
 1

Quantum ESPRESSO on HPC and GPU systems:
parallelization and hybrid architectures

Pietro Bonfà
Università di Parma and CNR-Nano, Italy

MaX School on Advanced Materials and Molecular Modellingwith Quantum ESPRESSO
May 17-28 2021,

ICTP Virtual Meeting

Running on a laptop

● You go home and type
./configure && make pw

On a real HPC node...

2 x AMD Epyc7352 + 4 x NVIDIA A100
./configure && make pw

On a real HPC node...

2 x AMD Epyc7352 + 4 x NVIDIA A100

QE running on HPC systems

● Parallel – Message Passing Interface
● Parallel – OpenMP
● Hierarchical levels of parallelization for fine

grain performance tuning
● Accelerated – CUDA Fortran for NVIDIA GPUs

Parallel computing
(a concise introduction)

Amdahl's law

● A task takes the time T to run.
● A portion p of T may benefit from parallel

execution. That portion becomes s times faster.
● The original task now takes

Amdahl's law

The speedup of the whole task is

and from

it is easily obtained

Message Passing

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Message Passing

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Message Passing

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Message Passing

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Message Passing & OpenMP

Export OMP_NUM_THREADS=3
./pw.x

Time

pw.x

Message Passing & OpenMP

Export OMP_NUM_THREADS=3
mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Message Passing & OpenMP

Export OMP_NUM_THREADS=3
mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

Data decomposition

● From P. Giannozzi, day 2

The code computes an unsymmetrized charge density

Data decomposition

Number of Kohn-Sham
states (order of the

number of electrons)Number of k-points
(periodic calculations)

Data decomposition

● Split KS states expansion
in PW

● Default
● A lot of messages

Data decomposition

● Work on multiple k-points at
the same time

● Less communication
● More memory
● Unbalance

Data decomposition

● Work on multiple k-points at
the same time and split WFs.

● Less communication
● Optimal memory usage
● Reduced unbalance

Workload decomposition

Again from P. Giannozzi, day 2

F(Gx, Gy, Gz)

F(Gx, Gy, Rz)

F(Gx, Gy, Rz)

F(Rx, Ry, Rz)

1D FFT

2D FFT

Many MPI messages

Eric Pascolo, master thesis

An example: BCC Fe

 Parallelization info

 sticks: dense smooth PW G-vecs: dense smooth PW
 Min 111 37 13 2974 573 129
 Max 112 38 14 2976 575 132
 Sum 1781 599 219 47597 9189 2093

 Using Slab Decomposition

 Dense grid: 47597 G-vectors FFT dimensions: (50, 50, 50)
 Smooth grid: 9189 G-vectors FFT dimensions: (30, 30, 30)

Parallel levels

All MPI Processes

K-point

GROUP 0

K-point

GROUP 1

K-point

GROUP …

Band GROUP 0 Band GROUP 1 Band GROUP …

Fine grain paralleliza�on

K-points

G-vectors

Parallel levels
All MPI Processes

IMAGE GROUP 0 IMAGE GROUP 1 IMAGE GROUP …

K-point

GROUP 0

K-point

GROUP 1

K-point

GROUP …

Band GROUP 0 Band GROUP 1 Band GROUP …

Fine grain paralleliza�on

K-points

G-vectors

Parallel Diagonalization

● Diagonalization options
– Davidson
– CG
– PPCG
– ParO
– ...

Picture from Anoop Chandran

Parallel Diagonalization

● Diagonalization options
– Davidson
– CG
– PPCG
– ParO
– ...

Trend of Parallel Diagonalization

● Results for all eigen-
states.

● Additional
communications in
parallel Davidson.

Fine Grained Parallelization

● OpenMP
– In the code and in the libraries.
– Only when MPI is saturated.
– Generally no more than 8 threads.
– Don’t forget about it on HPC systems!

● Multithreading
– Generally not useful

Image parallelism

Nudged Elastic Band

Images

PHonon (linear response)

Irreducible modes

Images from
DOI: 10.1016/j.cpc.2007.09.011
DOI: 10.1103/PhysRevB.93.174419

Image parallelism

Nudged Elastic Band

Images

PHonon (linear response)

Irreducible modes

Images from
DOI: 10.1016/j.cpc.2007.09.011
DOI: 10.1103/PhysRevB.93.174419

Abstract layer for embarrassingly parallel
tasks

Image parallelism

Distribution of images

mpirun neb.x -nimage I -inp neb.in > neb.out

Max value: total number of images in the simulation.

Constraints:
● Depend on code using this “abstract” parallelism

Tentative optimal value: nimage = max possible value

Output:

 path-images division: nimage = I

K-points aka Pools

Distribute k points among X pools of MPI procs.
Max value: n(k)

Constraints:
● at least 1 k point per pool
● Must be a divisor of the total number of processes

Tentative optimal value: npool = max(n(k))

mpirun pw.x -npool X -inp pw.in > pw.out

Output:

 K-points division: npool = X

Distribute and parallelize matrix diagonalization and matrix-matrix multiplications
needed in iterative diagonalization (pw.x) or orthonormalization(cp.x).

Max value: n(MPI)/X
Constraints:
● Must be square
● Must be smaller than band-group size

Tentative optimal value:
● Use it for inputs with more than 100 KS;
● depends on many architectural parameters

Parallel diagonalization

mpirun pw.x -npool X -ndiag Y -inp pw.in > pw.out

Output
Subspace diagonalization (size of sub-
group: sqrt(Y)*sqrt(Y) procs)

Finding the right balance
● Pools:

– Very effective, low communication
– Memory hungry!

