

MAX School on Advanced Materials and Molecular Modelling with QUANTUM ESPRESSO

Quantum ESPRESSO on HPC and GPU systems: parallelization and hybrid architectures

Pietro Bonfà Università di Parma and CNR-Nano, Italy MaX School on Advanced Materials and Molecular Modellingwith Quantum ESPRESSO May 17-28 2021, ICTP Virtual Meeting

Jožef Stefan Institute
 Ljubljana, Slovenia

cecam

Running on a laptop

• You go home and type ./configure && make pw

On a real HPC node...

2 x AMD Epyc7352 + 4 x NVIDIA A100 ./configure && make pw

On a real HPC node...

$2 \times AMD Epyc7352 + 4 \times NVIDIA A100$

☑ ▲ https://www.phoronix.com/scan.php?page=article&item=intel-xeon-8380-linux&num=4

thanks in part to going from 28 to 40 cores.

Written by Michael Larabel in Processors on 12 May 2021. Page 4 of 7. 13 Comments

QE running on HPC systems

- Parallel Message Passing Interface
- Parallel OpenMP
- Hierarchical levels of parallelization for fine grain performance tuning
- Accelerated CUDA Fortran for NVIDIA GPUs

Parallel computing (a concise introduction)

Amdahl's law

- A task takes the time **T** to run.
- A portion p of T may benefit from parallel execution. <u>That portion</u> becomes s times faster.
- The original task now takes

$$T'(p,s) = (1-p)T + \frac{p}{s}T$$

Amdahl's law

The speedup of the whole task is $S = \frac{T}{T'}$ 20 and from 15 $T'(p,s) = \left[(1-p) + \frac{p}{s} \right] T$ (s) S 10 it is easily obtained 5 $S(p,s) = \frac{1}{(1-p) + \frac{p}{s}}$ 0 1 2

mpirun -np 3 pw.x

Time

Message Passing & OpenMP

Message Passing & OpenMP

Export OMP_NUM_THREADS=3 mpirun -np 3 pw.x

Time

Message Passing & OpenMP

Export OMP_NUM_THREADS=3 mpirun -np 3 pw.x

Time

• From P. Giannozzi, day 2

$$\psi_i(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{G}} c_{\mathbf{k}+\mathbf{G}} e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}, \quad \frac{\hbar^2}{2m} |\mathbf{k}+\mathbf{G}|^2 \le E_{cut}$$

The code computes an unsymmetrized charge density

$$\tilde{n}(\mathbf{r}) = \sum_{\mathbf{k}\in IBZ} \sum_{v} w_{\mathbf{k}} \left| \psi_{\mathbf{k},v}(\mathbf{r}) \right|^2$$

- Split KS states expansion in PW
- Default
- A lot of messages

 N_b

- Work on multiple k-points at the same time
- Less communication
- More memory
- Unbalance

 N_b

- Work on multiple k-points at the same time and split WFs.
- Less communication
- Optimal memory usage
- Reduced unbalance

 N_h

Workload decomposition

Again from P. Giannozzi, day 2 $H\psi \equiv (T + \hat{V}_{NL} + V_{loc} + V_H + V_{xc})\psi$

 $(T\psi)$: easy in **G**-space, $T_{CPU} = \mathcal{O}(N)$ $(V_{loc} + V_H + V_{xc})\psi$: easy in **r**-space, $T_{CPU} = \mathcal{O}(N)$ $(\hat{V}_{NL}\psi)$: easy in **G**-space (also in **r**-space) if \hat{V} is written in separable form $T_{CPU} = \mathcal{O}(mN)$, m =number of projectors

FFT is used to jump from real to reciprocal space. Operations are performed where it is easier.

