0, A}.

‘ " Combining this with the results of Section 2, we deduce the following.

Corollary 1. If = is ramified, we get a symplectic injection ¥: J, ¢ P, such that
(@) Imy = ker p, where p: P ——— P is the polarization of P, and

() J=J x Pl{(a, ya)|aed,).
If © is unramified, we get subgroups

©® < Hy =« H < J,

| |
“order 2 order 2%97!

and a symplectic isomorphism y: H;/H, =, P, = ker p such that

J =T x Pl(«, Yo)|a e Hy}
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Corollary 2. If n is unramified or has only two branch points, then ker p = P,,
hence p = 24z, where

22

A:': .P_—'—’P

is a principal polarization. Moreover, in these cases

¢() ={xeJ|ix = x}.

4. RELATIONS BETWEEN THETA DIVISORS

The question arises: In the class of all positive divisors algebraically equivalent to
20y, which ones arise as qb"‘(BY, »)» Where by,, = T,(0y) is a translate of Oy by y and
¢! means-its pullback as actual divisor, when defined? This class of divisors is the
(disjoint) union of the linear systems |0y + Oy, .|, xe X. In particular, one can ask

whether it ever happens that
¢_10Y,y = 0X,x1 + OX,xz

for some ye ¥, X1, X3 € X. The situation seems to be ‘that this does not occur in

general, that it does occur for Jacobians, and that this special occurrence is the

ultimate source of the “Schottky relations” satisfied by the theta nulls of Jacobians.
Let us see first what we can say about the situation in general. Since

¢ —I(OY, ¢(x)) = ¢ _1(0Y)x

for all x e X, we may as well restrict our attention to the divisors df‘(OY, y) foryeP.
All these divisors are linearly equivalent, since

[the div. class ¢~1(8, W—¢"0y) in X]= (2o, (»)).

and this is 0 if y e P. Moreover, if we replace 0x and 6, by suitable translates, we can
then assume that 6, and Oy are symmetric divisors (invariant under —1 xand —1,)
and that}

¢_1(9y,y)-e 1264/, all y eP.‘

Therefore we get a morphism (we change the sign of y to simplify the proposition that
follows):

5. P—{|$(X) =0y ) — |20,
yr—— ¢ (by,_,).
T In fact, first take any symmetric x and 0y. Then é~2(0y) = 205 + D, where 2D =0, hence
e:"(cﬁ(x)) =ex(D, x) for all xe X,. This is a homomorphism from #(X2) to {+1}: Extend it to a

homomorphism f: ¥, —{4-1} and represent Iby f(x) = e,(y, x), for some Y€ Y,. Then 0y , is still
symmetric and e3¥*(¢(x)) = 1, all x € X,, hence é-1(0y.,) is totally symmetric, i.e., e [20x].
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Moreover, because the polarization 6y on ¥, pulled back to X x P, splits into a pro-

duct, it follows that we can write _
a*(Oy(6y)) = p,*(0x(26,)) ® P2*(L,),

‘Where L, is a symmetric invertible sheaf on P representing the polarization p. I claim
the following: ' : -

. Proposition. ¢ is essentially the morphism of P to projective space defined by the
section of L,. More precisely

Ol¢X) =0y} ={y]s() =0 forall ser (L,)}
—call this set B, (for base points)—and there is an isomorphism

i P(O(L,) C—— [264]
of P(I'(L,)) with a linear subspace of |264| such that the diagram

P(I(L,))
b, p
P"'Bp/ i
)
(20|

commutes, where @, is the canonical morphism defined by sections of L,.

Proof. We abbreviate Ox(0x) to L, and Oy(0y) to Ly. Now, according to the
general theory of Mumford [9, Section 1] (see also Mumford [10, Section 23)),
the isomorphism '

0*Ly = p,*L ;> ®p*L,
defines a lifting of thc group H:

1 — G, — .(f‘(pl*LX2 ® py*L,) — X, x ker p——0

V) - U

H* — H
..and the pullback *(sy) of the unique section s, € I'(L,) (unique up to scalars) is the
unique element of I' LA (L,) fixed by H*. But for any such H*, it is easy to
describe the element fixed by H*: in fact

Up*Ly* ® p2*L,) = G(Le?) x 9(L,)/{(A, A Dl1e G,}

and any such H* contains a subgroup H,*:

1—6,— 9, —— x, — ., ¢
v o v
Hy* H,

Then if Z(H,*) is the centralizer of Hy*, we get a Heisenberg group:

N == 6 —— ZEHMH — B, ¢
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and H* itself is defined by an isomorphism y*:

1 - G, — Z(Ho*)/Ho* —— Hi/Hy —— 0

F

1 - G,, — Y(L) ——— kerp — 0

by this Connecting link
H* = {(x, ¥*x) | x € Z(H,*)/Hy*}.

Now the subspace I (Lx?)"°" of H,* invariants is the unique irreducible representation
f)f Z(H9*)/ H,y* on which G,, acts identically, and the dual Hom(I'(L,), k) is the unique
irreducible representation of %(L,) on which G, acts by Ar—m 171 * (identity).
Therefore y* defines an isomorphism of these representations:

x: DL AH)H =, Hom(I'(L,), k).

