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harmonic approximation
Potential is truncated at second order
phonons well-defined quasiparticles with infinite lifetime

Higher order terms of the potential are considered, phonons interact in a
perturbative manner:

strong anharmonicity beyond the perturbative approach
for large fluctuations from equilibrium at high temperature or with zero-point 
quantum motion (e.g. with H)

close to a dynamical instability, e.g. near a second-order phase transition like a  
ferroelectric of a charge density wave (CDW) transition

weak anharmonicity
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FIG. 1. (Color online) In the 2H structure of the TMDs the transition-metal atoms of one layer are on top the chalcogen atoms
of the other layer while the atoms within a layer form a hexagonal pattern as can be seen in the (a) side and (b) top view of the
structure (grey – transition metal, yellow – chalcogen). The hexagonal 2D Brillouin zone shown in (c) has the special points
Γ, M, and K. In the conduction band the TMDs have a minimum approximately halfway between Γ and K (hereby labeled Q
point) as shown in the band structure in (d). Its position with respect to the minimum at K depends on e.g. strain and the
number of layers. The spin-orbit splitting of the bands at K is larger for the TMDs with tungsten (in (d) the band structure
for bilayer WS2 is shown).

FIG. 2. Flow chart illustrating the procedure used in this
paper to calculate the transport properties. First, the
band structure is calculated within density-functional the-
ory (DFT) for a doping concentration n as has been im-
plemented in Quantum ESPRESSO9,10. The band structure
is used as input for BoltzTraP6 to calculate the transport
properties within the constant-scattering-time approximation
using the expansion coefficients. Those results can then be
used either to extract τ as shown in Fig. 3 or (assuming
τ = (C ×DOSEF )

−1) to fit to the experimental mobility µexp
Hall

as shown in Fig. 4.

then use the ab-initio band structure to calculate the ra-
tio of the theoretical conductivity σtheo and Hall mobility
µtheo
Hall to the scattering time τ . Our method to calcu-

late those quantities is further clarified in Fig. 2 and the
computational details can be found in the supplemental
material.11 The ratio of the measured Hall mobility µexp

Hall

to the calculated ratio µtheo
Hall/τ can be used to extract

the scattering time from the experimental data. Figure
3 exemplifies this extraction for WS2. The experimental
data of Braga et al. was measured on a thick sample
at T = 300K. We compare this data with the calcu-
lations for trilayer WS2 which is a good approximation
for nanolayers with more than 3 layers and doping larger
than n > 1013 cm−2 as shown in Ref. 8. The scatter-
ing time thus extracted decreases with increasing doping-

charge concentration nHall as shown in the bottom panel
of Fig. 3. Furthermore, electrons are scattered more fre-
quently than holes. Hole and electron mobilities are still
comparable due to the much higher effective mass of holes
at the Γ point as compared to the mass of electrons in
the conduction band.12

The assumption of constant scattering time is not a
far-fetched simplification. In fact, for constant scatter-
ing matrix elements one can show that the scattering rate
1/τ is proportional to the density of states (DOS) at the
Fermi energy. This is also true for electron-phonon inter-
action if the phonon energy is negligible with respect to
the Fermi energy. Accordingly, because of Matthiessen’s
rule, the total scattering time is directly proportional
to the inverse of the total DOS at the Fermi energy
τ = (C ×DOSEF

)−1.
In order to obtain the constantC, we use the calculated

DOS as outline in Fig. 2 and fit µtheo
Hall/τ (C ×DOSEF

)−1

to the data of Ref. 5 as shown in top panel of Fig. 4.
For electron doping and hole doping we find Ce ≈
0.174 eVΩu.c. fs

−1 and Ch ≈ 0.116 eVΩu.c. fs
−1, respec-

tively, with Ωu.c. the area of one unit cell. The result-
ing scattering time τ is given in the middle panel. It
decreases with increasing doping and saturates for high
electron doping at τ ≈ 3 fs. Furthermore, in the hole
doping case the carriers are less often scattered. The
good qualitative agreement between the experimental
and the theoretical mobility shows that an energy- and
momentum-independent scattering time which is propor-
tional to DOSEF

can be used to estimate the transport
scattering time for doping larger than n > 1013 cm−2.
This indicates that the scattering matrix elements are
well approximated by a constant that is independent
from the energy and the momentum of the electrons at
the Fermi level. Both, scattering from neutral defects
that do not induce mid-gap states and electron-phonon
scattering from non-polar phonons, can be modeled with
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overcome these constraints, we utilized high-resolution
inelastic x-ray scattering, which allowed us to obtain mea-
surements of the entire dispersion of the soft-mode branch
over a wide temperature range. We used a high-quality
single crystal sample of about 50 mg (2! 2! 0:05 mm3)
with a TCDW of 33 K determined from the temperature
dependence of the superlattice reflections [Fig. 1(e)] in
agreement with previous results [18]. All inelastic x-ray
scattering experiments were carried out on the XOR 30-ID
HERIX beam line [22,23] at the Advanced Photon Source,
Argonne National Laboratory. Data were fitted with
damped harmonic oscillator functions convoluted with
the experimental resolution. For more details on the in-
strumental setup and data analysis, see [24]. Here, we focus
on the longitudinal acoustic phonon branch dispersing
in the crystallographic (100) direction and crossing
qCDW ¼ ð0:329;0;0Þ [18].

Figure 1 shows the temperature dependence of a
soft-phonon mode at qhkl ¼ ð0:325;0;0Þ, close to the

CDW wave vector qCDW ¼ ð0:329;0;0Þ. At T ¼ 90 K
[Fig. 1(d)], the soft phonon at an energy of !q¼4:5meV
has nearly equal intensity to the second phonon branch at
10 meV. Upon cooling, the intensity of the upper branch is
suppressed due to the Bose factor, whereas the intensity of
the soft phonon is enhanced by a factor of 1=!q in the cross
section as its energy !q is reduced. At T ¼ TCDW, the
elastic superstructure peak of the CDW phase dominates
the spectrum [Fig. 1(b)], but we can still distinguish the
critically damped phonon as a broad peak beneath the
narrow elastic CDW peak. Well inside the CDW phase,
the elastic superlattice reflection was too strong for any
inelastic scattering to be observed at qCDW [Fig. 1(a)].
Figure 1(e) shows that the integrated intensity of the

CDW superlattice peak measured at h ¼ 0:325, which is
within the momentum resolution of qCDW, increases rap-
idly below TCDW ¼ 33 K, in good agreement with pre-
vious neutron diffraction data taken on crystals from the
same growth batch [18]. Above TCDW, the elastic intensity
due to diffuse scattering from the sample is very small,
which implies that our sample had very little structural
disorder. It stays low until very close to TCDW [see the inset
in Fig. 1(e)], where a weak elastic ‘‘central’’ peak consis-
tent with low energy critical fluctuations appears.
The phonon energy at qCDW softens on cooling

[Fig. 1(f)] following a power law !qðTÞ ¼ ½ðT & TcÞ=Tc'!
with ! ¼ 0:48 ( 0:02, the value predicted by mean-field
theory [3]. As the phonon softens, the damping increases
and the phonon becomes critically damped, i.e., !=~!q ¼ 1,
at TCDW [Fig. 1(f)].
Remarkably, we observe the same power law behavior

not only at qCDW but also at h ¼ 0:3 and 0.35, which are
outside the experimental resolution from qCDW and where
the elastic peak is an order of magnitude weaker relative to
the phonon intensity. Moreover, the phonon energies at

FIG. 1 (color online). Temperature dependence of the soft-
phonon mode and the charge-density-wave superlattice peak
near qCDW ¼ ð0:329;0;0Þ. (a)–(d) Energy scans at q ¼
ð3 & h;0;0Þ, h ¼ 0:325, for temperatures 8 K ) T ) 90 K.
Solid (red) lines are fits consisting of damped harmonic oscil-
lators (inelastic) and a pseudo-Voigt function (elastic) (blue
dashed lines). (e) Intensity of the charge-density-wave superlat-
tice peak for T ) 120 K. The inset shows the phonon and
superlattice peak intensities just above Tc. (f),(g) Phonon fre-
quency !q and critical damping ratio !=~!q of the soft-phonon
mode, respectively, at q ¼ ðh;0;0Þ with h ¼ 0:3 (circle), 0.325
(triangle), and 0.35 (square). The solid line in (f) is a power law
fit of the form ½ðT & TcÞ=Tc'! yielding ! ¼ 0:48 ( 0:02.

FIG. 2 (color online). Wave vector dependence of the soft
phonon at T ¼ 33 K. Energy scans at Q ¼ ð3 & h;0;1Þ,
h ¼ 0:275–0:375. Solid (red) lines represent the total fit result
consisting of a damped harmonic oscillator functions (inelastic)
and a pseudo-Voigt function (elastic) (blue dashed lines).
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these wave vectors also become indistinguishable from
zero at TCDW [Figs. 2(b) and 2(c)] as at qCDW. This means
that the phonons are critically damped over a large range
of momentum transfer from h ¼ 0:3 to h ¼ 0:35. Going
further away from qCDW with the same step size, !h ¼
0:025 r:l:u:, the soft-phonon branch is well separated from
zero energy [Figs. 2(a) and 2(d)]. Figure 3 shows the full
dispersion and damping ratio of the soft-mode phonon
branch. A broad dispersion anomaly is already evident at
250 K in agreement with previous neutron scattering mea-
surements performed only at 300 K [18]. This anomaly
deepens considerably upon cooling to 50 K, where we also
observe a strong increase in the damping. Finally, upon
cooling to TCDW, the energies reach zero and the phonons
become critically damped over an extended range of wave
vectors. At T ¼ 8 K, well below TCDW, we find hardened
energies and reduced damping, similar to the ones ob-
served at T ¼ 50 K. However, the soft mode was not
resolvable at h ¼ 0:325 and 0.35 due to strong elastic
scattering [e.g., see Fig. 1(a)]. At these temperatures, the
Bose and 1=! factors suppress the phonon intensity and
the measurements become increasingly difficult.

The q dependence of the phonon softening shown in
Fig. 3 is in marked contrast to the sharp, cusplike dips that
normally characterize Kohn anomalies at 2kF due to Fermi
surface nesting [5,25]. In 2H-NbSe2, we find that the
phonon renormalization extends over 0:36 "A"1, or over
half the Brillouin zone, and the critically damped region

extends over 0:09 "A"1, whereas we can clearly determine
different phonon energies at wave vectors separated by half

of this value (!h ¼ 0:025 r:l:u:¼ 0:045 "A"1). This be-
havior clearly rules out a singularity in the electronic
response in 2H-NbSe2 and suggests that the CDW is
determined by the wave vector dependence of the EPC
!q, as proposed by theory [9–11]. A broadened or even
flat-topped susceptibility due to imperfect nesting caused,
e.g., by the c-axis dispersion of the electron bands, could
also lead to a renormalization of the phonon dispersion
over a larger range of wave vectors, but it is unlikely that it
spans over half of the Brillouin zone.
In order to elucidate the microscopic mechanism behind

the CDW phase transition in 2H-NbSe2, we compare our
experimental results to detailed phonon calculations based
on density functional perturbation theory (DFPT) per-
formed with the crystal structure at T > TCDW (for details
see [24]). This is a zero temperature technique, in which
structural instabilities show up as imaginary phonon fre-
quencies. Because of the finite momentum mesh used in
the DFPT calculations, a numerical smearing " of the
electronic bands is necessary to compare the calculations
with experiment. The effect of " is analogous to a thermal
smearing of the electronic structure, so it has been used in
previous work to qualitatively simulate the effect of tem-
perature [25,26]. Though temperatures equivalent to " are
at least 1 order of magnitude too large (for details see [24]),
we note that for 2H-NbSe2 a comparison between theory
and experiment indicates that values of 0:1 eV # " #
1 eV produce results that are consistent with a temperature
range of 30 K # T # 300 K.
Figure 4 summarizes the calculations, showing the cal-

culated soft-phonon dispersion, linewidth, and electronic
joint density of states (JDOS). Imaginary phonon energies
are represented in Fig. 4(a) through the negative roots of
the absolute value, e.g., as ‘‘negative’’ phonon energies.
These occur in the calculated longitudinal acoustic phonon
branch for " $ 0:18 eV over an extended range of wave
vectors [Fig. 4(a)] in agreement with previous studies [12]
and in qualitative agreement with the observed breakdown
of the phonon dispersion. Similarly, the contribution to the
phonon linewidth from the electron-phonon interaction, 2#
[Fig. 4(b)], shows a strong enhancement over the same
extended range of wave vectors. To a first approximation,
2# is proportional to the product of j!qj2 and the electronic
JDOS. Since the latter shows negligible wave vector de-
pendence [Fig. 4(c)], the enhancement of the phonon
linewidth observed in both experiment and theory is en-
tirely due to a strong wave vector dependence of the EPC.

FIG. 3 (color online). Experimentally obtained dispersion and
damping ratio of the soft-phonon branch in 2H-NbSe2 at four
temperatures 8 K # T # 250 K. Plotted are (a) the frequency of

the damped harmonic oscillator !q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2
q " #2

q
and (b) the

damping ratio #= ~!q. Lines are guides to the eye. Note that
phonons at h ¼ 0:325;0:35 and T ¼ 8 K were not detectable
due to strong elastic intensities. The inset in (b) shows the
experimentally observed damping # of the damped harmonic
oscillator (symbols) and scaled DFPT calculations (see Fig. 4)
of 2# (lines, offset 0.7 meV) with " ¼ 0:1 eV (black) and 1 eV
(red).
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softening of a phonon modes at the CDW transition:
2H-NbSe2 Inelastic X-Ray scattering (IXS)
[Weber et al. PRL 107, 107403 (2011)]

CDW transition temperature, Tc ~ 33 K

for T<Tc a superstructure appears with periodicity 
close to a (3x3x1) reconstruction  



our goal: description of phonons in strong anharmonic regimes 
using a first principles approach

Self Consistent Harmonic Approximation (SCHA)
[D. J. Hooton, Philos. Mag. 46, 522 (1955)]

• even in the strong non-perturbative regime (e.g. CDW, 
ferroelectrics) phonons still exist and can be measured!