Eric Pascolo, master thesis

An example: BCC Fe

Parallelization info

sticks:	dense	smooth	PW	G-vecs:	dense	smooth	PW
Min	111	37	13		2974	573	129
Max	112	38	14		2976	575	132
Sum	1781	599	219		47597	9189	2093

Using Slab Decomposition

Dense	grid:	47597	G-vectors	FFT	dimensions:	(50,	50,	50)
Smooth	grid:	9189	G-vectors	FFT	dimensions:	(30,	30,	30)

Parallel levels

Parallel levels

Parallel Diagonalization

- Diagonalization options
 - Davidson
 - CG
 - PPCG
 - ParO

. . .

Speed

Scaling

Memory

Davidson

 $H_{KS}\psi_j$

PPCG

CG

Picture from Anoop Chandran

Parallel Diagonalization

- Diagonalization options
 - <u>Davidson</u>
 - CG
 - PPCG

- ParO

. . .

$$\tilde{H}_{ij} = \left\langle \psi_i^{(n)} \left| H_{KS} \right| \psi_j^{(n)} \right\rangle, \quad \tilde{S}_{ij} = \left\langle \psi_i^{(n)} \left| S \right| \psi_j^{(n)} \right\rangle$$
$$\left| \tilde{\psi}_i^{(n)} \right\rangle = \left(H_{diag} - \varepsilon_i S_{diag} \right)^{-1} \left(H_{KS} - \varepsilon_i S \right) \left| \psi_i^{(n)} \right\rangle$$

 $\mathbf{H}\mathbf{v} = \varepsilon \mathbf{S}\mathbf{v}$

 $\left\{ \left| \psi_{i}^{(n)} \right\rangle, \varepsilon_{i}^{(n)} \right\}$

Trend of Parallel Diagonalization

- Results for all eigenstates.
- Additional communications in parallel Davidson.

Fine Grained Parallelization

- OpenMP
 - In the code and in the libraries.
 - Only when MPI is saturated.
 - Generally no more than 8 threads.
 - Don't forget about it on HPC systems!
- Multithreading
 - Generally not useful

Image parallelism

Nudged Elastic Band

PHonon (linear response)

Images from DOI: 10.1016/j.cpc.2007.09.011 DOI: 10.1103/PhysRevB.93.174419

Image parallelism

Nudged Elastic Band

PHonon (linear response)

Images from DOI: 10.1016/j.cpc.2007.09.011 DOI: 10.1103/PhysRevB.93.174419

Image parallelism

Distribution of images

mpirun neb.x -nimage I -inp neb.in > neb.out

Output:

path-images division: nimage = I

Max value: total number of images in the simulation.

Constraints:

• Depend on code using this "abstract" parallelism

Tentative optimal value: **nimage** = max possible value

K-points aka Pools

mpirun pw.x -npool X -inp pw.in > pw.out

Output:

K-points division: npool =

Х

Distribute k points among X pools of MPI procs. Max value: n(k)

Constraints:

- at least 1 k point per pool
- Must be a divisor of the total number of processes

Tentative optimal value: npool = max(n(k))

Parallel diagonalization

mpirun pw.x -npool X -ndiag Y -inp pw.in > pw.out

Distribute and parallelize matrix diagonalization and matrix-matrix multiplications needed in iterative diagonalization (pw.x) or orthonormalization(cp.x).

Max value: n(MPI)/X Constraints:

• Must be square

• Must be smaller than band-group size

Tentative optimal value:

- Use it for inputs with more than 100 KS;
- depends on many architectural parameters

Output Subspace diagonalization (size of subgroup: **sqrt(Y) * sqrt(Y)** procs)

Finding the right balance

- Pools:
 - Very effective, low communication
 - Memory hungry!
- G vectors:
 - Lower memory footprint
 - More communication
- OpenMP:
 - Practically no memory duplication
 - When MPI is saturated
- Diagonalization method:
 - Davidson: faster, more memory
 - CG: slower, less memory

Libraries

• A few libraries you may need

Intel[®] oneAPI Math Kernel Library

AMD Optimizing CPU Libraries (AOCL)

Input/Output

A parallel filesystem is essentially a parallel application.