If Bi,.... B, is a basis of I'(Z,) and oy, ..., a, is the basis of I'(L,2)"" such that
x(l:c,-)(/?,-) = 0y, then it is immediate that 2 % ® B e I(Ly®Y® I(L,) is H* invariant.
Thus : .

d
0*(so) = _Zl P1¥o; ® ps*Bi;
hence for al| yeP
v | | -
<l>“'"(0y, ~y) = zero set of resy, 0(0%50) = zerosetof Y. Bi(y)- ;. 4.1
i=1 .

Thus, first Ol‘al'l

¢ 1(Oy, =X ==Y () o,=0 —= B:(») =0, all i
<=y is a base point of w,),

and second if /¢ Hom(F (L,), k) is “homogeneous coordinates” for a point of
P(C(L,), then set i(l) = the divisor (2. 4(B:) - a; = 0). Then (4.1) implies that § =
i~¢,. QE.D. v

NQW starting from the other direction, |20x| contains the reducible divisors
Ox,x + 0x, -\ xe€ X. Therefore we get a morphism:

bx't X ———— |26,
X GX,x + 9)(, -Xx*
I claim the following

Proposition (Wirtinger). There is a nondegenerate inner product B: [(Ly) ®
D(Ly®) —— & (which is symmetric or skew-symmetric depending on whether
mult, GX is even or odd) such that if B induces the isomorphism B’,

P(U(Ly?) ——> PIO(LA)Y) = |20,],
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then the diagram

y P(I'(Ly?)
X Zl‘lB’
éx' »
|20

commutes, where ¢y is the canonical morphism defined by sections of L,?.
Proof. In this case we use the morphism
EXXxX— Xx X
(x.y) —— (x+, x—),
and the isomorphism |
S*(p1*Lx @ py*Ly) = Pi*Ly® ® po*Ly*
(cf. Mumford 9, Section Q). Let {s,} be a Basis of I'(Ly*): Then we can write
C*(p1*0x ® py*0x) = GZB-Cappl*sa X py*sg

for some matrix Cqp € k; o1, more transparehtly, 7
Oy + 0)0x(u —0) =Y i) - 5,(8),  Vu,veX. (4.2)

As a section of Ly, 0y is even or odd depending on mult, 8, and hence interchanging
u and v in this formula, we find c,; is symmetric or skew-symmetric in these two cases.
Moreover, the element {*(p;*0x ® p,*0y) is invariant under the action of A(X,) =
{(x, x)|x € X3} on p;*Ly?> ® p,*Ly* [via a suitable lifting of A(X,) into %(p,*L* ®
- P2*Lx*)]. And since X, acts irreducibly on I'(Ly?), this element cannot lie in any
proper subspace W; ® W, of I'(Ly*) ® I'(Ly*). This implies that det c,; # 0, hence
Cqp defines a form B. Finally, for each fixed v the formula (4.2) implies

u € support(fy, , + Oy, _,) = u € 2eros(}. coy5,(v)s,)
which gives us immediately
$x'() = B(¢x(). QE.D.
Corollary 1. In the abstrabt situation (X, Oy), (Y, 0y), ¢, we get a diagram:

P-B, —* prE)) .

1
204].

B'
x . pr(Le) <2
ThenforallyeP—-Bp,xeX | v
¢~ (Oy,,) =0x, . + 0 _, == i) =B@x(x).
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- The most important case here is when ker p = P, , so that there is a theta divisor
0p on P with p = 2J,_ and L, = Lp?, where Lp = 05(0p). Then Corollary 1 becomes
the following. 7 |

Corollary 2. In the abstfact situation (X, 6y), (Y, by), ¢, when p = 224, , We get a

diagram

P, pa,)

26|
=
B

x 2, pre)

and for allyeP, xe X
¢ Or,y) = Ox,; + Ox _, = i(p(»)) = B'(¢x(x)).

5. THE SPLITTING OF ¢~!(9, ;) FOR JACOBIANS

Now return to the double covering n: € ——— C. Recall the geometric meaning
of the theta divisors ® = J, ® < J: ' ‘

(1) Let J, be the variety of invertible sheaves on C of degree k, and J « be the variety
of invertible sheaves on € of degree k [so that if we choose a base point on J, or J;,
Ji = Jand J, = J, but without such a choice Ji(J,) is merely a principal homogeneous
space over J (J)]. Note that 7* induces : n*:J, — J,, because deg n*L = 2-deg L.
Moreover, note that there is a canonical group structure on the big schemes:

117 and L J-

keZ keZ
(2) Then we can find © canonically in J,_; by
©={LeJ,_,|T(L) # (0)} = J,_,
and similarly
6 = {Le j§—1 [T(L) # 0)} ng‘—l = j2g+n-2 .

(3) The various translates of the theta divisors in J and J are given by ®_,, and
O_;fory €J,_;and je fg_l. To ask whether ¢‘1(0y, ») splits in this case is therefore
the same as asking for points y e J, if

(@*)™O_,) =0, + e,,
for some x,, x, € J.