• Same philosophy of the  Hatree-Fock approximation, effective 
non-interacting electrons that minimizes the total-energy with 
the exact  e-e interaction

• Effective harmonic (non-interacting) phonons that minimize the 
Free-energy with the exact (anharmonic to all orders) potential
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free energy functional: variational principle

ρ = ionic (n-body) density matrix H =
1
2m

P2 +V (R)
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At the minimum the density matrix is:

ρ = ionic (n-body) density matrix H =
1
2m

P2 +V (R)



FH =U −TS = min
ρ,tr ρ[ ]=1

tr Hρ[ ]+ kBTtr ρ ln(ρ)[ ]{ }

free energy functional: variational principle

FH [ H ]= tr H ρ[ ]+ kBTtr ρ ln( ρ)[ ]{ } ρ = exp −
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We define a functional of a trial Hamiltonian

variational principle (Gibbs-Bogolugov inequality)

where the equality holds for H = H

H



Self Consistent Harmonic Approximation

the SCHA uses a generic trial Harmonic Hamiltonian:

FH [ H ]= tr H ρ[ ]+ kBTtr ρ ln( ρ)[ ]{ }

!H =
1
2m

P2 + 1
2
(R−Rc )

!
D(R−Rc )

the free energy functional is minimized with respect to the 
parameters 

at the minimum:
is the best self-consistent harmonic potential
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Self Consistent Harmonic Approximation
SCHA applied so far to crystals of noble gasses: ion-ion total 
energy and forces can be obtained by fast empirical potentials 

Ab-initio (from DFT or quantum Monte-Carlo) total energy and 
forces are computational much more demanding

We implemented the Self Consistent Harmonic Approximation, 
with a stochastic scheme that minimizes number of calls to 
the ab-initio total-energy-and-forces engine:

Errea, Calandra, Mauri, PRL 111, 177002 (2013), PRB 89, 
064302 (2014), Monacelli, Errea, Calandra, Mauri PRB 98, 
024106 (2018)



meaning of the auxiliary harmonic Hamiltonian:

direct access to phonon instabilities (phase transitions)?
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SCHA probability distribution
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SCHA probability distribution

hO(R)i
(Rc;

$
D)

= tr[O(R)⇢̃] =

Z
dRO(R)p(R)

(Rc;
$
D)

p(R)
(Rc;

$
D)

= hR|⇢̃|Ri = a exp[�(R�Rc)·
$
B ·(R�Rc)]

hRi
(Rc;

$
D)

= Rc = quantum centroid of  the nuclei

observable that depends
just on positions

analytic function of and T
$
D

p(R)
(Rc;

$
D)

bounded 
distribution

$
B

$
Dif      and     positive definite

$
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free energy – dependence on centroids
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]
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free energy – curvature
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]
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The auxiliary matrix that minimizes for a given Rc the SCHA free 
energy obeys to the self-consistent equation: 
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exact SCHA free-energy curvature:
rank-4 tensor, analytic function of and T
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free energy – curvature
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]

rank-3 tensor rank-4 tensor



free energy – curvature - diagrams
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]

exact SCHA free-energy curvature:
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FIG. 2. Figure a): Diagrammatic representation of Eq. (41).
Figure b): Diagrammatic representation of the SCHA self-
energy ⇧(S), Eq. (38). Since in that equation only the static
value ⇧(S)(0) is considered, the sum over the frequencies of
the internal lines is performed, but the total frequency is kept
equal to zero. Figure c): Diagrammatic representation of
(B)

⇧ (S), the bubble part of the SCHA self-energy, Eq. (42)

where the matrix product is understood. If the oppor-
tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:

(B)

⇧ (S)(0) =
(3)

D(S)

✓
�
1

2
�(S)(0)

◆
(3)

D(S) (42)

and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:
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V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it

phonon Green function with
the auxiliary Hamiltonian
!H =

1
2m

P2 + 1
2
(R−Rc )

!
D(R−Rc )
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method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
O

E

⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it

@2F (Rc)

@Rc@Rc
=

$
D +

static self-energy (real quantity)



CDW in bulk and monolayer TMDs: 
NbS2 NbSe2

T<TCDW: CDW (low symmetry phase)

T=TCDW : second order phase transition

T> TCDW: CDW melting (high symmetry phase)

The CDW melting has an electronic origin 
(thermal excitations of electrons) or is ruled by 
quantum and thermal anharmonic fluctuations of 
nuclei?



bulk and monolayer NbS2

Expt:

BULK: no CDW but strong dependence of phonon on T

MONOLAYERS: CWD in on graphene substrate but not on Au



CDW in bulk and monolayer TMDs: 
NbS2 or NbSe2

monolayer: 1H

with the surrounding chalcogens. In Figure 1 the 1H
(monolayer) and 2H (bulk) crystal structures are shown.

Among metallic 2H bulk TMDs, NbS2 occupies a special
place as no CDW has been reported,9,10 contrary to its
isoelectronic and isostructural 2H-TaSe2, 2H-TaS2, and 2H-
NbSe2. All these systems have very similar band structures and
are conventional (i.e., phonon-mediated) superconductors
with critical temperatures Tc that increases from a sub-Kelvin
value in 2H-TaSe2 and 2H-TaS2 (around 0.2 and 0.5 K,
respectively) up to 5.7 K in 2H-NbS2 and 7.2 K in 2H-
NbSe2.

11−14 They also show quite a different CDW transition
strength.15,16 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 undergo a
triple incommensurate CDW transition to a superlattice with
hexagonal symmetry corresponding roughly to the same wave
vector qCDW = ΓM(1 − δ)2/3 (δ ≃ 0.02 is the
incommensurate factor) of the Brillouin zone. However, the
transition temperature TCDW increases from 30 K for 2H-
NbSe2 to 80 K for 2H-TaS2 and 120 K for 2H-TaSe2 (2H-
TaSe2 actually shows a further commensurate first-order CDW
transition at 92 K with δ dropping continuously to zero).17

Therefore, 2H-NbS2 considerably stands out as it shows only
an incipient instability near qCDW, but it remains stable even at
the lowest temperatures. This circumstance is even more
surprising if it is considered that 2H-NbSe2 and 2H-NbS2
display superconductivity at similar temperatures.
In TMDs, the behavior of the CDW ordering in the two-

dimensional (2D) limit cannot be inferred from the knowledge
of their bulk counterparts, because two competing mechanisms
are expected to play a major role. On the one hand, reduced
dimensionality strengthens Peierls instabilities (due to Fermi
surface nesting) and electron−phonon interactions (due to
reduced dielectric screening), thus favoring stronger CDW. On
the other hand, stronger fluctuation effects from both finite
temperatures and disorders should tend to destroy long-range
CDW coherence in low-dimensional systems.18 In particular,
the effect of dimensionality on the CDW ordering in the H
polytype is a current active research area. In 1H-TaS2, the
CDW vanishes in the 2D limit,19 while in 1H-TaSe2 it remains
unchanged with respect to the bulk.20 For 1H-NbSe2 and 1H-
NbS2, the situation is more debated. In the 1H-NbSe2 case, 3 ×
3 CDW is observed but some controversy is still present in
literature, tentatively attributed either to the sample exposure

to air or to the different substrates, concerning the thickness
dependence of the TCDW (lower/higher TCDW of the
monolayer with respect to the bulk has been reported with
bilayer graphene21/silicon18 substrate, respectively). Supported
single layers of 1H-NbS2 have become recently available, and
although no traces of CDW have been observed down to 30 K
for monolayers grown on top of Au(111),22 a 3 × 3 CDW
ordering has been observed at ultralow temperature (measure-
ments performed below 5 K) for monolayers grown on top of
graphitized 6H-SiC(0001).23

In this Letter, we investigate from first-principles the
vibrational properties of bulk 2H-NbS2 (at zero and finite
pressure) and suspended 1H-NbS2, taking into account
quantum anharmonic effects at nonperturbative level in the
framework of the stochastic self-consistent harmonic approx-
imation (SSCHA).24−27 For bulk 2H-NbS2, we show that
quantum anharmonic effects remove the instability found at
harmonic level and give temperature-dependent phonon
energies in quantitative agreement with experiment. Previous
anharmonic calculations for 2H-NbS2 anticipated the role of
anharmonicity but were limited to a low-dimensional subspace
of the total high-dimensional configurations space and did not
account for the temperature dependence.14 We also show that
quantum anharmonic effects are noticeable even at high
pressure. Moreover, we demonstrate that the difference
between 2H-NbS2 and 2H-NbSe2 is not simply ascribable to
the different chalcogen mass. Finally, we analyze the 2D limit
and show that freestanding single-layer 1H-NbS2 undergoes a 3
× 3 CDW instability in agreement with data on 6H-SiC(0001)
supported samples. However, strains smaller than 0.5% are
sufficient to completely remove the instability, suggesting a
strong dependence of the CDW on the environmental
conditions (substrate, charge transfer, and so forth) and
reconciling the apparent contradiction with supported
Au(111) samples.
For bulk 2H-NbS2, in Figure 2 we compare the computed

anharmonic phonon dispersions with the results of the inelastic

Figure 1. Left-hand side: crystal structure of trigonal NbS2 in the 1H
monolayer and in the 2H (bulk) stacking layer configuration. Right-
hand side: corresponding hexagonal BZ with the high-symmetry
points (in the monolayer configuration only the points ΓMK are
relevant, and they are customarily indicated with a line over the
letter).

Figure 2. 2H-NbS2 harmonic (black dashed lines) and SSCHA
anharmonic phonon dispersion at 300 K (red solid lines) and 0 K
(blue solid lines), calculated using the experimental lattice parameters.
The results are compared with the IXS measurements of ref 7
performed at 300 K (red dots) and 2 K (blue dots). The SSCHA
dispersion corrects the errors of the pure harmonic result near M: the
instability of the two longitudinal acoustic and optical modes is
removed and the softening on lowering temperature is well
reproduced.
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experiment on bulk NbS2: no CWD (incipient CDW) 
[Leroux et al., Phys. Rev. B 86, 155125 (2012)]

Harmonic DFT calculations suggest 2x2 CDW, while no CDW is present in bulk.

Incipient CDW: Strongly temperature dependent IXS phonon spectra.M. LEROUX et al. PHYSICAL REVIEW B 86, 155125 (2012)

FIG. 1. Reconstruction of the x-ray diffraction in the (H,K,0)
plane of 2H-NbS2 at 300 and 77 K, from a 3D mapping of thermal
diffuse scattering. A symmetrization has been applied. Diffuse
intensity is present only along !M and, more precisely, only where
scattering geometry selects longitudinal phonons (white ellipses). No
diffuse features are visible for transverse geometry (black ellipse). At
77 K, small extra spots are visible.

evidencing a good structural order. Meanwhile along the c
axis, analysis of the diffraction pattern revealed a correct
2H stacking over three unit cells on average, in agreement
with a previous study.18 Between the Bragg spots in the (a,b)
plane, diffuse lines can be detected at room temperature, and
their intensities increase at low temperature. These lines are
present only along the !M direction and, more precisely,
only where scattering geometry selects longitudinal phonons
(circled in white in Fig. 1). No such diffuse features are visible
for transverse polarization (circled in black in Fig. 1). This
indicates that an anomaly occurs for longitudinal phonons
along !M. In addition, at low temperature, we observe the
apparition of tiny spots at wave vectors q = (0.38,0.16,0) and
at the M point q = (0.5,0,0).

To get further insight regarding these diffuse features,
we performed IXS measurements with a photon energy of
17.794 keV using the (9,9,9) reflection on the high-resolution
silicon backscattering monochromator. Corresponding instru-
mental energy and momentum resolutions were 2.6 meV
FWHM (determined from the least-square fit of the Lorentzian
curve of the elastic peak), 0.017 Å−1 in the (H,K,0) plane and
0.04 Å−1 in the (0,0,L) direction, respectively. The x-ray beam
was focused down to 200 × 60 µm (width × height) on a
single crystal of 2H-NbS2 of 4502 × 100 µm (a × b × c). We
found the tiny spots to be very weak elastic peaks, considering
the high electronic susceptibility at q = (0.5,0,0), these may
be traces of a charge density modulation induced by local
strain or of Friedel’s oscillations. Meanwhile, the diffuse
features were due to a strong phonon softening. This can be
evidenced when mapping the phonon dispersion (see Fig. 2)
along the !K and !M line at fourteen different temperatures
between 300 and 2 K (pumped 4He cryostat). We performed
our measurements close to the (3,0,0) Bragg reflection, where
we should observe both supposedly soft modes on LO and
LA branches, according to structure factor calculations. The
presence of these two modes is confirmed experimentally

FIG. 2. (Color online) Experimental phonon spectrum of 2H-
NbS2 at room temperature (full red circles) and 2 K (open blue
diamond), compared to ab initio, zero-temperature, and harmonic
phonons (dashed lines) calculations. The two soft phonon branches
along !M are nearly degenerate at room temperature, and slightly
split away as temperature decreases. At the exception of the scans
along !M at room temperature, we limited ourselves to energies
below 30 meV.

by the asymmetric profile of the experimental spectra in
Fig. 3(b). Harmonic phonon frequencies were calculated in the
framework of DFT in the linear response.19 We use the local
density approximation. The dynamical matrix were calculated
on a 10 × 10 × 1 phonon-momentum grid in the Brillouin
zone and Fourier interpolated throughout the Brillouin zone.
The electronic integration was performed using 20 × 20 × 6
electron-momentum grid and an Hermite-Gaussian smearing
(electronic temperature) Telec = 0.136 eV. The EPC contribu-
tion to the phonon linewidth (a quantity that does not depend on
real or imaginary nature of the phonon frequency) has also been
calculated following Ref. 20. Experimental spectra were fitted
using standard21 damped harmonic oscillator (DHO) functions
for the phonons with the Bose factor included. The linewidths
were constrained to calculated electron-phonon ones (see
Table I), convoluted by the quasi-Lorentzian experimental