- Different performance have different cost:
 - Home directory
 - Long term storage
 - Scratch space

Always set the **outdir** folder in input to a fast scratch space.

GPU Acceleration

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)						
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	6	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096	7	JUWELS Booster Module - Bull Sequana XH2000, AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438	8	HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, NVIDIA Tesla V100, Mellanox HDR Infiniband, Dell EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371	9	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Univ. of Texas United States	448,448	23,516.4	38,745.9	
5	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63,460.0	79,215.0	2,646	10	Dammam-7 - Cray CS-Storm, Xeon Gold 6248 20C 2.5GHz, NVIDIA Tesla V100 SXM2, InfiniBand HDR 100, HPE Saudi Aramco Saudi Arabia	672,520	22,400.0	55,423.6	

https://top500.org/lists/top500/2020/11/

Different architecture

More transistors devoted to data processing (but less optimized memory access and speculative execution)

CUDA Programming

In order to compile QE-GPU you'll need to know a bit about *CUDA* ...

CUDA Programming

The *compute capabilities* codify the features and specifications of the target device.

- Tesla K40: 3.5
- Tesla K80: 3.7
- Tesla P100: 6.0
- Tesla V100: 7.0
- Tesla A100: 8.0

Feature Support	Compute Capability						
(Unlisted features are supported for all compute capabilities)	3.0	3.2	3.5, 3.7, 5.0, 5.2	5.3	6.x	7.x	
Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd())			Y	es			
Atomic addition operating on 64-bit floating point values in global memory and shared memory (atomicAdd())		١	10		Y	es	
Warp vote and ballot functions (Warp Vote Functions)							
threadfence_system() (Memory Fence Functions)							
syncthreads_count(), syncthreads_and(), syncthreads_or() (Synchronization Functions)			Yı	es			
Surface functions (Surface Functions)							
3D grid of thread blocks							
Unified Memory Programming							
Funnel shift (see reference manual)	No			Yes			
Dynamic Parallelism	1	NO		Y	es		
Half-precision floating-point operations: addition, subtraction, multiplication, comparison, warp shuffle functions, conversion	No		No Yes		Yes		
Tensor Core		0	No			Yes	

From CUDA C Programming guide v10

Compilers

The accelerated version requires NVIDIA HPC SDK

Freely available at https://developer.nvidia.com/hpc-sdk

Execution flow

Typical code progression

- 1) Memory allocated on host and device
- 2)Data is transferred **from** the *Host* **to** the *Device*
- 3)Kernel is lunched by the Host on the Device
- 4)Data is transferred **from** the
 - *Device* to the *Host*.
- 5)Memory is deallocated.

From https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG

Quantum ESPRESSO

Wannier90 Optimize memory duplication, WanT PLUMED Directive based programming syncronization. SaX YAMBO TDDFPT Xspectra GIPAW GWL NEB allocation and PHonon PWCOND Atomic CP PWscf CORE modules Applications **Domain Specific Libraries** concurrenc) Optimize computational fficiency and concurrenc LAXLib **FFTXlib KS_Solvers** Explicit accelerator programming $|\delta\psi_i\rangle = \frac{1}{D-\epsilon_i}(H-\epsilon_i)|\psi_i\rangle$ $A\mathbf{v} = \lambda B\mathbf{v}$

TASK: parallel linear algebra LIBS: ELPA, MKL, cuBLAS, cuSOLVER, ESSL, ...

TASK: Parallel distributed FFT LIBS: FFTW, MKL, ESSL, cuFFT, ...

TASK: Iterative solvers LIBS: LAXLib, MKL, cuBLAS, ...