The double covering = gives us a unique divisor class 21 such that:

2n
2U= > P;, P;=branch points,
=1

2n . %
N = > 0, Q; =n"1(P). S |

o N e o s 1

TEES e e

e e

o S
R
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In fact, if R(C)=R(C)\/S), then (f)= P,=2% on C and (/f)=
2,.0,—m 1(?I) on C for some divisor . Sheaf—theoretlcally, if €= Spec(0.® L)

as in Section 1, L = Oc(—A). We then have the following.

Proposition. Let x;, ..., x, be any d closed points on € such that nx; # nx;, all
i # j. Then for all invertible sheaves L of degree g — 1 on C

r(é, n*L(I‘Z x,-)) #(0) ===T(C,L)#(0) or r(c L(é:lnx,- - QI)) # (0).

i=1

Proof. Note that n,(0z) = Oc @ O0c(—A), where O is the subsheaf of functions
even under the involution 1, and 0c(—9) is the subsheaf of odd functions. Therefore

(LY x; + Y 1)) = LY. nx) ® 1.0z = LY nx) @ L(Y. nx; — N).

This sheaf has subsheaves as follows:
n*(n*L(z X+ Y 1x; )) LY nx) EI—) L(Z nx; — A)
,n*(n*L(z x;)) o
0 _ ;o

y(n*L)

I

L ® L(—-A)

but the middle sheaf does not break up into even and odd pieces, because X; # 1X;
for any i, j. In fact at every point nx; the middle sheaf is generated by L @ L(— QI)
plus a section (s, 5,) with nonzero images 5, € L(nx;)/L and 5, € L(nx; — W)/L(— ).
It follows that the middle sheaf fits into an exact sequence:

0 > L » T(T*L(Y x;) —— L(Y nx, — QI) — 0.

This gives:
0——I(C, L) —— I(C, n*L(}. x,))
——T(C, L(Y. nx; — A)) —— HY(C,L) —>

L]
2

which gives the implication “ === " of the lemma immediately. As for ¢ e=—,
the only problem would be if

I(C,L)=(0)
I(C, L(Y, mx; — W) —— HY(C,L) injective
..H..
).
ButdegL =g — 1, s0 x(L) = 0 and this is impossible. Q.E.D.
Corollary 1. Let x4, ..., x, be any n closed points on € such that nx; 5 nx;, all
i #j. Ift

n ' n
=)xeJ, and  x= ) mx,—Ael,,
i=1 i=1

__T To simplify notation, we are identifying divisor classes of degree k with point of J,, e.g., writing x_

~ for t(x), etc.
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then
(n*)"l(@_y) =0+ 06_,.

Proof. Set-theoretically, this is just a translation of the proposition. Since the
divisor n™1(®_ ;) is algebraically equivalent to 20, there can be no multiplicities and
the equality holds between divisors, too.

Note what happens if nx; = nx; but x; # x;. Then

L(nx)) < n*(n*L( Y x,-))
: i=1
and since deg L(nx;) = g, I'(L(nx;)) is always nontrivial. Therefore in this case
n*(J,_1) < @_y

To rephrase this corollary in a form parallel to the general description of Section 4,
we must choose suitable symmetric representatives of ® and © in J and J themselves
(instead of in J,_; and J,,,,_,). In fact, choose:

(a) Theta characterlstlcs {and Con C and C, i.e., divisor classes such that 2 = K
(the canonical class on C) and 2{ = K (the canomcal class on €), and moreover such

that
Nm{=K+ .

[To see that this is possible, let 23 be a divisor class on Csuch that 28 = A — Y 7_, P
(half of the P; only). Then set { =z~ ({ + B) + 2i=10i]

(b) ¢ and { define theta divisors ©, = ©_;and O, = G—c in Jand J which are well
known to be symmetric. Moreover, I claim that because of our careful choice of {,
(n*)"10, € ]2®0| This follows, in fact, from the next Corollary soon to be stated.

(c) Now write { = n7'{ + 6 and note that 26 =Y 2»,Q;, Nm 6 = , and deg é = n.

We make the following important definition.

Definition. If x,, ..., x, are points of €, we wish to find elements

%Z —1x)e P, w=%(2n:xi—9I)eJ.
i= i=1
We say that z e P and_w € J are compatible solutions of the equations

2z= Y (x;—1x), 2w= Y7ax,—U
i=1 i=1
if z+ n*w = Y7_,x;, — 6.

(Note that such a pair z, w always exists: In fact J x P —— J is surjective, so
Y 7_1 x; — & can be written z + n*w, where ze P and w e J. Taking Nm and 1 —, it
follows that 2z and 2w have the required values.)

We can now state the following result.