TABLE I. Phonons linewidths γ in meV (half width at half
maximum) of the first six phonon modes, calculated ab initio for
several positions along !M (top) and !K (bottom). Positions are
expressed as a fraction x of !M (respectively, !K). At each position
x, the γ are sorted by increasing order of the phonon energy.

x γ1 γ2 γ3 γ4 γ5 γ6

1/5 <0.01 0.01 0.01 <0.01 0.04 0.03
2/5 0.01 <0.01 0.06 0.05 0.36 0.35
3/5 1.17 0.89 0.04 0.03 0.18 0.12
4/5 1.52 1.04 0.07 0.06 0.19 0.15
5/5 1.36 1.14 0.03 0.08 0.12 0.09
1/6 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2/6 <0.01 <0.01 0.02 0.01 0.03 0.03
3/6 0.02 0.01 0.04 0.04 0.04 0.05
4/6 0.02 0.02 0.06 0.06 0.05 0.06
5/6 0.03 0.03 0.07 0.07 0.06 0.06
6/6 0.04 0.03 0.08 0.08 0.06 0.06
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FIG. 1. Reconstruction of the x-ray diffraction in the (H,K,0)
plane of 2H-NbS2 at 300 and 77 K, from a 3D mapping of thermal
diffuse scattering. A symmetrization has been applied. Diffuse
intensity is present only along !M and, more precisely, only where
scattering geometry selects longitudinal phonons (white ellipses). No
diffuse features are visible for transverse geometry (black ellipse). At
77 K, small extra spots are visible.

evidencing a good structural order. Meanwhile along the c
axis, analysis of the diffraction pattern revealed a correct
2H stacking over three unit cells on average, in agreement
with a previous study.18 Between the Bragg spots in the (a,b)
plane, diffuse lines can be detected at room temperature, and
their intensities increase at low temperature. These lines are
present only along the !M direction and, more precisely,
only where scattering geometry selects longitudinal phonons
(circled in white in Fig. 1). No such diffuse features are visible
for transverse polarization (circled in black in Fig. 1). This
indicates that an anomaly occurs for longitudinal phonons
along !M. In addition, at low temperature, we observe the
apparition of tiny spots at wave vectors q = (0.38,0.16,0) and
at the M point q = (0.5,0,0).

To get further insight regarding these diffuse features,
we performed IXS measurements with a photon energy of
17.794 keV using the (9,9,9) reflection on the high-resolution
silicon backscattering monochromator. Corresponding instru-
mental energy and momentum resolutions were 2.6 meV
FWHM (determined from the least-square fit of the Lorentzian
curve of the elastic peak), 0.017 Å−1 in the (H,K,0) plane and
0.04 Å−1 in the (0,0,L) direction, respectively. The x-ray beam
was focused down to 200 × 60 µm (width × height) on a
single crystal of 2H-NbS2 of 4502 × 100 µm (a × b × c). We
found the tiny spots to be very weak elastic peaks, considering
the high electronic susceptibility at q = (0.5,0,0), these may
be traces of a charge density modulation induced by local
strain or of Friedel’s oscillations. Meanwhile, the diffuse
features were due to a strong phonon softening. This can be
evidenced when mapping the phonon dispersion (see Fig. 2)
along the !K and !M line at fourteen different temperatures
between 300 and 2 K (pumped 4He cryostat). We performed
our measurements close to the (3,0,0) Bragg reflection, where
we should observe both supposedly soft modes on LO and
LA branches, according to structure factor calculations. The
presence of these two modes is confirmed experimentally

FIG. 2. (Color online) Experimental phonon spectrum of 2H-
NbS2 at room temperature (full red circles) and 2 K (open blue
diamond), compared to ab initio, zero-temperature, and harmonic
phonons (dashed lines) calculations. The two soft phonon branches
along !M are nearly degenerate at room temperature, and slightly
split away as temperature decreases. At the exception of the scans
along !M at room temperature, we limited ourselves to energies
below 30 meV.

by the asymmetric profile of the experimental spectra in
Fig. 3(b). Harmonic phonon frequencies were calculated in the
framework of DFT in the linear response.19 We use the local
density approximation. The dynamical matrix were calculated
on a 10 × 10 × 1 phonon-momentum grid in the Brillouin
zone and Fourier interpolated throughout the Brillouin zone.
The electronic integration was performed using 20 × 20 × 6
electron-momentum grid and an Hermite-Gaussian smearing
(electronic temperature) Telec = 0.136 eV. The EPC contribu-
tion to the phonon linewidth (a quantity that does not depend on
real or imaginary nature of the phonon frequency) has also been
calculated following Ref. 20. Experimental spectra were fitted
using standard21 damped harmonic oscillator (DHO) functions
for the phonons with the Bose factor included. The linewidths
were constrained to calculated electron-phonon ones (see
Table I), convoluted by the quasi-Lorentzian experimental

TABLE I. Phonons linewidths γ in meV (half width at half
maximum) of the first six phonon modes, calculated ab initio for
several positions along !M (top) and !K (bottom). Positions are
expressed as a fraction x of !M (respectively, !K). At each position
x, the γ are sorted by increasing order of the phonon energy.

x γ1 γ2 γ3 γ4 γ5 γ6

1/5 <0.01 0.01 0.01 <0.01 0.04 0.03
2/5 0.01 <0.01 0.06 0.05 0.36 0.35
3/5 1.17 0.89 0.04 0.03 0.18 0.12
4/5 1.52 1.04 0.07 0.06 0.19 0.15
5/5 1.36 1.14 0.03 0.08 0.12 0.09
1/6 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
2/6 <0.01 <0.01 0.02 0.01 0.03 0.03
3/6 0.02 0.01 0.04 0.04 0.04 0.05
4/6 0.02 0.02 0.06 0.06 0.05 0.06
5/6 0.03 0.03 0.07 0.07 0.06 0.06
6/6 0.04 0.03 0.08 0.08 0.06 0.06
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bulk NbS2: temperature dependence
[Leroux et al., Phys. Rev. B 86, 155125 (2012)]

ANHARMONIC SUPPRESSION OF CHARGE DENSITY . . . PHYSICAL REVIEW B 86, 155125 (2012)

FIG. 3. (Color online) (a) IXS scans at (H,K,L) =
(3.184,−0.072,0) fitted by the convolution of a DHO (with Bose
factor) and the Lorentzian experimental resolution. Ab initiophonon
calculations, convoluted by the experimental resolution, are in good
agreement with experimental results. (b) IXS scans at (H,K,L) =
(3.375,0,0) for different temperatures. For clarity, scans are shifted
up. In the superimposed fits, the linewidths and amplitude ratio of
the two phonons are fixed according to the ab initiocalculations (see
text). Ab initiophonon calculations, convoluted by the experimental
resolution, are also in good agreement with experimental results when
using higher Telec.

resolution function. This procedure yields excellent results
as seen in Fig. 3, and the resulting experimental dispersion of
the phonons is plotted in Fig. 2, together with the calculated
harmonic phonon frequencies.

III. RESULTS AND DISCUSSION

Along the !K direction the low-energy phonon dispersion
is in excellent agreement with harmonic first-principles calcu-
lations, as also shown by the scans in Fig. 3(a). On the contrary
along !M and close to the M point, harmonic calculations
do show imaginary phonon frequencies for the lowest energy
phonon modes, meaning that the high-temperature structure
becomes unstable and that a CDW occurs, with ordering vector

FIG. 4. Experimental phonon energies, squared, from our fitting
procedure with two phonons (see text), as a function of temperature
at (h,k,l) = (3.375,0,0). Energies are compatible with the mean-field
theory that predicts a power law T

1
2 . Lines are guides to the eyes.

close to 0.5a*. Experiments find a completely different picture.
Namely, a marked softening of these branches occurs but the
system remains dynamically stable with no indication of CDW
instabilities.

More insight can be obtained by analyzing the behavior of
the measured phonon frequencies as a function of temperature.
Experimentally, along the !K direction (see Fig. 2) the
phonon frequencies are essentially temperature independent.
On the contrary, along !M, and in particular close to the M
point, the low-energy phonon modes are strongly temperature
dependent. This is better seen in Fig. 4 where the lowest-energy
phonon frequencies at 0.75!M are plotted as a function of
temperature. The phonon frequencies are more than doubled
in the 2–300 K temperature range, a behavior that can only
be explained by invoking strong anharmonic effects,22 as
discussed hereafter.

In solids, anharmonicity has two main effects. Firstly, it
is the origin of the thermal expansion in solids. However,
this contribution is negligible here, as the lattice parameters
barely change from zero to room temperature [a(300 K) =
3.3295 Å, a(2 K) = 3.3230 Å]. Secondly, when the lattice
parameters are fixed, phonon-phonon scattering results in
a temperature-dependent phonon-frequency shift to higher
energies and in a temperature-dependent enhancement of the
phonon linewidth.22 These contributions add to the normal
electron-phonon contributions that are, on the contrary, tem-
perature independent. Thus a strong temperature dependence
of the phonon frequencies is a fingerprint of large anharmonic
effects. In fact, we find here that the square of the two phonons
frequencies at the softest q vector increases linearly with
temperature (see Fig. 4). This power-law dependence of the
frequency, also observed in 2H-NbSe2,12 is typical for a soft
mode. As temperature is increased, the unstable harmonic
oscillator is stabilized by higher-order anharmonic potential,
induced by the phonon-phonon interactions.23 The critical
exponent 1/2 indicates that the phonon-phonon interaction
can be described in a mean-field approach, i.e., considering
the soft mode in equilibrium with the average field induced by
all other phonons.23
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First-principles evaluation of third- and fourth-order per-
turbative coefficients in phonon-phonon scattering cannot be
easily done here as the harmonic solution has imaginary
phonon frequencies as seen in Fig. 2. As such, the anharmonic
correction is as big as the bare harmonic phonon frequency
itself. Nonperturbative approaches that include anharmonic
effects24 are required. These approaches are, however, very
time consuming and unfeasible for the case of 2H-NbS2 with
six atoms per cell. In order to interpret the IXS spectra along
!M, we artificially smear out the sharp Fermi surface with an
electronic temperature, a technique also used in Ref. 12.

We have calculated the contribution of the electron-phonon
coupling to the linewidths of the phonon modes, along the
two high-symmetry lines !M and !K. The values of the half
width at half maximum are shown in Table I. Along the !K
direction the linewidths of the first six branches are far below
the experimental resolution (1.3 meV). However, along the
!M direction, the electron-phonon coupling is responsible of a
large broadening of the two soft modes on a wide range of wave
vectors. In both directions, the linewidth is almost independent
of the smearing of the Fermi surface, driven artificially by the
increase of Telec, up to Telec = 0.34 eV and consistently with a
previous report.12

On the contrary, Telec has a very strong effect on the
renormalization of the phonon energies close to the M point.
This is illustrated in Fig. 5. Yet, a negligible renormalization
is observed along the !K direction, thus emphasizing the
anisotropy of the electron-phonon coupling.

Typical IXS spectra calculated at 0.75!M for electronic
temperatures of Telec = 0.34 and 0.27 eV (including the
electron-phonon linewidth, weakly dependent on the chosen
electronic temperature, as well as the experimental resolution)
are shown in Fig. 3(b) and are in good agreement with
the experimental data. The electronic temperature smears
the Fermi surface, and by doing so suppresses the effect
of the EPC. This in turn increases the phonon frequency
artificially and stabilizes the lattice. However, this increase
of Telec is not the correct physical picture, since to reproduce

FIG. 5. Calculated phonon energy squared for the two lowest
branches at 0.8!M as a function of the smearing of the Fermi surface
with Telec.

changes in spectra in the 0–300 K temperature range, the
electronic temperature must be changed by at least 0.1 eV,
and even more in the case of 2H-NbSe2

12 or 1T-TiSe2.25 Thus
considering this effect as the origin of the temperature behavior
of the phonon frequencies is incorrect.12,25

On the contrary, the aforementioned anharmonicity, ne-
glected in these first-principles calculations, is likely respon-
sible for these discrepancies. This was already suggested by
Varma and Simons,26 who demonstrated that anharmonicity
can be responsible for a reduction by an order of magnitude
of TCDW in 1T-TaS2, hence accounting for the anomalously
large ratio of the CDW gap amplitude to TCDW in these
compounds. The strong mean-field power law temperature
dependence of the soft phonon modes of 2H-NbS2, and
the prediction by harmonic DFT calculations of a CDW
instability close to the M point, both consistently indicate
that anharmonic effects are, in this case, so strong that they
actually suppress the CDW and stabilize the crystal structure,
leaving, however, the superconducting properties essentially
unaffected.27

In real space, the main components of the soft phonon
modes are the vibrations of the Nb atoms in the (a,b) plane,
but also the vibrations along the c axis of a couple of S atoms
situated just above and below the plane of Nb atoms. The
longitudinal displacement of Nb atoms along !M corresponds
to a movement toward this couple of S atoms. Interestingly,
the distance between these S atoms is unusually short (2.97 Å,
while typical S-S bond are 3.3–3.4 Å28). It therefore suggests
that the displacement of Nb atoms is hampered by the great
elastic cost of moving apart the S atoms, which would be the
microscopic origin of the anharmonicity. The decisive role of
the force constant between the S atoms in the same S-Nb-
S sandwich was already emphasized in a study based on a
tight-binding approach29 and with first-principles calculations
in TiSe2.30 In this respect, 2H-NbS2 is rather unique as it is
on the verge of the CDW transition and is only stabilized by
anharmonic effects.