Programming model Objective

Quantum ESPRESSO

Features	v 6.4	v 6.4.1	v 6.5a1	v 6.5a2	v6.7
Total Energy (K points)	1	1	1	1	1
Total Energy (Gamma point)	1	1	1	1	1
Spin polarized systems	1	1	1	1	\$
Non collinear simulations	1	1	1	1	\$
Forces	=	=	1	1	1
Stress	=	=	=	1	1
Exact exchange	=	=	1	1	1
LDA+U	=	=	1	1	\$
metaGGA	=	=	=	=	=
Parallel eigenproblem (ndiag)	×	×	×	×	×

The GPUs of Marconi100

NVIDIA Tesla V100

16GB memory per GPU

5120 CUDA Cores

Running at 1200-1300 MHz

Performance Ratio

• Let's consider Marconi100@CINECA (ranked 11)

Icons By Misha Petrishchev, RU and iconsmind.com, GB

~31.2 TFlops

QE with GPU acceleration

QE with GPU acceleration

How to run the GPU code

1 GPU <-> 1 MPI Fill the CPU with OpenMP threads No parallel eigensolver (-ndiag 1) yet

K-point pools are great, but device memory is limited.

A few practical advices

Configure options:

enable-openmp enable-parallel	compile for openmp execution if possible (default: no) compile for parallel execution if possible (default: yes)
enable-cuda-env-check=	=yes The configure script will check CUDA installation
with-cuda=PATH with-cuda-cc=VAL with-cuda-runtime=VAL	and report problems [default=no] prefix where CUDA is installed [default=no] GPU architecture (Kepler: 35, Pascal: 60, Volta: 70) [default=35] CUDA runtime (Pascal: 8+, Volta: 9+) [default=10.1]
with-scalapack	(ves no intel) Use scalapack if available. Set to
-	"intel" to use Intel MPI and blacs (default: use openMPI)

A few practical advices

- Checking compilation options
 - Example for an Intel based platform...

MANUAL_DFLAGS DFLAGS FDFLAGS	= = -D_DFTI -D_MPI -D_SCALAPACK -D_ELPA_2016 = \$(DFLAGS) \$(MANUAL_DFLAGS)
[]	
MPIF90 F90 CC F77 []	<pre>= mpiifort = ifort = icc = ifort</pre>
BLAS_LIBS	= -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core

A few practical advices

- Checking compilation options
 - Example for an Intel based platform...
 - Example for a (NVIDIA) GPU platform

```
MANUAL_DFLAGS =
DFLAGS = -D_PGI -D_CUDA -D_USE_CUSOLVER -D_FFTW -D_MPI
FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS)
[...]
# GPU architecture (Kepler: 35, Pascal: 60, Volta: 70)
GPU_ARCH=70
# CUDA runtime (Pascal: 8.0, Volta: 9.0)
CUDA_RUNTIME=11.0
# CUDA F90 Flags
CUDA_F90FLAGS=-Mcuda=cc70,cuda11.0 [...]
```

Something very bad...

Program PWSCF v.6.2 starts on 29Nov2017 at 15:22:59

This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
 "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
 "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
 URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote

Parallel version (MPI & OpenMP), running on
Number of MPI processes:15552 processor coresMumber of MPI processes:432Threads/MPI process:36

MPI processes distributed on 12 nodes
K-points division: npool = 2
R & G space division: proc/nbgrp/npool/nimage = 216

Subspace diagonalization in iterative solution of the eigenvalue problem: one sub-group per band group will be used custom distributed-memory algorithm (size of sub-group: 4* 4 procs)					
Message from routine setu DEPRECATED: symmetry with	up: n ibrav=0, use correct ibrav instead				
Parallelization info					
sticks: dense smooth Min 1199 640	PW G-vecs: dense smooth PW 159 383982 149548 18695				
Max 1202 642 Sum 28829 15389	16238400414956218714385592157993589319448895				
Title: DyOtBuClTHF_100K.cif					
bravais-lattice index	= 0				
lattice parameter (alat) unit-cell volume	= 25.6474 a.u. = 37134.3792 (a.u.)^3				
number of atoms/cell	= 608				
number of atomic types number of electrons	= 6 = 1512.00				
number of Kohn-Sham state	es= 756				
kinetic-energy cutoff	= 80.0000 Ry				
charge density cutoff convergence threshold	= 500.0000 Ry = 1.0F-09				
mixing beta	= 0.5000				
number of iterations used	d = 8 plain mixing				
Exchange-correlation	= SLA PW PBE PBE (1 4 3 4 0 0)				
	Subspace diagonalization one sub-group per band gr custom distributed-memory Message from routine setu DEPRECATED: symmetry with Parallelization info 				