Corollary 2. If x;, ..., x, are any points of C such that nx; # nx;, all i # j, and

n n
=1 21: (xx;—1x), ws= %(« ) TTX; — QI)
1
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are compatible halves in P and J, then
(7*)71(®),, _,) = Op,w + O, _.
Proof. Note that
éo, -z = (@—Z)-Zx,-+6+1t*w =. G)n*(w—g)—):xi ;
hence

| (n*)_l(go, —z) = (n*)—lt:)u*(w—C)—Zx.- = ((715*)- lé—in)w—C = (® + G)‘Ll-—Zuxi)w-;
= ®0,w + 90,w+91—):nx,~ = ®0,w + ®0, ~w:* QED

In case there are zero or two branch points, we can (a) work out more precisely
what pairs (z, w) are compatible and (b) combine the result with Corollary 2 in Section4
to obtain the following. '

Corollary 3 (Schottky-Jung). If C is unramified over C, so that 291 = 0 as divisor
class, then choose a divisor class B on C such that 28 = . Choose any theta char-
acteristic { on C and take { = n~1({ + B) as theta characteristic on C. [Note that
20 = n71(2¢ + 2B) =" K+ W =K and Nm{=2{+28 =K+ U as required. ]
These define ®, = J, ®, = J and we have the following.

(D) (%)) =0y, +0, -5. ' '

(i) IfE < Pisasymmetric theta divisor on the Prym P, we get a canonical diagram

Pt pre)

¢

120,|
: =
J = ey TP

where ¢p and ¢, are the Kummer maps defined by the linear systems [2Z] and |20,],
and i and B’ are as in Section 4; and

i(#(0)) = B'(¢,(B)).

Corollary 4 (Fay) (see Note, p. 350). If C has two branch points over C, then
choosing suitable theta characteristics on C and €, we get a symmetric theta divisor
Z on P and a canonical diagram

P "‘ﬁ“’ P (LPZ))

2 l j
J i’ P(C(L,%)

where j = (B")™" - i is now an isomorphism. Then for every x € C there are compatible

halves: ' '
z=%4x—-1x)eP, wa=3inax—-WeJ

such that

G =i
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As mentioned in the Introduction, one would hope that these last two corollaries
can be used to find strong polynomial identities for the “ theta-null werte ** of Jacobians.
Unfortunately, whereas for the projective embedding of any principally polarized
Abelian variety (X, 0) defined by |40| one knows simple identities satisfied by the
image of 0 € X (namely Riemann’s identities; c¢f. Mumford [9, Section 3]) for the
morphism defined by |20| no analogous simple identities seem to be known. In
classical terms, the problem is: Find identities for the set of 2" functions of Z

fa(Z) = 0[3](0’ Z)a a= [als ) a,,], a; = 0 or 1.

(Z € 9,, Siegel’s upper half-space). If n = 3, there appears to be a unique irreducible
identity of order eight, which applied to ¢p(0) in Corollary 3 leads to the usual
*“Schottky relation”” on the theta nulls of a curve C of genus 4.

To explain the strength of Corollary 4, for instance, it may be helpful to contrast
it with the following result: If (X, 8y) and (Y, 0y) are two principally polarized Abelian
varieties and if £k > 4, consider the diagram

PRI

. l,-
Y —— P(I'(LyY)
where ¢y and ¢y are the canonical maps defined by |k8y| and |k6y| and j is an iso-
morphism under which the translations by X, [which extend uniquely to projective

transformations on P(I'(Ly"))] correspond to translations by Y,. (For any Xand Ya
finite number of such j’s always exist.) Then

J(@x(X)) N ¢(Y) # &
J(ox(X)) = ¢y(Y);

hence X = Y. In other words, distinct Abelian varieties, projectively embedded by
somewhat more ample linear systems, never meet!

implies

6. GEOMETRIC DESCRIPTION OF SING =, UNRAMIFIED CASE
We now consider only an unramified n: € ——— C. Recall that in this case

(a) genus C=dimJ =g, genus C = dimJ =2g — 1, dimP =g —1,and kerp =
P, = {0, W/{0, A}, A € J, defining = (hence P principally polarized).
(b) {xeJ|ix=x}=n*),and {x e J|Nm x =0} = P x 7/27.

[Use the fact that in the notation of (i)—~(vii1) of Section 2, a =g, b =g — 1, and ¢ =
g — 1.]In fact, in a previous paper [11] we have shown by a different argument that if
we look at the principal homogeneous space J 29-2 instead of J = J,,, and at

T ’Nm’: o sz,:_z,,—_* ng’_zf,’ T e e
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then Nm~Y(K)(KeJ 2¢-2 the canonical divisor class) breaks into two components
P*, P~ such that:

V invertible sheaves L, on C, corresponding to o eJ 29-2>
if NmL=~Q/, then ‘ _
dim I'(L,) even &= aeP*,  dim I'(L,) odd &= aecP; (6.1)
moreover, for some a,
"dimI(L)=0 and dim (L) =1.

Translating these back to J, by any x e Nm™(K), P* and P~ correspond to P and its
- nontrivial coset in ker Nm. Now the theta divisors of C and ¢ live canonically in J,_,
and J 29-2 and Riemann’s theorem (see Kempf [7], and Szpiro [16]) asserts

V invertible sheaves L, on C (resp. C) corresponding to a € J,_; (resp. J,_ g2), -~ (6.2)
dim I'(L,) = mult. of « on @ (resp. ©).
Combining (6.1) and (6.2), we find the following result.