A second important result of our work is that the EPC
(responsible for the softening close to the M point) is strongly
anisotropic throughout the Brillouin zone. The ab initio
calculation yields a very large phonon linewidth of 1.5 meV at
0.8 !M, due to the EPC, compared to less than 0.1 meV along
the !K line. This strong in-plane anisotropy has necessarily
important consequences for the superconducting properties of
TMD. In this respect, it is instructive to compare superconduct-
ing gap measurements of the two isoelectronic dichalcogenides
2H-NbSe2 and 2H-NbS2. In the former, there exists two main
values of the superconducting gap.31–35 This was initially
attributed to the CDW order, presumably competing with
the superconducting instability.7,9,36,37 However, a similar
observation in the superconducting state of 2H-NbS2 by
the same various methods (scanning tunneling spectroscopy,
specific heat measurements, Hc1, magnetic penetration depth
measurement), clearly ruled out this assumption.13,15,16,38 As
a consequence of the strongly anisotropic softening of the
phonons that we report in this study, the EPC, and therefore the
pairing strength, are themselves highly anisotropic. This sug-
gests that the two superconducting gap amplitudes observed
in 2H-NbS2, and by extension in 2H-NbSe2, rather originate
from the anisotropy of the electron-phonon coupling.
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bulk NbS2: anharmonic temperature dependence
[Bianco, Errea, Monacelli, Calandra, Mauri, Nano Lett. 19, 3098 (2019)]

• SCHA reproduces the experiments

• Quantum fluctuation melt the “harmonic CDW” and thermal 
fluctuation explain the hardening with T

with the surrounding chalcogens. In Figure 1 the 1H
(monolayer) and 2H (bulk) crystal structures are shown.

Among metallic 2H bulk TMDs, NbS2 occupies a special
place as no CDW has been reported,9,10 contrary to its
isoelectronic and isostructural 2H-TaSe2, 2H-TaS2, and 2H-
NbSe2. All these systems have very similar band structures and
are conventional (i.e., phonon-mediated) superconductors
with critical temperatures Tc that increases from a sub-Kelvin
value in 2H-TaSe2 and 2H-TaS2 (around 0.2 and 0.5 K,
respectively) up to 5.7 K in 2H-NbS2 and 7.2 K in 2H-
NbSe2.

11−14 They also show quite a different CDW transition
strength.15,16 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 undergo a
triple incommensurate CDW transition to a superlattice with
hexagonal symmetry corresponding roughly to the same wave
vector qCDW = ΓM(1 − δ)2/3 (δ ≃ 0.02 is the
incommensurate factor) of the Brillouin zone. However, the
transition temperature TCDW increases from 30 K for 2H-
NbSe2 to 80 K for 2H-TaS2 and 120 K for 2H-TaSe2 (2H-
TaSe2 actually shows a further commensurate first-order CDW
transition at 92 K with δ dropping continuously to zero).17
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dimensional (2D) limit cannot be inferred from the knowledge
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surface nesting) and electron−phonon interactions (due to
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unchanged with respect to the bulk.20 For 1H-NbSe2 and 1H-
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for monolayers grown on top of Au(111),22 a 3 × 3 CDW
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quantum anharmonic effects at nonperturbative level in the
framework of the stochastic self-consistent harmonic approx-
imation (SSCHA).24−27 For bulk 2H-NbS2, we show that
quantum anharmonic effects remove the instability found at
harmonic level and give temperature-dependent phonon
energies in quantitative agreement with experiment. Previous
anharmonic calculations for 2H-NbS2 anticipated the role of
anharmonicity but were limited to a low-dimensional subspace
of the total high-dimensional configurations space and did not
account for the temperature dependence.14 We also show that
quantum anharmonic effects are noticeable even at high
pressure. Moreover, we demonstrate that the difference
between 2H-NbS2 and 2H-NbSe2 is not simply ascribable to
the different chalcogen mass. Finally, we analyze the 2D limit
and show that freestanding single-layer 1H-NbS2 undergoes a 3
× 3 CDW instability in agreement with data on 6H-SiC(0001)
supported samples. However, strains smaller than 0.5% are
sufficient to completely remove the instability, suggesting a
strong dependence of the CDW on the environmental
conditions (substrate, charge transfer, and so forth) and
reconciling the apparent contradiction with supported
Au(111) samples.
For bulk 2H-NbS2, in Figure 2 we compare the computed

anharmonic phonon dispersions with the results of the inelastic

Figure 1. Left-hand side: crystal structure of trigonal NbS2 in the 1H
monolayer and in the 2H (bulk) stacking layer configuration. Right-
hand side: corresponding hexagonal BZ with the high-symmetry
points (in the monolayer configuration only the points ΓMK are
relevant, and they are customarily indicated with a line over the
letter).

Figure 2. 2H-NbS2 harmonic (black dashed lines) and SSCHA
anharmonic phonon dispersion at 300 K (red solid lines) and 0 K
(blue solid lines), calculated using the experimental lattice parameters.
The results are compared with the IXS measurements of ref 7
performed at 300 K (red dots) and 2 K (blue dots). The SSCHA
dispersion corrects the errors of the pure harmonic result near M: the
instability of the two longitudinal acoustic and optical modes is
removed and the softening on lowering temperature is well
reproduced.
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Why CDW NbSe2 but not in NbS2: isotope effect?
(lighter S atom larger zero-point fluctuations)

[Bianco, Errea, Monacelli, Calandra, Mauri, Nano Lett. 19, 3098 (2019)]3

FIG. 3. (Color online) 2H-NbS2 harmonic phonon dispersion
(black dashed lines) and SSCHA anharmonic phonon disper-
sion at several temperatures (colored solid lines). Results for
di↵erent pressures are shown. From the top to the bottom
panel: 0 GPa, 7 GPa, 14 GPa. The zero pressure results
are obtained using the experimental lattice parameters. The
high pressure results are obtained assuming that the ratio be-
tween experimental and DFT theoretical lattice parameters
are independent of the applied pressure (more details in the
main text). Anharmonicity removes the instability, obtained
at harmonic level, of the longitudinal acoustic and optical
modes near M and L at 0 GPa and 7 GPa. Anharmonicity
reduces as the pressure increases but it has a noticeable e↵ect
even at 14 GPa.

FIG. 4. (Color online) 2H-NbS2 harmonic phonon dispersion
(black dashed lines) and SSCHA anharmonic phonon disper-
sion at 0 K (blue solid lines), at zero pressure, computed
replacing the mass of S with the mass of Se (more details in
the main text). Anharmonicity removes the instability also
in this case.

tial stabilize 2H-NbS2. In the other two panels we show
the e↵ect of hydrostatic pressure on the phonon disper-
sion. Since there are no available experimental lattice
parameters at high pressures, we estimated them by as-
suming that the ratio between experimental and stan-
dard DFT theoretical lattice parameters (i.e. the lat-
tice parameters that minimize the DFT energy but do
not take into account any lattice quantum dynamic ef-
fects), a2H

Exp
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independent of the applied pressure P . Thus we com-
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anharmonicity of the lowest energy modes around M and
L decreases, but remains relevant even up to 14 GPa. A
similar conclusion was drawn for 2H-NbSe2, where large
anharmonic e↵ects and strong temperature dependence
of these phonon modes were observed as high as 16 GPa,
in a region of its phase diagram where no CDW transition
is observed34.

These results confirm the importance of quantum an-
harmonicity in 2H-NbS2 to describe experimental data
and the absence of a CDW instability. It is tempting,
at this point, to use the same technique to shed light on
the di↵erent CDW behavior exhibited by the very similar
compound 2H-NbSe2. Indeed, as we showed in a previ-
ous work34, the SSCHA correctly displays the occurrence
of CDW in 2H-NbSe2 at ambient pressure. One evident
di↵erence between 2H-NbS2 and 2H-NbSe2 is, of course,
the mass of the chalcogen atom. We then performed a
SSCHA calculation at 0 K for 2H-NbS2 with “artificial” S
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FIG. 1. (Color online) In the 2H structure of the TMDs the transition-metal atoms of one layer are on top the chalcogen atoms
of the other layer while the atoms within a layer form a hexagonal pattern as can be seen in the (a) side and (b) top view of the
structure (grey – transition metal, yellow – chalcogen). The hexagonal 2D Brillouin zone shown in (c) has the special points
Γ, M, and K. In the conduction band the TMDs have a minimum approximately halfway between Γ and K (hereby labeled Q
point) as shown in the band structure in (d). Its position with respect to the minimum at K depends on e.g. strain and the
number of layers. The spin-orbit splitting of the bands at K is larger for the TMDs with tungsten (in (d) the band structure
for bilayer WS2 is shown).

FIG. 2. Flow chart illustrating the procedure used in this
paper to calculate the transport properties. First, the
band structure is calculated within density-functional the-
ory (DFT) for a doping concentration n as has been im-
plemented in Quantum ESPRESSO9,10. The band structure
is used as input for BoltzTraP6 to calculate the transport
properties within the constant-scattering-time approximation
using the expansion coefficients. Those results can then be
used either to extract τ as shown in Fig. 3 or (assuming
τ = (C ×DOSEF )

−1) to fit to the experimental mobility µexp
Hall

as shown in Fig. 4.

then use the ab-initio band structure to calculate the ra-
tio of the theoretical conductivity σtheo and Hall mobility
µtheo
Hall to the scattering time τ . Our method to calcu-

late those quantities is further clarified in Fig. 2 and the
computational details can be found in the supplemental
material.11 The ratio of the measured Hall mobility µexp

Hall

to the calculated ratio µtheo
Hall/τ can be used to extract

the scattering time from the experimental data. Figure
3 exemplifies this extraction for WS2. The experimental
data of Braga et al. was measured on a thick sample
at T = 300K. We compare this data with the calcu-
lations for trilayer WS2 which is a good approximation
for nanolayers with more than 3 layers and doping larger
than n > 1013 cm−2 as shown in Ref. 8. The scatter-
ing time thus extracted decreases with increasing doping-

charge concentration nHall as shown in the bottom panel
of Fig. 3. Furthermore, electrons are scattered more fre-
quently than holes. Hole and electron mobilities are still
comparable due to the much higher effective mass of holes
at the Γ point as compared to the mass of electrons in
the conduction band.12

The assumption of constant scattering time is not a
far-fetched simplification. In fact, for constant scatter-
ing matrix elements one can show that the scattering rate
1/τ is proportional to the density of states (DOS) at the
Fermi energy. This is also true for electron-phonon inter-
action if the phonon energy is negligible with respect to
the Fermi energy. Accordingly, because of Matthiessen’s
rule, the total scattering time is directly proportional
to the inverse of the total DOS at the Fermi energy
τ = (C ×DOSEF

)−1.
In order to obtain the constantC, we use the calculated

DOS as outline in Fig. 2 and fit µtheo
Hall/τ (C ×DOSEF

)−1

to the data of Ref. 5 as shown in top panel of Fig. 4.
For electron doping and hole doping we find Ce ≈
0.174 eVΩu.c. fs

−1 and Ch ≈ 0.116 eVΩu.c. fs
−1, respec-

tively, with Ωu.c. the area of one unit cell. The result-
ing scattering time τ is given in the middle panel. It
decreases with increasing doping and saturates for high
electron doping at τ ≈ 3 fs. Furthermore, in the hole
doping case the carriers are less often scattered. The
good qualitative agreement between the experimental
and the theoretical mobility shows that an energy- and
momentum-independent scattering time which is propor-
tional to DOSEF

can be used to estimate the transport
scattering time for doping larger than n > 1013 cm−2.
This indicates that the scattering matrix elements are
well approximated by a constant that is independent
from the energy and the momentum of the electrons at
the Fermi level. Both, scattering from neutral defects
that do not induce mid-gap states and electron-phonon
scattering from non-polar phonons, can be modeled with

Nb

Se

overcome these constraints, we utilized high-resolution
inelastic x-ray scattering, which allowed us to obtain mea-
surements of the entire dispersion of the soft-mode branch
over a wide temperature range. We used a high-quality
single crystal sample of about 50 mg (2! 2! 0:05 mm3)
with a TCDW of 33 K determined from the temperature
dependence of the superlattice reflections [Fig. 1(e)] in
agreement with previous results [18]. All inelastic x-ray
scattering experiments were carried out on the XOR 30-ID
HERIX beam line [22,23] at the Advanced Photon Source,
Argonne National Laboratory. Data were fitted with
damped harmonic oscillator functions convoluted with
the experimental resolution. For more details on the in-
strumental setup and data analysis, see [24]. Here, we focus
on the longitudinal acoustic phonon branch dispersing
in the crystallographic (100) direction and crossing
qCDW ¼ ð0:329;0;0Þ [18].