init_run : electrons : update_pot : forces :	42.99s CPL 60819.95s CPL 1461.58s CPL 17437.52s CPL	46.16s 63107.94s 1522.64s 17714.01s	WALL (WALL (WALL (WALL (1 calls) 83 calls) 82 calls) 82 calls) 82 calls)
Called by init wfcinit :	_run: 28.44s CPL	29.07s	WALL (1 calls)
potinit : hinit0 :	0.79s CPL 8.50s CPL	2.21s 8.60s	WALL (WALL (1 calls) 1 calls)
Called by elec	trons:			
c_bands : sum_band : v_of_rho : newd : mix_rho :	37126.13s CPL 9663.72s CPL 501.54s CPL 2620.20s CPL 116.23s CPL	37854.42s 10448.81s 536.25s 3367.58s 122.01s	WALL (WALL (WALL (WALL (WALL (889 calls) 889 calls) 890 calls) 890 calls) 889 calls)
Called by c_ba init_us_2 : regterg :	nds: 296.76s CPL 36350.79s CPL	297.22s 36971.49s	WALL (WALL (1779 calls) 889 calls)
Called by sum_ sum_band:bec : addusdens :	band: 6.01s CPL 3042.08s CPL	6.08s 3745.04s	WALL (WALL (889 calls) 889 calls)
Called by *egt h_psi : s_psi : g_psi :	erg: 24521.86s CPL 3235.74s CPL 40.31s CPL	24722.48s 3235.97s 40.48s	WALL (WALL (WALL (3704 calls) 3704 calls) 2814 calls)
rdiaghg :	2592.35s CPL	2678.62s	WALL (3540 calls)
Called by h_ps	1:	24627 22-	WALL Z	2704 0011->
n_psi:pot : h_psi:calbec : vloc_psi : add_vuspsi :	24426.825 CPU 3349.63s CPU 17839.75s CPU 3237.38s CPU	24627.23s 3389.39s 17998.35s 3239.45s	WALL (WALL (WALL (WALL (3704 calls) 3704 calls) 3704 calls) 3704 calls) 3704 calls)

init_run electrons update_pot forces	: 42.99s CPU 46.16 : 60819.95s CPU 63107.94 : 1461.58s CPU 1522.64 : 17437.52s CPU 17714.01	s WALL (1 calls) s WALL (83 calls) s WALL (82 calls) s WALL (82 calls)		
Called by in wfcinit potinit	nit_run: : 28.44s CPU 29.07 :	s WALL (1 calls)		
hinit0 Called by el	: .ectr 80000 -	Calle	ed by PWSCF	
sum_band v_of_rho newd mix_rho	80000 -	C alled by ele	ectrons	
Called b init_us_ regterg	60000 - जु			
Called b sum_band b addusden	20000 -			
Called b h_psi s_psi g_psi rdiaghg	0 -	bands sum_ban	d newd	
Called by h_ h_psi:pot h_psi:calbec vloc_psi add_vuspsi	psi: : 24426.82s CPU 24627.23 : 3349.63s CPU 3389.39 : 17839.75s CPU 17998.35 : 3237.38s CPU 3239.45	s WALL (3704 calls) s WALL (3704 calls) s WALL (3704 calls) s WALL (3704 calls) s WALL (3704 calls)]