Proposition. (a) @ >pP~; (b) 6 P* =22 where = < p* is a canonical re-
presentative of the theta divisor on P.

Proof. | In fact

~

A€P” === dimI[(L,) odd —— dmI(L)>1 =—= 0e®
and " |
te® N Pr=——=dimT (L,) even and positive=——= dim I Lr)=2
’ == a singularon @;

hence ® - P* consists entirely in multiple components. But the principal polarization
on J restricts to twice that on P,s0 ®-P7 is in the algebraic equivalence class 2=. It
is easy to check that such a divisor can never have a component of multiplicity >3 (or
else the morphism it defines would not collapse an involution x ——» Xo — x). Thus
®-P"=2D, D algebraically equivalent to =, hence equal to it after a suitable
translation. Q.E.D.

Corollary.
Sing E ={xeP"[mult. at x of & >4}

u:xel"+ mult. at x of ® =2, but }
T, p+ < (tangent cone to © at x)|°

In order to apply this corollary, we must know how to compute the tangent cone to
8. In general, suppose J is any Jacobian and © < Jy—1-If L, on C corresponds to the
point « € J,_,, then not only is

dim ['(L,) = mult. at o of O,

butifk = dim I'(L), s,, ... ., S is the basis of I'(L,), t,, .. ., t, is the basis of [(Q® LY,
- -and s5; ® t; € I(Q)-defines--the differential w;; at w e J,_,; then identifying Q) to
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the cotangent space az,/#e,” of J,_, at o, Kempf [7] proves that det(w;;) =0 is the
tangent cone to © at . 7
Now if L, is a sheaf on C such that Nm L, = Qc, then
L,®*L,=7n* NmL, > n*Qc = Qp;
hence choosing such an isomorphism ¢, we may use the pairing
GO TLYRI(L,) — T'(Qp)
(5, ) — P(s@1*1) =<5, 1)
instead of
' ®
T(L) ® T(Qe® L") — T(Qo).
Now 1induces 1*: I'(Qz) — I'(Q¢), too: In fact, this is just the automorphism found
by decomposing
I'(Qp) = T(n*Qp) = I'(7, 1* Q)
< I(Q¢) + T(QA(W))

ll
the * Prym differentials”

and letting 1* = +1 on I'(Q¢), 1* = —1 on T(Q()). It is easy to check that

1*((s, 1) = {1, 555

hence the above pairing splits into two pairings:
| Symm?[(L,) —— T(Qp),  A(L,) —— T(Qc(W).

Moreover, in the identification I'(Qc) + I'(Q(A)) =~ I'(Qz) = cotangent space
Ty Ja,-2» Clearly the even and odd subspaces under 1* go over as follows: I'(Q¢) =
cotangent space at « to the coset a + n*(J,,-,), and I'(Qc(A)) = cotangent space at
o to P*.

Taking a basis sy, ..., 5 of I'(L,), let w;; = <s;, 5;>. Then 1*w;; = w;;, hence de-

composing ®;;.
w; =05 +to;, ofel(Qy), el (Q(A),

It follows that w;; is symmetric and w;; is skew-symmetric. Therefore if o eP*,
det (w;;) =0 is the tangent cone to ® at a, and det(w;;) = 0 is the tangent cone to
® - P* at a. But det (w;;) = Pf(w;;)* (Pf= Pfaffian), so that Pf(w;;) =0 is the
tangent cone to E at o (unless it vanishes identically).

We use this to establish the following result.

Proposition. If Nm L, = Q. and dim I“(L;) = 2, then

T, p+  tangent cone to ® at o === L, = 7z*(A)(} x;) for some points x;e C
and a sheaf M on C such that dim I'(M) = 2.

Proof. Let s, t be a basis of I'(L,). In the proceding notation

( 0 (s, t) — <, s)\
Kt 5y =45, 85 o7
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So the linear form (s, £y — (1, s) is the tangent cone to Z unless a € Sing E. Thus

T, p+ —tangentconeto ® at ae—= (s,1) = (s, s
| === 5@ 1*t =1t @ 1*s == 1*(5/f) = s/t
——s s/t e R(C).

In classical language, s/t € R(C) says “ the pencil defined by L, is pulled back from a
pencil on C.” In modern language, let Y. x; be the base points of I'(L,), let B be the
poles of s/ron C, and let M = 0c(B). Then L, = n*M(}. x;) and 1, s/t € T(M); hence
dim I'(M) > 2. Clearly dim I'(M) = 2 since dim T (L)=2. QE.D.

7. DIM SING =

Notations are as in Section 6. Recall that if Cis a curve, a theta characteristic of C'is
a sheaf such that L?> ~ Q; L is even or odd if dim I'(L) is even or odd We wish to
prove the following theorem.

Theorem.

(@) C hyperelliptic === (P, E) is a hyperelhptlc Jacobian (hence dim Sing E =
g — 4) or a product of two such (hence dim Sing = =g —3).

(b) g = 3, C not hyperelliptic =—— (P, E) is a two-dimensional Jacobian.