● G vectors:
– Lower memory footprint
– More communication

● OpenMP:
– Practically no memory duplication
– When MPI is saturated

● Diagonalization method:
– Davidson: faster, more memory
– CG: slower, less memory

Libraries

● A few libraries you may need

Input/Output

A parallel filesystem is essentially a parallel application.
– Different performance have different cost:

● Home directory
● Long term storage
● Scratch space

Always set the outdir folder in input to a fast scratch space.

GPU Acceleration

https://top500.org/lists/top500/2020/11/

Different architecture

More transistors devoted to data processing
(but less optimized memory access and speculative execution)

CUDA Programming

In order to compile QE-GPU you’ll need to know a
bit about CUDA ...

HOST

GPGPU DEVICE

Application

(CUDA) Libs

CUDA Runtime

GPU Driver

CUDA Programming

The compute capabilities codify the features and specifications
of the target device.
● Tesla K40: 3.5
● Tesla K80: 3.7
● Tesla P100: 6.0
● Tesla V100: 7.0
● Tesla A100: 8.0

From CUDA C Programming guide v10

Compilers

The accelerated version requires
NVIDIA HPC SDK
Freely available at
https://developer.nvidia.com/hpc-sdk

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSolver NVIDIA cuFFT

Execution flow

Typical code progression

1)Memory allocated on host and
device

2)Data is transferred from the Host
to the Device

3)Kernel is lunched by the Host on
the Device

4)Data is transferred from the
Device to the Host.

5)Memory is deallocated.
From https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG

Quantum ESPRESSO

Quantum ESPRESSO

The GPUs of Marconi100

NVIDIA Tesla V100

16GB memory per GPU

5120 CUDA Cores

Running at 1200-1300 MHz

Performance Ratio

● Let’s consider Marconi100@CINECA (ranked 11)

Icons By Misha Petrishchev, RU
and iconsmind.com, GB

~700 GFlops

~31.2 TFlops

QE with GPU acceleration

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

QE with GPU acceleration

mpirun -np 3 pw.x

Time

pw.x

pw.x

pw.x

How to run the GPU code

1 GPU <-> 1 MPI
Fill the CPU with OpenMP threads

No parallel eigensolver (-ndiag 1) yet

K-point pools are great, but device memory is limited.

A few practical advices

Configure options:
 --enable-openmp compile for openmp execution if possible (default: no)
 --enable-parallel compile for parallel execution if possible (default: yes)

 --enable-cuda-env-check=yes
 The configure script will check CUDA installation
 and report problems [default=no]
 --with-cuda=PATH prefix where CUDA is installed [default=no]
 --with-cuda-cc=VAL GPU architecture (Kepler: 35, Pascal: 60, Volta: 70) [default=35]
 --with-cuda-runtime=VAL CUDA runtime (Pascal: 8+, Volta: 9+) [default=10.1]

 --with-scalapack (yes|no|intel) Use scalapack if available. Set to
 "intel" to use Intel MPI and blacs (default: use openMPI)

 --with-elpa-include Specify full path ELPA include and modules headers (default: no)
 --with-elpa-lib Specify full path ELPA static or dynamic library (default: no)
 --with-elpa-version Specify ELPA API version (2015 for ELPA releases
 2015.x and 2016.05; 2016 for ELPA releases 2016.11,
 2017.x and 2018.05; default 2018 for ELPA releases
 2018.11 and beyond)

A few practical advices

● Checking compilation options
– Example for an Intel based platform...
MANUAL_DFLAGS =
DFLAGS = -D__DFTI -D__MPI -D__SCALAPACK -D__ELPA_2016
FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS)

[…]

MPIF90 = mpiifort
F90 = ifort
CC = icc
F77 = ifort
[…]

BLAS_LIBS = -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core

A few practical advices

● Checking compilation options
– Example for an Intel based platform…
– Example for a (NVIDIA) GPU platform
MANUAL_DFLAGS =
DFLAGS = -D__PGI -D__CUDA -D__USE_CUSOLVER -D__FFTW -D__MPI
FDFLAGS = $(DFLAGS) $(MANUAL_DFLAGS)

[…]

GPU architecture (Kepler: 35, Pascal: 60, Volta: 70)
GPU_ARCH=70

CUDA runtime (Pascal: 8.0, Volta: 9.0)
CUDA_RUNTIME=11.0

CUDA F90 Flags
CUDA_F90FLAGS=-Mcuda=cc70,cuda11.0 [...]

Something very bad...
 Program PWSCF v.6.2 starts on 29Nov2017 at 15:22:59

 This program is part of the open-source Quantum ESPRESSO suite
 for quantum simulation of materials; please cite
 "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
 "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
 URL http://www.quantum-espresso.org",
 in publications or presentations arising from this work. More details at
 http://www.quantum-espresso.org/quote

 Parallel version (MPI & OpenMP), running on 15552 processor cores
 Number of MPI processes: 432
 Threads/MPI process: 36

 MPI processes distributed on 12 nodes
 K-points division: npool = 2
 R & G space division: proc/nbgrp/npool/nimage = 216

Check the output

Check the output

Check the output

Check the output

Check the output