Figure 1 shows the temperature dependence of a
soft-phonon mode at qhkl ¼ ð0:325;0;0Þ, close to the

CDW wave vector qCDW ¼ ð0:329;0;0Þ. At T ¼ 90 K
[Fig. 1(d)], the soft phonon at an energy of !q¼4:5meV
has nearly equal intensity to the second phonon branch at
10 meV. Upon cooling, the intensity of the upper branch is
suppressed due to the Bose factor, whereas the intensity of
the soft phonon is enhanced by a factor of 1=!q in the cross
section as its energy !q is reduced. At T ¼ TCDW, the
elastic superstructure peak of the CDW phase dominates
the spectrum [Fig. 1(b)], but we can still distinguish the
critically damped phonon as a broad peak beneath the
narrow elastic CDW peak. Well inside the CDW phase,
the elastic superlattice reflection was too strong for any
inelastic scattering to be observed at qCDW [Fig. 1(a)].
Figure 1(e) shows that the integrated intensity of the

CDW superlattice peak measured at h ¼ 0:325, which is
within the momentum resolution of qCDW, increases rap-
idly below TCDW ¼ 33 K, in good agreement with pre-
vious neutron diffraction data taken on crystals from the
same growth batch [18]. Above TCDW, the elastic intensity
due to diffuse scattering from the sample is very small,
which implies that our sample had very little structural
disorder. It stays low until very close to TCDW [see the inset
in Fig. 1(e)], where a weak elastic ‘‘central’’ peak consis-
tent with low energy critical fluctuations appears.
The phonon energy at qCDW softens on cooling

[Fig. 1(f)] following a power law !qðTÞ ¼ ½ðT & TcÞ=Tc'!
with ! ¼ 0:48 ( 0:02, the value predicted by mean-field
theory [3]. As the phonon softens, the damping increases
and the phonon becomes critically damped, i.e., !=~!q ¼ 1,
at TCDW [Fig. 1(f)].
Remarkably, we observe the same power law behavior

not only at qCDW but also at h ¼ 0:3 and 0.35, which are
outside the experimental resolution from qCDW and where
the elastic peak is an order of magnitude weaker relative to
the phonon intensity. Moreover, the phonon energies at

FIG. 1 (color online). Temperature dependence of the soft-
phonon mode and the charge-density-wave superlattice peak
near qCDW ¼ ð0:329;0;0Þ. (a)–(d) Energy scans at q ¼
ð3 & h;0;0Þ, h ¼ 0:325, for temperatures 8 K ) T ) 90 K.
Solid (red) lines are fits consisting of damped harmonic oscil-
lators (inelastic) and a pseudo-Voigt function (elastic) (blue
dashed lines). (e) Intensity of the charge-density-wave superlat-
tice peak for T ) 120 K. The inset shows the phonon and
superlattice peak intensities just above Tc. (f),(g) Phonon fre-
quency !q and critical damping ratio !=~!q of the soft-phonon
mode, respectively, at q ¼ ðh;0;0Þ with h ¼ 0:3 (circle), 0.325
(triangle), and 0.35 (square). The solid line in (f) is a power law
fit of the form ½ðT & TcÞ=Tc'! yielding ! ¼ 0:48 ( 0:02.

FIG. 2 (color online). Wave vector dependence of the soft
phonon at T ¼ 33 K. Energy scans at Q ¼ ð3 & h;0;1Þ,
h ¼ 0:275–0:375. Solid (red) lines represent the total fit result
consisting of a damped harmonic oscillator functions (inelastic)
and a pseudo-Voigt function (elastic) (blue dashed lines).
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fit of the form ½ðT & TcÞ=Tc'! yielding ! ¼ 0:48 ( 0:02.

FIG. 2 (color online). Wave vector dependence of the soft
phonon at T ¼ 33 K. Energy scans at Q ¼ ð3 & h;0;1Þ,
h ¼ 0:275–0:375. Solid (red) lines represent the total fit result
consisting of a damped harmonic oscillator functions (inelastic)
and a pseudo-Voigt function (elastic) (blue dashed lines).
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frequency at qCDW
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these wave vectors also become indistinguishable from
zero at TCDW [Figs. 2(b) and 2(c)] as at qCDW. This means
that the phonons are critically damped over a large range
of momentum transfer from h ¼ 0:3 to h ¼ 0:35. Going
further away from qCDW with the same step size, !h ¼
0:025 r:l:u:, the soft-phonon branch is well separated from
zero energy [Figs. 2(a) and 2(d)]. Figure 3 shows the full
dispersion and damping ratio of the soft-mode phonon
branch. A broad dispersion anomaly is already evident at
250 K in agreement with previous neutron scattering mea-
surements performed only at 300 K [18]. This anomaly
deepens considerably upon cooling to 50 K, where we also
observe a strong increase in the damping. Finally, upon
cooling to TCDW, the energies reach zero and the phonons
become critically damped over an extended range of wave
vectors. At T ¼ 8 K, well below TCDW, we find hardened
energies and reduced damping, similar to the ones ob-
served at T ¼ 50 K. However, the soft mode was not
resolvable at h ¼ 0:325 and 0.35 due to strong elastic
scattering [e.g., see Fig. 1(a)]. At these temperatures, the
Bose and 1=! factors suppress the phonon intensity and
the measurements become increasingly difficult.

The q dependence of the phonon softening shown in
Fig. 3 is in marked contrast to the sharp, cusplike dips that
normally characterize Kohn anomalies at 2kF due to Fermi
surface nesting [5,25]. In 2H-NbSe2, we find that the
phonon renormalization extends over 0:36 "A"1, or over
half the Brillouin zone, and the critically damped region

extends over 0:09 "A"1, whereas we can clearly determine
different phonon energies at wave vectors separated by half

of this value (!h ¼ 0:025 r:l:u:¼ 0:045 "A"1). This be-
havior clearly rules out a singularity in the electronic
response in 2H-NbSe2 and suggests that the CDW is
determined by the wave vector dependence of the EPC
!q, as proposed by theory [9–11]. A broadened or even
flat-topped susceptibility due to imperfect nesting caused,
e.g., by the c-axis dispersion of the electron bands, could
also lead to a renormalization of the phonon dispersion
over a larger range of wave vectors, but it is unlikely that it
spans over half of the Brillouin zone.
In order to elucidate the microscopic mechanism behind

the CDW phase transition in 2H-NbSe2, we compare our
experimental results to detailed phonon calculations based
on density functional perturbation theory (DFPT) per-
formed with the crystal structure at T > TCDW (for details
see [24]). This is a zero temperature technique, in which
structural instabilities show up as imaginary phonon fre-
quencies. Because of the finite momentum mesh used in
the DFPT calculations, a numerical smearing " of the
electronic bands is necessary to compare the calculations
with experiment. The effect of " is analogous to a thermal
smearing of the electronic structure, so it has been used in
previous work to qualitatively simulate the effect of tem-
perature [25,26]. Though temperatures equivalent to " are
at least 1 order of magnitude too large (for details see [24]),
we note that for 2H-NbSe2 a comparison between theory
and experiment indicates that values of 0:1 eV # " #
1 eV produce results that are consistent with a temperature
range of 30 K # T # 300 K.
Figure 4 summarizes the calculations, showing the cal-

culated soft-phonon dispersion, linewidth, and electronic
joint density of states (JDOS). Imaginary phonon energies
are represented in Fig. 4(a) through the negative roots of
the absolute value, e.g., as ‘‘negative’’ phonon energies.
These occur in the calculated longitudinal acoustic phonon
branch for " $ 0:18 eV over an extended range of wave
vectors [Fig. 4(a)] in agreement with previous studies [12]
and in qualitative agreement with the observed breakdown
of the phonon dispersion. Similarly, the contribution to the
phonon linewidth from the electron-phonon interaction, 2#
[Fig. 4(b)], shows a strong enhancement over the same
extended range of wave vectors. To a first approximation,
2# is proportional to the product of j!qj2 and the electronic
JDOS. Since the latter shows negligible wave vector de-
pendence [Fig. 4(c)], the enhancement of the phonon
linewidth observed in both experiment and theory is en-
tirely due to a strong wave vector dependence of the EPC.

FIG. 3 (color online). Experimentally obtained dispersion and
damping ratio of the soft-phonon branch in 2H-NbSe2 at four
temperatures 8 K # T # 250 K. Plotted are (a) the frequency of

the damped harmonic oscillator !q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2
q " #2

q
and (b) the

damping ratio #= ~!q. Lines are guides to the eye. Note that
phonons at h ¼ 0:325;0:35 and T ¼ 8 K were not detectable
due to strong elastic intensities. The inset in (b) shows the
experimentally observed damping # of the damped harmonic
oscillator (symbols) and scaled DFPT calculations (see Fig. 4)
of 2# (lines, offset 0.7 meV) with " ¼ 0:1 eV (black) and 1 eV
(red).
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In order to elucidate the microscopic mechanism behind

the CDW phase transition in 2H-NbSe2, we compare our
experimental results to detailed phonon calculations based
on density functional perturbation theory (DFPT) per-
formed with the crystal structure at T > TCDW (for details
see [24]). This is a zero temperature technique, in which
structural instabilities show up as imaginary phonon fre-
quencies. Because of the finite momentum mesh used in
the DFPT calculations, a numerical smearing " of the
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are represented in Fig. 4(a) through the negative roots of
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branch for " $ 0:18 eV over an extended range of wave
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and in qualitative agreement with the observed breakdown
of the phonon dispersion. Similarly, the contribution to the
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2# is proportional to the product of j!qj2 and the electronic
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linewidth observed in both experiment and theory is en-
tirely due to a strong wave vector dependence of the EPC.

FIG. 3 (color online). Experimentally obtained dispersion and
damping ratio of the soft-phonon branch in 2H-NbSe2 at four
temperatures 8 K # T # 250 K. Plotted are (a) the frequency of

the damped harmonic oscillator !q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2
q " #2

q
and (b) the

damping ratio #= ~!q. Lines are guides to the eye. Note that
phonons at h ¼ 0:325;0:35 and T ¼ 8 K were not detectable
due to strong elastic intensities. The inset in (b) shows the
experimentally observed damping # of the damped harmonic
oscillator (symbols) and scaled DFPT calculations (see Fig. 4)
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phonon momentum q 

experiment on bulk NbSe2 Inelastic X-Ray scattering (IXS)
[Weber et al. PRL 107, 107403 (2011)]

CDW transition temperature, Tc ~ 33 K

for T<Tc a superstructure appears with periodicity 
close to a (3x3x1) reconstruction  



NbSe2: role of electronic temperature
[Bianco, Monacelli, Calandra, Mauri, Errea, Phys. Rev. Lett. 125,106101 (2020)]

harmonic theory at finite
electronic temperature

the electronic temperature has no role in the phonon hardening! 

substrates [35,36], as well as by scanning tunneling
microscopy (STM) in single layers grown by molecular
beam epitaxy (MBE) on bilayer graphene, which confirmed
that the CDWorder remains 3 × 3 [37]. The problem is that
while the Raman experiments on exfoliated samples
estimate a huge enhancement of TCDW up to 145 K
[35,36], STM experiments determine that dimensionality
does not affect TCDW as the CDW occurs between 25 and
45 K [37].
In this Letter, we present first-principles calculations of

TCDW both in bulk and monolayer NbSe2. We determine
that the intrinsic CDW transition temperature is barely
affected by dimensionality. The theoretically calculated
phonon spectrum and TCDW in the bulk are in good
agreement with inelastic x-ray experiments. Since the value
obtained for the monolayer in a completely comparable
calculation is very similar, it is confirmed that bulk and
suspended monolayer NbSe2 are expected to have a similar
CDW transition temperature as suggested by the STM
experiments. Our study also demonstrates that, when
anharmonicity is fully taken into account, the contribution
to the melting of the CDW order given by the electronic
thermal fluctuations is totally irrelevant compared to the
contribution of the ionic thermal fluctuations.
In Fig. 2 we show the (0 K) harmonic phonon spectra

calculated for the bulk and the monolayer (obtained with
the Methfessel and Paxton [38] cold smearing technique,
see the Supplemental Material [25]). As it has been already
pointed out [32,39,40], in both cases the harmonic phonons
show many unstable modes. Following the displacement
pattern of any of them, the ionic potential energy surface
VðRÞ is lowered. Even if in both cases the LA mode is
unstable close to qCDW ¼ 2=3ΓM, there are some

differences in the harmonic phonon spectra. The most
unstable mode along ΓM in the monolayer is shifted to
smaller momentum with respect to the bulk, around
0.56ΓM, in agreement with previous calculations [39].
Remarkably, there is no instability at the M point in the
monolayer, but a deep instability emerges alongMK. Even
if it has been argued that the CDW spatial modulation can
be inferred from the q point where the deepest instability
occurs in the (0 K) harmonic calculation [39,40], this can
only be understood as a first hint and it may yield to a
wrong interpretation. As a matter of fact, the modulation of
the CDW can only be determined theoretically by calcu-
lating the phonon spectra as a function of temperature and
seeing at which q a phonon becomes unstable on cooling.
Calculating temperature-dependent phonon frequencies

in systems that undergo a second-order structural phase

(a)

(b)

FIG. 2. Harmonic phonon spectra at several temperatures for
(a) bulk and (b) monolayer NbSe2. The 0 K dispersions are
obtained with the Methfessel and Paxton (MP) cold smearing.
The finite-temperature results are estimated using the Fermi-
Dirac occupation of the Khon-Sham states, within the grand-
canonical extension of DFT (see the main text and the
Supplemental Material [25]). The gray areas represent imaginary
phonon frequencies, which are given with negative values.