© g 4, C not hyperelhptlc==> (P, E) is a three-dimensional Jacobian, and

2 is singular iff P is a hyperelliptic Jacobian iff 3 is an even theta character-

istic L with I'(L) # (0) and L() even.

(d) Assuming C not hyperelliptic and g > 5, then dim Sing & <g — 5and

C trigonal,

or C double cover of an elliptic curve,

dim SingZ =g — 5 Jor 9= 5 and 3 even theta characteristic L with
' I'(L)# (0) and L(A) even,

or g=06 and 3 odd theta characteristic L with

dimI'(L) >3, and L(A) even.

In fact, in part (d), ““ <==="" apparently also holds, but we will omit the proof of
this. We first want to point out the following corollary.

Corollary. Ifg > 5 and Cis neither trigonal, a double cover of an elliptic curve, nor
of the preceding two special types of genus 5 or 6, then the polarized Abelian variety
(P, E) is not a Jacobian or a product of Jacobians.

This follows from the theorem and the fact that dim Sing ® > dim J — 4 for polar-
ized Jacobians (J, ®) [1]. It would be quite interesting to find out in the special cases
exactly which (P, E) is a Jacobian.

Proof of Theorem. As shown in the previous section, the singularities of Z canoni-
cally embedded in P* arise from two sources.

Case 1: sheaves L, such that Nm L, = Q., dim I (L) =2 and even, and L,=
, n*Mij) where dim I'(M) > 2. e ,
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Case 2: sheaves L, such that Nm L, = Q, dim I'(L,) > 4 and even.
Note that in case 1

Q¢ = Nim L, = Nm(n* M(Y. x)( = M*(Y, nx,),

z so M satisfies the two conditions: (a) dim I'(M) > 2 and (b) dim [(Q- @ M%) > 1
" _ Also, if there are no x;, i.e., L, = n*M, then dim I'(L,) even implies (¢) If Qc = M 2
‘dim I'(M) + dim T'(M @ A) even.

Conversely, if M satisfies (a)-(c), choose an effective divisor ) 7x; in the linear
system I'(Qc® M ~?) and set L, = n*M()_ x;). This falls in case 1 unless there is at
least one x; and dim I'(L,) odd. But as shown in a previous work [11, p. 187], we can
then replace one x; by 1(x;) to make dim I'(L,) even. So all M satisfying (a)-(c) define
L, in case 1.

It is not so easy to construct all the L in case 2 directly from sheaves on C. However,
I claim the following.

R b i

P e SRR,

o e

Lemma. If dim Sing E > g — 5, then almost all « € Sing E correspond to sheaves -
L, in case 1.

e ML R

T

Proof. Suppose Z  Sing Z were a component of dimension >(g — 5) such that

e

dimI'(L) >4, all aeZ

] According to previous results [11, pp. 186-188], dim I"(L;,) = 4 for almost all x € Z.
1\ Let Z, = Z be the open subset where dim I'(L,) = 4. We wish to apply the following
X quite general result.

L L TRV

Proposition. Let C be any curve, Z < J,; a subvariety, Z, = Z an open set, and
assume that for some k

dim I'(L,) =k, all aeZ,.
Then identifying T, ;_ to H'(0Oc), hence to the dual of I'(Q(), I claim
Im[I(L)@T(QcRL; ") —— T( Q)" > T, ¢

forallaeZ,.
This is proved for k = 2 in Lemma 2.5 of Saint-Donat [14] but the proof extends

verbatim to all k. Applying this to our case, let
W, =Im[A* (L) —— T(Q ® W)].

Identifying I'(Qc ® A) with T p+, we find T, , = W,*. Since the codimension of
Z in P* is <4, it follows that dim W, < 4. But dim A*I'(L,) = 6, so the kernel of
A’I(L,) — T(Q¢ ® A) has dimension at least two. Now the set of decomposable
2-forms s A ¢t in A’I'(L,) forms a cone in A*’I'(L,) of codimension one, so at least
one such s A ¢t lies in the kernel. But for any s, # we find

sAt=0 ¢ {(s5,1) =L, s)
= s/t € R(C) (as before).

- Therefore, exactly as in the last section, L, = n*M()_x;)where dim T'(M) > 2. Q.E.D.
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We are now ready to prove the theorem—or rather reduce it to a strengthened form
of a theorem of Martens which is given in the appendix. First of all; say C is hyper-
elliptic: Let p: C——— P! be the double covering and let {z1» -5 23,42} be the
branch points. It is well known that all unramified ‘double coverings n: ¢ —, C
arise as follows. :

(@) Separate the z; into two groups of even cardinality:

{1,2,....,2g+2}=101", I' =2h+2, I" =2k + 2.

I'nl"=¢; hence h + k + 1 =g.

(b) Let p': C'——— P! and p": C"——— P! be the hyperelliptic curves with
branch points {z,},, and {z,} 1, respectively.

(c) Let € be the normalization of C' x p1C". The Z/27 x Z[2Z acts on € and we get
a tower of curves:

C
i} N\
\ B /pr
P’

by dividing by its three subgroups of order two. Note that € = norm. of C x p1C" =
C’ x :C". I claim that in this situation

Prym(C/C) =~ J x J”
Ee— J' x0"+ 0 xJ",
where J” and J” are the Jacobians of C’ and C”. (Note that if 4 or k is zero, one of the
factors here disappears.)

Idea of Proof: Now we have Z/2Z x Z[2Z acting on J and up to 2-isogenies, J
splits into four “eigensubvarieties” ; the part invariant under the whole group will be
empty, and the other three pieces will be 7n*J, J', and J”. One checks that J' x J" in-
jects into J by the natural map (n')* X (n")*, and that the image is P. Finally, one
checks that the © polarization on J splits into the sum of 2@, 20, and 20" on the
three pieces; hence = splits into the sum of ®’ and ©”. The details are left to the reader.

Now suppose C is not hyperelliptic and that dim Sing E =v > g — 5. Almost all of
these singular points must define sheaves L, in case 1: It follows that for some d there
is a v-dimensional family of pairs {M.} - y:} where (i) M is an invertible sheaf on C;
(i)Y y; is an effective divisor of degree e; (iii) deg M =d and 2d + ¢ = 2g — 2;
(iv) dim T(M) >2; (v) M* (3¢, y) = Qc; and (vi) if e =0, then dim (M) +
dim I'(M ® A) even. '

Now for each M the set of all divisors Y. y; of this type is a projective space whose
dimension equals dim I'(Q; ® M ~2) — 1. By Clifford’s theorem, we can bound this by
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If d<g—1, by Marten’s theorem. (see appendix), the dimension of the set of Ms
of degree d with dim I' (M) > 2 is bounded by d—3, and if C is not trigonal, a

double cover of an elliptic curv
Therefore

€, Or a nonsingular quintic, then it js bounded by d — 4,

v = (dim. of possible Ms) + (dim. of possible )" y) < g — 4

and v < g — 5 except in the aforementioned special cases. Also, if d = g — 1, then
M? = Q. ie., Mis one of the finite set of theta characteristics: if g < 5, these can give
us a (=g — 5)-dimensional singular locus on E.

Finally, let us look at the low-genus cases: If g = 3, the only singularities on =
arise from theta characteristics M. But if C js not hyperelliptic, dim I (M)=0or1

for all M, so = is nonsingular.

Thus (P, E) is a principally polarized two-dimensional

Abelian variety with = nonsingular: Hence it is a Jacobian. If g =4 and C is not hy-
perelliptic, again singularities on = can arise only from theta characteristics. In fact,
in P the canonical model of C equals F.G, with F a quadric, C a cubic. And if F
is nonsingular, again dim I’ (M) =0 or 1 for all theta characteristics M. But if F s a

cone, there is one even M with

C.(line on F). If also dim I (M ® A) equals zero rafher than one, then Sing = has a
single point. Thus (P, E) is a principally polarized three dimensiona] Abelian variety

with zero or one singularity on

E. Now either from the fact that the moduli space over

Z of such varieties is irreducible six dimensional, hence Jacobians are dense in it, hence

by Hoyt [6] every such variety

is a Jacobian or product of Jacobians; or from Harris’

thesis [5], it follows that (P, E) is a Jacobian. Since a three dimensional Jacobian v, ®

has a singular @ if and onlyifJ

comes from a hyperelliptic curve, this proves (c). As for

(d), we have proved this already modulo noting that nonsingular quintics are precisely
the nonhyperelliptic curves of genus six with sheaves N such that

N*=Qc,  dimI(M)=3.

[i.e., N =0c(1)]. This N defines sheaves M by M = N(—2z), ze C, hence potential

singularities of Z by

Ly = n*(N(=2))(x; + x,).

Then x; and x, must satisfy
| Q

hence nx; = nx, = z. Therefor

c = N3 (—2z2)(nx, + TX5);

€

L, = n*N(x — ix) or L,=n*N.

But one of these will be in P*,

the other in P, hence = wilj either have a whole curve

of singularities parametrized by x, or exactly one singularity, and in fact

dim Sing & = | e=—=— n*N(x — 1X) EPY === n*Ne P~
==dim I'(N) + dim T(¥ ® A) odd e dim [(N® A) even. Q.E.D.

Precisely this final special case has turned out recently to be surprisingly interesting. -

“The reason is that the Pryms (P

, &) arising from quintics C = P2 and double coverings
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€ = Spec(O¢ + Oc(N)) for which dim T’ (0c(1)(A)) is odd include the intermediate
Jacobians of cubic hypersurfaces in P*: By the corollary, these are not Jacobians
and their E has one singular point at which the tangent cone is in fact exactly the
cubic hypersurface! Clemens and Griffiths [2] have given another proof that this
intermediate Jacobian is not a Jacobian and have deduced from this that the cubic
hypersurface is not rational. On the other hand, Clemens conjectures that when
dim T'(0c (1)()) is even, then (P, E) is a Jacobian.

APPENDIX: A THEOREM OF MARTENS

The purpose of this appendix is to somewhat strengthen Marten’s theorem (8,
Theorem 1] (see also Saint-Donat [14, Theorem 2.4]) as follows.