FIG. 1. Crystal structure of bulk NbSe2 in the 2H polytype. The
unit cell is depicted, which is formed by two nonequivalent
layers. The crystal structure of the monolayer is marked in the
figure, which only contains one single layer. The lattice pare-
meters used are given in the Supplemental Material [25]. In the
right panel the Brillouin zone is shown, which is restricted to the
ΓMK plane in the monolayer.
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as well with the temperature-dependent harmonic calcu-
lation, where we are not limited to a coarse interpolation
grid. Moreover, the phonon frequency of the LA mode
at qCDW ¼ 2=3ΓM is well converged with the supercell
size (as confirmed in the monolayer case by the calculations
on the 9 × 9 × 1 supercell [25]). For this reason, we can
confidently estimate TCDW within SSCHA, and readily
compare it between the bulk and the monolayer, by
studying the temperature dependence of the obtained
anharmonic phonon frequency of the LA mode at
qCDW ¼ 2=3ΓM.
As shown in Fig. 4, the square of the calculated anhar-

monic phonon frequency of the LAmode atqCDW ¼ 2=3ΓM
shows a temperature dependence in agreement with the
experimental trend [32]. The frequencies are slightly under-
estimated and, consequently, the value of the theoretical
TCDW is around ∼59 K, close to the experimental value
of 33 K, but slightly overestimated due to the presence

of systematic temperature-independent DFT-related errors.
In the monolayer the frequency of the LA mode at qCDW,
as well as its temperature dependence, is practically on top
of the bulk result. The CDW temperature in the monolayer
is consequently very close to the bulk result, ∼73 K.
Considering that the SSCHA calculations in the bulk and
in themonolayer are performedwith the same supercell, with
consistent DFT parameters, the comparison between the
results is perfectly justified. We can thus conclude that
the CDW temperature in NbSe2 is weakly dependent on
the dimensionality, supporting the results obtainedwith STM
experiments [37].
The weak dimensionality dependence of the CDW

in NbSe2 might suggest a weak interlayer interaction.
However, the large energy difference between the two
softened phonon modes in the bulk at qCDW, which are
imaginary in the 0 K harmonic calculations and have a
similar but not identical distortion pattern for each layer
(see the Supplemental Material [25]), shows that there is a
non-negligible interlayer interaction. Therefore, the elec-
tronic screening, the electron-phonon coupling, and the
electronic and ionic fluctuations are expected to play a
different role in monolayer and bulk, and it is the com-
plicate interplay between these effects that yields a very
similar CDW phonon branch regardless of the thickness.
A CDW phase, as any order in condensed matter, melts

with increasing temperature due to entropy or, in other
words, fluctuations. The presented SSCHA calculations

(a) (b)

FIG. 4. (a) Squared harmonic (dashed lines) and anharmonic
(SSCHA, solid lines) frequencies of the longitudinal acoustic
mode at qCDW ¼ 2=3ΓM as a function of temperature, obtained
from the free energy Hessian. The harmonic results take into
account only electronic fluctuations and do not capture at all the
experimental trend [32]. The anharmonic results include the ionic
contribution too (the electronic contribution appears to be
negligible though, see main text), and are considerably closer
to the experimental results. (b) Enlargement of the anharmonic
results. The TCDW is estimated at 59 K for the bulk and at 73 K for
the monolayer. The experimental CDW occurs at 33 K [32]. The
gray area denotes imaginary phonon frequencies in both figures.

(a)

(b)

FIG. 3. Anharmonic phonon spectra calculated from the
SSCHA free energy Hessian at several temperatures for (a) bulk
and (b) monolayer NbSe2. The grey areas denote imaginary
phonon frequencies. In the bulk case the results are compared
with the experimental values obtained with inelastic x-ray
scattering [32].
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FIG. 4. (a) Squared harmonic (dashed lines) and anharmonic
(SSCHA, solid lines) frequencies of the longitudinal acoustic
mode at qCDW ¼ 2=3ΓM as a function of temperature, obtained
from the free energy Hessian. The harmonic results take into
account only electronic fluctuations and do not capture at all the
experimental trend [32]. The anharmonic results include the ionic
contribution too (the electronic contribution appears to be
negligible though, see main text), and are considerably closer
to the experimental results. (b) Enlargement of the anharmonic
results. The TCDW is estimated at 59 K for the bulk and at 73 K for
the monolayer. The experimental CDW occurs at 33 K [32]. The
gray area denotes imaginary phonon frequencies in both figures.

(a)

(b)

FIG. 3. Anharmonic phonon spectra calculated from the
SSCHA free energy Hessian at several temperatures for (a) bulk
and (b) monolayer NbSe2. The grey areas denote imaginary
phonon frequencies. In the bulk case the results are compared
with the experimental values obtained with inelastic x-ray
scattering [32].
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FIG. 4. (a) Squared harmonic (dashed lines) and anharmonic
(SSCHA, solid lines) frequencies of the longitudinal acoustic
mode at qCDW ¼ 2=3ΓM as a function of temperature, obtained
from the free energy Hessian. The harmonic results take into
account only electronic fluctuations and do not capture at all the
experimental trend [32]. The anharmonic results include the ionic
contribution too (the electronic contribution appears to be
negligible though, see main text), and are considerably closer
to the experimental results. (b) Enlargement of the anharmonic
results. The TCDW is estimated at 59 K for the bulk and at 73 K for
the monolayer. The experimental CDW occurs at 33 K [32]. The
gray area denotes imaginary phonon frequencies in both figures.
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FIG. 3. Anharmonic phonon spectra calculated from the
SSCHA free energy Hessian at several temperatures for (a) bulk
and (b) monolayer NbSe2. The grey areas denote imaginary
phonon frequencies. In the bulk case the results are compared
with the experimental values obtained with inelastic x-ray
scattering [32].
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• SCHA reproduces the experiments
• weak dependence on dimensionality



How to:

Code (interfaced with Quantum-Espresso) available at:      http://sscha.eu/

[The Stochastic Self-Consistent Harmonic Approximation: Calculating 
Vibrational Properties of Materials with Full Quantum and Anharmonic Effects.
Monacelli, Bianco, Cherubini, Calandra, Errea, Mauri, arXiv:2103.03973 (2021)]



SCHA our approach
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Gradients of the functional

∇Rc
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Gradients of the functional: important sampling

∇ !FH [ !H ]= dRO f(R)[ ]∫ !p(R)(Rc ;
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DFT ab-initio forces

stochastic evaluation of the integrals: 
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!
D)0



Recycling the ab-initio forces for many 
steps of the conjugent gradient trajectory
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probability of the initial distribution
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practical recipe
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p(R)(Rc ;
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use gradient of the free energy for the conjugate 
gradient minimization step to obtain

CPU intensive: use ab-initio engine to compute f(R I ){ }I=1,...,Nc
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as well with the temperature-dependent harmonic calcu-
lation, where we are not limited to a coarse interpolation
grid. Moreover, the phonon frequency of the LA mode
at qCDW ¼ 2=3ΓM is well converged with the supercell
size (as confirmed in the monolayer case by the calculations
on the 9 × 9 × 1 supercell [25]). For this reason, we can
confidently estimate TCDW within SSCHA, and readily
compare it between the bulk and the monolayer, by
studying the temperature dependence of the obtained
anharmonic phonon frequency of the LA mode at
qCDW ¼ 2=3ΓM.
As shown in Fig. 4, the square of the calculated anhar-

monic phonon frequency of the LAmode atqCDW ¼ 2=3ΓM
shows a temperature dependence in agreement with the
experimental trend [32]. The frequencies are slightly under-
estimated and, consequently, the value of the theoretical
TCDW is around ∼59 K, close to the experimental value
of 33 K, but slightly overestimated due to the presence

of systematic temperature-independent DFT-related errors.
In the monolayer the frequency of the LA mode at qCDW,
as well as its temperature dependence, is practically on top
of the bulk result. The CDW temperature in the monolayer
is consequently very close to the bulk result, ∼73 K.
Considering that the SSCHA calculations in the bulk and
in themonolayer are performedwith the same supercell, with
consistent DFT parameters, the comparison between the
results is perfectly justified. We can thus conclude that
the CDW temperature in NbSe2 is weakly dependent on
the dimensionality, supporting the results obtainedwith STM
experiments [37].
The weak dimensionality dependence of the CDW

in NbSe2 might suggest a weak interlayer interaction.
However, the large energy difference between the two
softened phonon modes in the bulk at qCDW, which are
imaginary in the 0 K harmonic calculations and have a
similar but not identical distortion pattern for each layer
(see the Supplemental Material [25]), shows that there is a
non-negligible interlayer interaction. Therefore, the elec-
tronic screening, the electron-phonon coupling, and the
electronic and ionic fluctuations are expected to play a
different role in monolayer and bulk, and it is the com-
plicate interplay between these effects that yields a very
similar CDW phonon branch regardless of the thickness.
A CDW phase, as any order in condensed matter, melts

with increasing temperature due to entropy or, in other
words, fluctuations. The presented SSCHA calculations

(a) (b)

FIG. 4. (a) Squared harmonic (dashed lines) and anharmonic
(SSCHA, solid lines) frequencies of the longitudinal acoustic
mode at qCDW ¼ 2=3ΓM as a function of temperature, obtained
from the free energy Hessian. The harmonic results take into
account only electronic fluctuations and do not capture at all the
experimental trend [32]. The anharmonic results include the ionic
contribution too (the electronic contribution appears to be
negligible though, see main text), and are considerably closer
to the experimental results. (b) Enlargement of the anharmonic
results. The TCDW is estimated at 59 K for the bulk and at 73 K for
the monolayer. The experimental CDW occurs at 33 K [32]. The
gray area denotes imaginary phonon frequencies in both figures.

(a)

(b)

FIG. 3. Anharmonic phonon spectra calculated from the
SSCHA free energy Hessian at several temperatures for (a) bulk
and (b) monolayer NbSe2. The grey areas denote imaginary
phonon frequencies. In the bulk case the results are compared
with the experimental values obtained with inelastic x-ray
scattering [32].
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example of minimization
PtH (0K, 100GPa): forces computed on a 2x2x1 hexagonal cell
20 new force calculations (CPU intensive part) at Harmonic, A, B, C, D
380 new force calculations (CPU intensive part) at E

Γ A H K Γ M L H

0

300

600

900

1200

F
re

q
u

e
n

cy
 (

cm
-1

)
Harmonic
B
D
F

0

25

n
p

Harmonic A B C D E F

Minimization Step

0

200

400

600

F
 (

m
e

V
/u

n
it 

ce
ll)

Total free energy

Harmonic contribution
Potential contribution

0.7

1.0

1.3

<
ρ

H
j/ρ

H
0

>

(a)

(b)

Γ A H K Γ M L H

0

300

600

900

1200
F

re
q

u
e

n
cy

 (
cm

-1
)

Harmonic
B
D
F

0

25

n
p

Harmonic A B C D E F

Minimization Step

0

200

400

600

F
 (

m
e

V
/u

n
it 

ce
ll)

Total free energy

Harmonic contribution
Potential contribution

0.7

1.0

1.3

<
ρ

H
j/ρ

H
0

>

(a)

(b)

Γ A H K Γ M L H

0

300

600

900

1200

F
re

q
u
e
n
cy

 (
cm

-1
)

Harmonic
B
D
F

0

25

n
p

Harmonic A B C D E F

Minimization Step

0

200

400

600

F
 (

m
e
V

/u
n
it 

ce
ll)

Total free energy

Harmonic contribution
Potential contribution

0.7

1.0

1.3

<
ρ

H
j/ρ

H
0

>

(a)

(b)

Free energy

1
Nc

p(R I )(Rc ;
!
D)i+1

p(R I )(Rc ;
!
D)0I=1

Nc

∑

FH [ H ]= F H [ H ]+ dR V (R)− V (R)"# $%∫ p(R)



for free-energy curvature evaluation 
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]
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DFT ab-initio forces for configuration RI (displaced from equilibrium)

evaluation of the integrals with importance sampling: 

R I{ }I=1,...,Nc

Nc ionic configuration generated according to the 
probability distribution p(R)(Rc ;

!
D)

(n)
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stochastic evaluation with forces 
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]



our ab-initio stochastic SCHA: features
computational cost comparable or smaller that of ab-initio MD 
(force/total energy calculation for  ~ few 1000 configurations)

it includes thermal and quantum fluctuations

variational approach (it can deal with large anharmonicity)

access to stress tensor (full cell minimization)

direct access to Free Energy without thermodynamic integration 
(first-order phase transition)

direct access to Free Energy curvature 
(second-order phase transition)

Time-dependent SCHA: spectroscopic properties and and time correlation 
functions with the inclusion of anharmonic quantum/thermal fluctuations 
(not available in path-integral Monte Carlo):
[Monacelli, Mauri, PRB 103, 104305 (2021)]



conclusions
- centroids (average atomic positions): order parameters in second-order 
structural phase transitions 

- curvature of free energy changes sign at phase transitions

- we obtained an exact analytic formula for free-energy curvature

- in both NbSe2 and NbS2 the CDW instability is related to state within ~ 0.1 eV 
from the Fermi level, since an the electronic temperature of 1100 K affects the 
harmonic phonons. 

- however TCDW and the temperature dependence of phonons are ruled by the 
anharmonic quantum and thermal fluctuation of the nuclei and not by the 
electronic temperature (electronic excitations)

- strong dependence in the monolayer of TCDW on the environment: a small 
doping and/or strain has a big influence on it



Ansatz for physical phonons
[Bianco, Errea, Paulatto, Calandra, Mauri, PRB 96, 014111 (2017)]

Free-energy curvature is exact but computed for a static
displacement of the centroids. Perfect for phase transition but in 
phonon measurements the atoms oscillate at finite frequency.  
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(B)

⇧(S)

(a)
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(c)

FIG. 2. Figure a): Diagrammatic representation of Eq. (41).
Figure b): Diagrammatic representation of the SCHA self-
energy ⇧(S), Eq. (38). Since in that equation only the static
value ⇧(S)(0) is considered, the sum over the frequencies of
the internal lines is performed, but the total frequency is kept
equal to zero. Figure c): Diagrammatic representation of
(B)

⇧ (S), the bubble part of the SCHA self-energy, Eq. (42)

where the matrix product is understood. If the oppor-
tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:

(B)

⇧ (S)(0) =
(3)

D(S)

✓
�
1

2
�(S)(0)

◆
(3)

D(S) (42)

and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
O

E

⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it
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with:
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Using standard techniques for Matsubara frequencies
summations25, we obtain an explicit expression for this
term:
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where !2
µ
and e

a

µ
are eigenvalues and corresponding eigen-

vectors of D(S)

ab
, respectively, and for z 6= 0:

F (z,!⌫ ,!µ) =
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(70)

where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:

⇧(S)(z) '
(B)

⇧ (0)(z) (71)

thus, from Eq. (61) and Eq. (64) :

�1
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⇧ (0)(z) (72)

which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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FIG. 4. Diagrammatic representation of our dynamical con-
jecture, Eq. (65). It is the generalisation to z 6= 0 of the
static result represented in Fig. 2a. With G and G(S) we in-
dicate the full Green function and the SCHA Green function,
Eq. (33), for the variable

p
Ma(R

a
�R

a
eq), respectively. The

SCHA self-energy ⇧(S) is represented in Fig. 2b.