Theorem. If Cis a nonsingular curve of genus g, and W, < J,, 1 < d <g-—1,is
the locus of invertible sheaves of degree d with sections, then

3d, 2<d<g-—2, suchthat dim Sing W,>g -3
= C is (a) hyperelliptic, or (b) trigonal, or
(c) double cover of an elliptic curve, or
(d) nonsingular plane quintic.

Proof. Recall that by Kempf’s results [7,16]
Sing W, = (locus of inv. sheaves L, dim I'(L)> 2);
hence, in Marten’s notations, Sing W, = G,'. Thus he shows that
3d, 2<d<g-—2, dim éing W,>d—2 == C hyperelliptic.
Excluding this case, we assume dim Sing W, = d — 3 for some d. If d =3,

Sing W, # ¢ &= 3L of degree three, dim I'(L) =2

== C trigonal.

Excluding this case, we may assume d > 4 (hence g > 6) and C not trigonal. Consider |

a general L of degree d with dim I'(L) = 2 and look at the pairing

I(L)®TQ® L) — T(Q).
dim 2 dim(g—d+1)

If d is the smallest d for which dim Sing W, = d — 3, we can assume that I'(L) is base-
point free. Let o, f € I'(L) be a basis. Now according to Kempf’s results, the pairing
¢ allows us to compute the Zariski tangent space to Sing W, at any point L € Sing W,
such that dim I'(L) = 2: namely, identify

TL, Sing Wa c TL,J,; = TO,J = Hl(wc) = dual Of F(Q)
Then he shows that
Im ¢ = (T sing W.,)l-
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Therefore
dim(Im ¢) < g — d + 3.

But since o and B have no common Z€ros, we get an exact sequence:
0———+a®ﬁ®r(Q®L‘2)——-»a@l‘(ﬂ@L“)+ﬁ®r(Q®L‘1) |

——Im ¢ ——0; (A.1)
hence
| dimIm ¢ =2(g - d+1) - dim [Q®L"?) = g + 3 — dim I(L>).
Therefore dim I (L*) > d. In other words, the L?s define a (d — 3)-dimensional subset
of W,, of points corresponding to Ms with dim I (M) > d: In Martens’s notation,

dim G4;1 > d - 3.

Applying his Theorem 1 again, the only cases where this might happen are: () d=4,
dim Sing W, =1, or (i) d=5, g =17, dim Sing Wy = 2. _

If (i) happens, fix one L, of degree four, dim I (Lo) = 2, I'(Ly) base-point free, and
let L be any other. Note that dim I'(L, ® L) = 4 in all cases where L L, [e.g., by
computing I'(L, ® L) by an exact sequence like (A.1)]. Therefore by Riemann-Roch,

dim I'Q ® L;') = dim I'(Lo)+29—6—g+1 =g—3
dmI'Q® Ly' ® L™1) = dim Lo ®L)+29~10—-g +1 =g -—>5.

Letp,, ..., P, _¢beanyg—6 points on C in general position. Then

g—6

F(Q®L5‘ ®L‘1(— ) Pl-)) # (0),

i=1

hence if s, is a section here, and M = O ® Lo (=Y 928 P,), we find
s ® (L) = T(M)
Jor all L. Note that
dim I'(M) = dim NOQ®L;Y ~—(g—6) =3

Therefore I'(M) defines a rational map n: C——— P? syuch that every base-point-
free pencil I'(L) of degree four defines a map C ——— P! which is the composition
of = and a projection of n(C) to PL. Butif d = degree(n(C)), then projecting n(C) from
a point of P? — 7(C), or from a simple point of 7(C), gives a map of degreed,ord — 1,
from 7(C) to P*. Since n(C) has only finitely many multiple points and there are sup-
posed to be an infinite number of Ls, we conclude that either n birational and 4 <5
or  of degree two, d < 3. Since g = 6, C is either a nonsingular plane quintic or a
double covering of an elliptic curve. Both of these do have aninfinite Sing W, , i.e., take
the line bundles [0, ® Op2(1)I(=P), any P € C, in the first case, or n*L, any L of
degree two on the elliptic curve, in the second case.

Finally, we want to exclude (ii). Assume we have a two-dimensional family of Ls
such that

degl =5 dimI[(L)=2, dimI(L?) =5.
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By Riemann-Roch, T'(Q ® L™?) # (0); hence L? = Q(—P — Q) for some P, Q. Since
the set of all L of degree five such that L? = Q(—P — Q) for some P and @ is irreduc-
ible and two dimensional, it follows that dim I'(L) = 2 for any such L. Especially if
M? = Q, then dim I'(M(—P)) > 2 for every P e C. Therefore dim I'(M) > 3. But for
any principally polarized Abelian variety X and symmetric theta divisor @ c X, ®
cannot contain all points of order two on X (see Mumford [9, p. 346]). For Jacobians
this means by Riemann’s theorem that there is always an M with M 2~ Q, (M) =(0).
This is a contradiction and (ii) never occurs. Q.E.D.

Note added in proof. Corollary 4 is Proposition 5.7 of Fay [4], in which there is a
misprint: The lower limit of the integral in Fay should be D. To get our version, use
the remarks at the top of p. 100.
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