This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R

a
�R

a

(0)

from the equilibrium position of the rock-salt structure
R(0) and we keep, beyond the quadratic part, only the
anharmonic third and fourth order terms:

V (u) =
1

2
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ab
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1
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� abc u
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c
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1
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X
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c
u
d (74)

The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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FIG. 4. Diagrammatic representation of our dynamical con-
jecture, Eq. (65). It is the generalisation to z 6= 0 of the
static result represented in Fig. 2a. With G and G(S) we in-
dicate the full Green function and the SCHA Green function,
Eq. (33), for the variable

p
Ma(R

a
�R

a
eq), respectively. The

SCHA self-energy ⇧(S) is represented in Fig. 2b.

This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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from the equilibrium position of the rock-salt structure
R(0) and we keep, beyond the quadratic part, only the
anharmonic third and fourth order terms:
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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Using standard techniques for Matsubara frequencies
summations25, we obtain an explicit expression for this
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:

(B)

⇧ (S)(z) =
(3)

D(S)

✓
�
1

2
�(S)(z)

◆
(3)

D(S) (73)

⇧(S)(z)
G(S)(z) G(S)(z)G(z) G(z)

FIG. 4. Diagrammatic representation of our dynamical con-
jecture, Eq. (65). It is the generalisation to z 6= 0 of the
static result represented in Fig. 2a. With G and G(S) we in-
dicate the full Green function and the SCHA Green function,
Eq. (33), for the variable

p
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eq), respectively. The

SCHA self-energy ⇧(S) is represented in Fig. 2b.

This, in general, is not justified. As long as we consider a
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there can be situations in which even if the regime is not
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smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.
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two fcc, along the [111] cubic direction, which eliminates
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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from the equilibrium position of the rock-salt structure
R(0) and we keep, beyond the quadratic part, only the
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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The Ansatz (Dyson equation) recovers:
• the free-energy curvature in the the static limit



Ansatz for physical phonons
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Free-energy curvature is exact but computed for a static
displacement of the centroids. Perfect for phase transition but in 
phonon measurements the atoms oscillate at finite frequency.  
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FIG. 2. Figure a): Diagrammatic representation of Eq. (41).
Figure b): Diagrammatic representation of the SCHA self-
energy ⇧(S), Eq. (38). Since in that equation only the static
value ⇧(S)(0) is considered, the sum over the frequencies of
the internal lines is performed, but the total frequency is kept
equal to zero. Figure c): Diagrammatic representation of
(B)

⇧ (S), the bubble part of the SCHA self-energy, Eq. (42)

where the matrix product is understood. If the oppor-
tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:
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⇧ (S)(0) =
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and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
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⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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FIG. 4. Diagrammatic representation of our dynamical con-
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static result represented in Fig. 2a. With G and G(S) we in-
dicate the full Green function and the SCHA Green function,
Eq. (33), for the variable
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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Using standard techniques for Matsubara frequencies
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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Eq. (33), for the variable
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.
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In order to give a numerical demonstration of our find-
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temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
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the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
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which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.
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namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
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This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R
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The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
∞∑

n=2

Vn, (3)

where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
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where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
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n=2

Vn, (3)

where

Vn = 1
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
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where

Vn = 1
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑
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[
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s (R)
]2
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(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
∞∑

n=2

Vn, (3)

where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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with:

�
abcd

(S) (z) =
1

�

X

l

G
ac

(S)(i⌦l)G
bd

(S)(z � i⌦l) (68)

Using standard techniques for Matsubara frequencies
summations25, we obtain an explicit expression for this
term:

1

�

X

l

G
ac

(S)(i⌦l)G
bd

(S)(z � i⌦l) =

~2
4

X

µ⌫

F (z,!µ,!⌫)

!µ!⌫

e
a

⌫
e
b

µ
e
c

⌫
e
d

µ
(69)

where !2
µ
and e

a

µ
are eigenvalues and corresponding eigen-

vectors of D(S)

ab
, respectively, and for z 6= 0:

F (z,!⌫ ,!µ) =
2

~

"
(!⌫ + !µ)[1 + n⌫ + nµ]

(!⌫ + !µ)2 � z2

�
(!⌫ � !µ)[n⌫ � nµ]

(!⌫ � !µ)2 � z2

#
(70)

where nµ = 1/(e~�!µ � 1). The assumption (68) is rea-
sonable because at lowest perturbative limit it gives the
correct result. Indeed, by using the same arguments of
Sec. VIII, at lowest perturbative order we readily gener-
alise Eq. (62) to:

⇧(S)(z) '
(B)

⇧ (0)(z) (71)

thus, from Eq. (61) and Eq. (64) :

�1

G(z) '
�1

G(0)(z)�
(T )

⇧(0)
�

(L)

⇧(0)
�

(B)

⇧ (0)(z) (72)

which is the correct perturbative result shown in Eq. (53)
with Eq. (55). In conclusion, according to our ansatz,
the full Green function G(z) is (approximately) given by
Eq. (65) and Eq. (67). In that way we obtain a minimal
extension of the static theory which reproduces the cor-
rect instabilities and gives the correct results at lowest
perturbative level. By using this formula we can study
anharmonic e↵ects in a non perturbative way also for the
dynamic case. In Fig 4 we give the diagrammatic expres-
sion for our ansatz, the self-energy ⇧(S)(z) being the one
in Fig. 2b.

It is interesting to observe that, inspired by the pertur-
bative result in Eq. (55), one could be tempted to naively
obtain a dynamic SCHA theory simply by adding a dy-
namic bubble term on the top of the standard SCHA
results (which, as shown in Eq (61), contain only tadpole
and loop at the lowest perturbative level). Now we can
see that this essentially consists in adopting our ansatz,
but discarding all the terms in ⇧(S)(z) described by the
diagrams of Fig. 2b, except the non-perturbative SCHA
dynamic bubble, Fig. 2c:

(B)

⇧ (S)(z) =
(3)

D(S)

✓
�
1

2
�(S)(z)

◆
(3)

D(S) (73)

⇧(S)(z)
G(S)(z) G(S)(z)G(z) G(z)

FIG. 4. Diagrammatic representation of our dynamical con-
jecture, Eq. (65). It is the generalisation to z 6= 0 of the
static result represented in Fig. 2a. With G and G(S) we in-
dicate the full Green function and the SCHA Green function,
Eq. (33), for the variable

p
Ma(R

a
�R

a
eq), respectively. The

SCHA self-energy ⇧(S) is represented in Fig. 2b.

This, in general, is not justified. As long as we consider a
non-perturbative situation, there is in principle no hier-
archy that allows to discard the other terms. Therefore,
the term given by Eq. (73) has to be considered an incom-
plete expression for ⇧(S)(z) and a better choice is to take
into account the full expression of Eq. (67). Of course,
there can be situations in which even if the regime is not
perturbative, because the third order is not smaller than
the harmonic term, nevertheless the superior orders are
smaller. In that case it would be justified to use Eq. (73)
in order to evaluate ⇧(S)(z). However, this is a further
assumption that, in order to be adopted, has to be justi-
fied case by case.

X. NUMERICAL TEST

In order to give a numerical demonstration of our find-
ings, we apply the theory to a toy model based on the
Tin-Telluride (SnTe) crystal (and similar IV-VI com-
pounds like PbTe and GeTe). SnTe crystallizes at room
temperature and ambient pressure in the NaCl-structure
(Fm-3m), called �-SnTe phase, where two fcc of Sn and
Te interpenetrates. At low temperature, around 100 K, it
undergoes a phase transition and stabilizes in a rhombo-
hedral structure (R3m), called ↵-SnTe. The phase transi-
tion can be described in terms of a two-step symmetry re-
duction: a fixed unit cell polar displacement, between the
two fcc, along the [111] cubic direction, which eliminates
the inversion center, and a strain of the unit cell along
the cube diagonal27. We concentrate on the first distor-
tion. We define the interatomic potential V (u) of the toy-
model as a function of the displacements ua = R

a
�R

a

(0)

from the equilibrium position of the rock-salt structure
R(0) and we keep, beyond the quadratic part, only the
anharmonic third and fourth order terms:

V (u) =
1

2

X

ab

�abu
a
u
b +

1

3!

X

abc

(3)

� abc u
a
u
b
u
c

+
1

4!

X

abcd

(4)

� abcd u
a
u
b
u
c
u
d (74)

The harmonic matrix �ab has been obtained from first
principle calculation for SnTe on a 2x2x2 grid of the Bril-
louin zone (BZ) (details in App. E). With the experimen-
tal lattice parameter aexp = 6.312 Å we do not observe
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(3)

D(0)/3!
(4)

D(0)/4!

G(0)

(T )

⇧(0)
(L)

⇧(0)
(B)

⇧(0)

FIG. 3. Diagrammatic interpretation of Eq. (56), Eq. (57)
and Eq. (58). The lines correspond to harmonic propagators.

Third and forth order vertices are associated to
(3)

D(0)/3! and
(4)

D(0)/4!, respectively, definition (59). Sum over internal de-
grees of freedom is performed.

At lowest perturbative order it is also, see Eq. (D13):

⇧(S)(0) '
(B)

⇧ (S)(0) '
(B)

⇧ (0)(0) (62)

where ⇧(S)(0) and
(B)

⇧ (S)(0) are the quantities defined in
Eq. (38) and Eq. (42), respectively. From Eq. (61) and
Eq. (60) we see that, at lowest perturbative order, the
SCHA and harmonic propagators are related through the
harmonic loop and tadpole self-energies only19. However,
from Eq. (37) and Eq. (62) we see that in order to obtain
the SCHA dynamical matrix, defined in Eq. (28), we need
the harmonic static bubble too:

D(F )
' D(0) +

(T )

⇧(0) +
(L)

⇧(0) +
(B)

⇧ (0)(0) (63)

Notice that, in particular, this implies that the term
(3)

�⇤⇥⇤
(3)

� in the curvature formula, Eq. (25), can be dis-
carded at lowest perturbative limit.

It is interesting to observe that, at lowest perturbative
order, the free energy curvature takes into account only
the static harmonic bubble, whereas in the full propaga-
tor the bubble actually depends on the frequency z, as
we can see from Eq. (55) This is consistent with the fact
that we have developed only a ‘static’ theory (obviously,
this fact does not have consequences for the tadpole and
loop term, because they do not depend on the frequency).
In the next section we will investigate possible dynamic
extensions of the results found.

IX. ANSTAZ FOR A DYNAMIC THEORY

In this section we propose a possible ‘dynamical’ exten-
sion of the ‘static’ results obtained. This could be used
to interpret the outcomes of inelastic scattering processes

between phonons and external incident particles (typi-
cally neutrons) in the framework of the SCHA approx-
imation. The extension that we are going to present is
reasonable because it returns the expected results in two
limits. In the static limit it gives results coherent with the
ones already obtained for the free energy curvature and
at lowest perturbative order it gives the correct results
already known in literature. Nevertheless, it is worth-
while to stress that, at variance with the ‘static’ results,
the dynamical extension that we are going to propose is
only an anstaz, reasonable but not based on a rigorous
demonstration. For that reason it can be considered as a
basis for a future rigorous extension of the static theory.
Fixed the temperature, and the relative R

a

eq, we con-
sider the full Green function Gab(z) for H and the Green
function G

(S)

ab
(z) for H (S) in the variable

p
Ma(Ra

�R
a

eq).
We consider a Dyson-type relation between them:

�1

G(z) =
�1

G(S)(z)�⇧(S)(z) (64)

which is equivalent to:

G(z) = G(S)(z) +G(S)(z)⇧
(S)(z)G(z) (65)

where ⇧(S)(z) is the SCHA self-energy. The aim of this
section is to propose an expression for ⇧(S)(z). The first
assumption is that its static value, i.e. its value for z = 0,
is given by Eq. (38). At that level, the symbol used did
not have a physical meaning. Now we are explicitly in-
terpreting it as the static SCHA self-energy. Comparing
Eq. (64) to Eq. (40), this is equivalent to say that:

�1

G(0) = �D(F ) (66)

This is the same kind of relation that exists between the
harmonic static Green function and the harmonic dynam-
ical matrix. Therefore, Eq. (66) gives a deeper meaning
to the consideration in Sec.V thatD(F ) is the anharmonic
generalisation of the harmonic dynamical matrix. A real
pole of the Green function corresponds to the energy of
a phonon with zero linewidth, i.e. with infinite lifetime.
The Eq. (66) means that we observe a phonon with zero
energy, i.e. we see a phonon softening and therefore in-
stability, when D(F ) has a null eigenvalue. This is ex-
actly the result found in Sec. IV and Sec. V. Thus the
interpretation of Eq. (38) as static SCHA self-energy is
consistent with the rigorous (static) results obtained for
the free energy curvature.
The subsequent step is to give an expression for the

SCHA self-energy at z di↵erent from zero. As a second
part of our hypothesis, we assume for ⇧(S)(z) the same
structure of ⇧(S)(0), given by Eq. (38) and illustrated by
the diagrams in Fig. 2b, but readily generalised to any z.
Therefore it is:

⇧(S)(z) =
(3)

D(S)

✓
�
1

2
�(S)(z)

◆

⇥


1�

(4)

D(S)

✓
�
1

2
�(S)(z)

◆��1
(3)

D(S) (67)
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Thirdandforthorderverticesareassociatedto
(3)

D
(0)
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(4)

D
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Atlowestperturbativeorderitisalso,seeEq.(D13):

⇧
(S)

(0)'
(B)

⇧
(S)

(0)'
(B)

⇧
(0)
(0)(62)

where⇧
(S)

(0)and
(B)

⇧
(S)

(0)arethequantitiesdefinedin
Eq.(38)andEq.(42),respectively.FromEq.(61)and
Eq.(60)weseethat,atlowestperturbativeorder,the
SCHAandharmonicpropagatorsarerelatedthroughthe
harmonicloopandtadpoleself-energiesonly19.However,
fromEq.(37)andEq.(62)weseethatinordertoobtain
theSCHAdynamicalmatrix,definedinEq.(28),weneed
theharmonicstaticbubbletoo:

D
(F)

'D
(0)

+
(T)

⇧
(0)

+
(L)

⇧
(0)

+
(B)

⇧
(0)
(0)(63)

Noticethat,inparticular,thisimpliesthattheterm
(3)

�⇤⇥⇤
(3)

�inthecurvatureformula,Eq.(25),canbedis-
cardedatlowestperturbativelimit.

Itisinterestingtoobservethat,atlowestperturbative
order,thefreeenergycurvaturetakesintoaccountonly
thestaticharmonicbubble,whereasinthefullpropaga-
torthebubbleactuallydependsonthefrequencyz,as
wecanseefromEq.(55)Thisisconsistentwiththefact
thatwehavedevelopedonlya‘static’theory(obviously,
thisfactdoesnothaveconsequencesforthetadpoleand
loopterm,becausetheydonotdependonthefrequency).
Inthenextsectionwewillinvestigatepossibledynamic
extensionsoftheresultsfound.

IX.ANSTAZFORADYNAMICTHEORY

Inthissectionweproposeapossible‘dynamical’exten-
sionofthe‘static’resultsobtained.Thiscouldbeused
tointerprettheoutcomesofinelasticscatteringprocesses

betweenphononsandexternalincidentparticles(typi-
callyneutrons)intheframeworkoftheSCHAapprox-
imation.Theextensionthatwearegoingtopresentis
reasonablebecauseitreturnstheexpectedresultsintwo
limits.Inthestaticlimititgivesresultscoherentwiththe
onesalreadyobtainedforthefreeenergycurvatureand
atlowestperturbativeorderitgivesthecorrectresults
alreadyknowninliterature.Nevertheless,itisworth-
whiletostressthat,atvariancewiththe‘static’results,
thedynamicalextensionthatwearegoingtoproposeis
onlyananstaz,reasonablebutnotbasedonarigorous
demonstration.Forthatreasonitcanbeconsideredasa
basisforafuturerigorousextensionofthestatictheory.
Fixedthetemperature,andtherelativeR

a

eq,wecon-
siderthefullGreenfunctionGab(z)forHandtheGreen
functionG

(S)

ab(z)forH
(S)

inthevariable
p
Ma(R

a
�R

a

eq).
WeconsideraDyson-typerelationbetweenthem:

�1

G(z)=
�1

G
(S)

(z)�⇧
(S)

(z)(64)

whichisequivalentto:

G(z)=G(S)(z)+G(S)(z)⇧
(S)

(z)G(z)(65)

where⇧
(S)

(z)istheSCHAself-energy.Theaimofthis
sectionistoproposeanexpressionfor⇧

(S)
(z).Thefirst

assumptionisthatitsstaticvalue,i.e.itsvalueforz=0,
isgivenbyEq.(38).Atthatlevel,thesymboluseddid
nothaveaphysicalmeaning.Nowweareexplicitlyin-
terpretingitasthestaticSCHAself-energy.Comparing
Eq.(64)toEq.(40),thisisequivalenttosaythat:

�1

G(0)=�D
(F)

(66)

Thisisthesamekindofrelationthatexistsbetweenthe
harmonicstaticGreenfunctionandtheharmonicdynam-
icalmatrix.Therefore,Eq.(66)givesadeepermeaning
totheconsiderationinSec.VthatD

(F)
istheanharmonic

generalisationoftheharmonicdynamicalmatrix.Areal
poleoftheGreenfunctioncorrespondstotheenergyof
aphononwithzerolinewidth,i.e.withinfinitelifetime.
TheEq.(66)meansthatweobserveaphononwithzero
energy,i.e.weseeaphononsofteningandthereforein-
stability,whenD

(F)
hasanulleigenvalue.Thisisex-

actlytheresultfoundinSec.IVandSec.V.Thusthe
interpretationofEq.(38)asstaticSCHAself-energyis
consistentwiththerigorous(static)resultsobtainedfor
thefreeenergycurvature.
Thesubsequentstepistogiveanexpressionforthe

SCHAself-energyatzdi↵erentfromzero.Asasecond
partofourhypothesis,weassumefor⇧

(S)
(z)thesame

structureof⇧
(S)

(0),givenbyEq.(38)andillustratedby
thediagramsinFig.2b,butreadilygeneralisedtoanyz.
Thereforeitis:

⇧
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FIG. 2. Figure a): Diagrammatic representation of Eq. (41).
Figure b): Diagrammatic representation of the SCHA self-
energy ⇧(S), Eq. (38). Since in that equation only the static
value ⇧(S)(0) is considered, the sum over the frequencies of
the internal lines is performed, but the total frequency is kept
equal to zero. Figure c): Diagrammatic representation of
(B)

⇧ (S), the bubble part of the SCHA self-energy, Eq. (42)

where the matrix product is understood. If the oppor-
tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:

(B)

⇧ (S)(0) =
(3)

D(S)

✓
�
1

2
�(S)(0)

◆
(3)

D(S) (42)

and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
O

E

⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it
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tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:

(B)

⇧ (S)(0) =
(3)

D(S)

✓
�
1

2
�(S)(0)

◆
(3)

D(S) (42)

and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
O

E

⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
∞∑

n=2

Vn, (3)

where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
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n=2

Vn, (3)

where

Vn = 1
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∑

s1 . . . sn
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and
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
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Vn, (3)

where

Vn = 1
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα
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represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
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s (R)
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(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
∞∑

n=2

Vn, (3)

where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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FIG. 1. The loop (L), bubble (B), and tadpole (T) diagrams
contribute to the phonon self-energy !µ(q,ω) at lowest order in
perturbation theory. The tadpole diagram is split into the optical (TO)
and acoustic (TA) contributions. The latter accounts for the thermal
expansion (TE). The dot denotes a fourth-order vertex, and the square
denotes a third-order one.

anharmonicity, the combination of these methods accounts for
all of the diagrams in Fig. 1 yielding the correct perturbative
limit. Thus, the perturbative correction can be obtained,
avoiding the cumbersome and expensive calculation of fourth-
order force constants. In fact, in this limit, the SSCHA
accounts for TO and TA tadpole diagrams as well as the
loop diagram, while the bubble diagram is computed making
use of the third-order force constants calculated with the
2n + 1 theorem over the whole Brillouin zone (BZ) [12]. In
the nonperturbative regime, combining the SSCHA equilib-
rium positions, phonon frequencies and polarization vectors
with the calculated third-order coefficients, phonon lifetimes,
and spectral functions can be obtained for strongly anhar-
monic crystals where the harmonic approximation breaks
down.

Although phonon lifetimes in strongly anharmonic
crystals can also be obtained from the analysis of velocity-
autocorrelation functions in molecular dynamics simula-
tions [30,31] or by fitting the forces of a molecular dy-
namics run to effective potentials [32], the present method
has the advantage that the SSCHA algorithm is devised
to minimize the number of calls to the total-energy-force
engine [29 ] and that it is valid below Debye tempera-
ture, where molecular dynamics methods fail since they
are based on Newtonian mechanics. Moreover, the method
based on the analysis of velocity-autocorrelation functions
in molecular dynamics simulations in Ref. [31] relies on
projections of the velocity-autocorrelation function onto spe-
cific phonon modes using the harmonic polarization vectors.
In cases where anharmonic effects strongly modify the
character of the polarization vectors, such projection might
be inadequate. We, thus, believe that the combination of
the SSCHA with the third-order anharmonic coefficients is
both more efficient and of wider application than previous
methods.

We apply this method to palladium hydride stoichiometric
compounds: PdH, PdD, and PdT. Because of the huge
anharmonicity of hydrogen rattling vibrations, the phonon
dispersions predicted by density functional perturbation theory
(DFPT) show strong instabilities and a huge underestimation
of the H-character optical modes. The instabilities are even
more pronounced at finite temperature when the thermal
expansion is considered. These instabilities are, however,

not physical and can be cured with the SSCHA approach,
which yields phonon spectra in good agreement with experi-
ments [28 ,29 ]. The anharmonicity also causes an interesting
negative superconducting isotope coefficient [28 ]. Here we
find that despite being a metal, the phonon linewidth is
dominated by the phonon-phonon interaction for any temper-
ature above a few kelvin. The third-order broadening of the
phonon modes is huge, at the point that the simplistic model
of very distinct phonon modes, broadened to a finite-width
Lorentzian function, can no longer be applied. It is remarkable,
however, that the phonon shift induced by the third order is
not predominant over the SSCHA correction of the phonon
bands.

II. THE IONIC HAMILTONIAN:
PHONON ANHARMONICITY AND THE

ELECTRON-PHONON COUPLING

Within the BO approximation, the dynamics of the ions in a
crystalline solid is determined by the following Hamiltonian:

H = T + V, (1)

where

T =
∑

sαR

[
P α

s (R)
]2

2Ms

(2)

is the kinetic-energy operator of the ions and V is the potential
defined by the BO energy surface. Let s denote an ion within
the unit cell, R a lattice vector, and α a Cartesian direction.
In the equation above, P sα(R) is the momentum operator
and Ms is the mass of ion s. Considering that generally
ions vibrate around their equilibrium position Rsα

eq determined
by the minima of the BO energy surface, the potential V is
Taylor expanded as a function of the ionic displacements from
equilibrium uα

s (R) as

V = V0 +
∞∑

n=2

Vn, (3)

where

Vn = 1
n!

∑

s1 . . . sn

α1 . . .αn

R1 . . . Rn

φα1...αn
s1...sn

(R1, . . . ,Rn)uα1
s1

(R1) . . . uαn
sn

(Rn), (4)

and

φα1...αn
s1...sn

(R1, . . . ,Rn) =
[

∂ (n)V

∂uα1
s1 (R1) . . . ∂u

αn
sn (Rn)

]

0
(5)

represents the nth order derivative of the BO energy surface
with respect to the atomic displacements calculated at equilib-
rium, namely, the nth-order, or n-bodies, force constants.

The Hamiltonian in Eq. (1) represents a complicated many-
body problem, unsolvable unless an approximated scheme is
adopted.

A. The harmonic approximation

The first nontrivial approximation is the harmonic approxi-
mation, in which the expansion in Eq. (3) is truncated at second
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FIG. 2. Figure a): Diagrammatic representation of Eq. (41).
Figure b): Diagrammatic representation of the SCHA self-
energy ⇧(S), Eq. (38). Since in that equation only the static
value ⇧(S)(0) is considered, the sum over the frequencies of
the internal lines is performed, but the total frequency is kept
equal to zero. Figure c): Diagrammatic representation of
(B)

⇧ (S), the bubble part of the SCHA self-energy, Eq. (42)

where the matrix product is understood. If the oppor-
tune diagram symmetry factors are taken into account,
Eq. (41) with Eq. (38) have the Feynman diagrams rep-
resentation shown in Fig. 2a and Fig. 2b. This is the di-
agrammatic representation of the curvature formula (27)
(divided by the square root of masses). The first term of

the series giving ⇧(S)(0) is the SCHA ‘bubble’
(B)

⇧ (S)(0).

It is given by the formula:

(B)

⇧ (S)(0) =
(3)

D(S)

✓
�
1

2
�(S)(0)

◆
(3)

D(S) (42)

and corresponds to the diagram in Fig. 2c. The SCHA

‘bubble’ is the term
(3)

�⇤
(3)

� of Eq. (25), divided by the
square root of masses. This explains the name ‘bubble’
given to that term.
Before concluding this section, it is worthwhile to re-

mark that, in spite of the symbol used, at this level the
⇧(S)(0) defined in Eq. (38) is just an auxiliary quantity,
without a specific physical meaning. However, the choice
of the symbol is not casual because later we will inter-
preted it as a self-energy. This will give a deeper meaning
to the results obtained.

VII. STOCHASTIC IMPLEMENTATION

The stochastic implementation of the SCHA (SSCHA)
has demonstrated to be an e�cient method to analyse
thermal properties of solids. The SSCHA is described
in Ref. 5,6 and consists in minimizing, with conjugate-
gradient method, the functional F [⇢̃R,�] with respect
to R and �. The functional and its gradient are ex-
pressed through the average with ⇢̃R,� of observables

O(R) = O
�
V (R), f(R)

�
that are functions only of the

potential V (R) and forces f(R) = �@V/@R. The
method is ‘stochastic’ because these averages are eval-
uated with the important-sampling technique. Since the
observables depends only on the position, Eqs. (9)–(10)
apply. Thus the space of configurations is statistically
sampled with a (large) population of finite sizeNI , whose
members R(I) are distributed according to the probabil-
ity density ⇢̃R,�(R) given by Eq. (10). For each element
R(I) = R + u(I), u(I) being the displacement from the
centroids R, the forces f(R+u(I)) and the potential en-
ergy V (R+u(I)) are calculated through any energy-force
engine. Finally, the approximate averages are computed:

D
O

E

⇢̃R,�

'
1

NI

NIX

I=1

O
�
V (R+ u(I)), f(R+ u(I))

�
(43)

the equality holding for NI ! +1.
We want to use the stochastic approach also to com-

pute the free energy curvature through Eq. (27). Consid-
ered a configuration R, after the SSCHA minimization
of the functional F [⇢̃R,�] with respect to �, the SCHA
matrix � for that configuration is available; therefore we

only need to express
(3)

� and
(4)

� in a form that is suited
for the stochastic calculation (here and in what follows
the dependence of the matrices on R is understood).
With integration by parts, in Appendix C, Eqs. (C10)–
(C13), Eq. (C25a) and Eqs. (C15)–(C18), Eq. (C25b), it


