
1

QE-2021: Hands-on session – Day-9

Ivan Carnimeo, Pietro Bonfa’

Paolo Pegolo, Mandana Safari, Riccardo Bertossa

(Hands-on: QE on HPC and GPU systems)

Covered topics are:

* compilation of Quantum ESPRESSO for CPU and CPU architectures;
* optimisation of CPU-only runs,
* basic description of GPU acceleration,
* how to efficiently run calculations on GPU-accelerated architectures.

Exercise 1:** preparing QE (CPU version)

Exercise 2:** optimize CPU execution

Exercise 3:** (very) basic concepts about GPUs

Exercise 4:** preparing QE (GPU version)

Exercise 5:** running with GPUs

Open a shell on your Virtual Machine or on your laptop and connect to the HPC cluster:

ssh USER@login01-ext.m100.cineca.it

...when you are ready Raise Hand on Zoom

Then copy the repo to $CINECA_SCRATCH and move there:

cd materials-for-max-qe2021-online-school/
git pull
cp -r Day-9/ $CINECA_SCRATCH
cd $CINECA_SCRATCH
cd Day-9/
pwd

Check that the result of pwd is

/m100_scratch/usertrain/USER/Day-9

Exercise 1: preparing QE (CPU version)

Three things to keep in mind when installing QE:

1) The compiler

2) The linear algebra libraries

3) The FFT libraries

Exercise 1: preparing QE (CPU version)

gfortran ifort
nvfortran
(ex pgi)

openblas
mkl

(Intel, AMD CPU)

fftw3

flang
(ARM)

mkl
(Intel, AMD CPU)

(QE internal)

(QE internal)

We will first prepare an HPC ready installation of QE. This exercise will show how to compile
QE and check for relevant libraries in the context of standard and accelerated systems.

Download the last release, extract it and rename it with the commands below:

cd exercise1.CPU-setup/

wget https://gitlab.com/QEF/q-e/-/archive/qe-6.7MaX-Release/q-e-qe-6.7MaX-Release.tar.bz2

tar xjf q-e-qe-6.7MaX-Release.tar.bz2

mv q-e-qe-6.7MaX-Release qe-cpu

cd qe-cpu

Exercise 1: preparing QE (CPU version)

For the CPU version we will use hpc-sdk, SpectrumMPI, FFTW , which are a good combination
for the OpenPower machines of Marconi100.

module purge
module load hpc-sdk/2020--binary spectrum_mpi/10.3.1--binary fftw/3.3.8--spectrum_mpi--10.3.1--binary

Configure QE with the following option, that will select nvfortran compilers from the hpc-sdk
package and SpectrumMPI

./configure MPIF90=mpipgifort

Check that relevant libraries have been detected:
BLAS_LIBS=-lblas
LAPACK_LIBS=-L/cineca/prod/opt/compilers/hpc-sdk/2020/binary/Linux_ppc64le/2020/profilers/
Nsight_Systems/host-linux-ppc64le -llapack -lblas
FFT_LIBS= -lfftw3

Exercise 1: preparing QE (CPU version)

We will only use pw.x for this hands-on. Let's compile it with the command

 make -j4 pw

Now enjoy an espresso while you wait 3 minutes or so...

Check that your installation works by running in parallel a quick random test from the test-suite

 mpirun -np 2 PW/src/pw.x -inp test-suite/pw_dft/dft1.in

You will find an error on pseudopotentials, but it is fine because it means that the installation
works.

Exercise 1: preparing QE (CPU version)

Exercise 2: optimize CPU execution

#!/bin/bash
#SBATCH --nodes=1 # number of nodes
#SBATCH --ntasks-per-node=16 # number of MPI per node
#SBATCH --cpus-per-task=4 # number of HW threads per task
#SBATCH --mem=230000MB
#SBATCH --time 00:30:00 # format: HH:MM:SS
#SBATCH --reservation=s_tra_qe
#SBATCH -A tra21_qe
#SBATCH -p m100_usr_prod
#SBATCH -J qeschool

module load hpc-sdk/2020--binary spectrum_mpi/10.3.1--binary fftw/3.3.8--spectrum_mpi--10.3.1--binary

export QE_ROOT=/m100_scratch/usertrain/a08trd1f/Day-9/exercise1.CPU-setup/qe-cpu/

export PW=$QE_ROOT/bin/pw.x

This sets OpenMP parallelism, in this case we do a pure MPI
export OMP_NUM_THREADS=1

Run pw.x with default options for npool and ndiag
mpirun ${PW} -npool 1 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool01.ndiag01.log

Job script

Pool parallelism

First submit the job “as is”, with npool set to 1

mpirun ${PW} -npool 1 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool01.ndiag01.log

with the command:

sbatch job.sh

Other useful commands:

squeue -u USER
scancel JOBID

Exercise 2: optimize CPU execution

Pool parallelism

Then open the job-script file (job.sh) and change the number of pools to be used -npool X, with
X={2,4,8}. Don't forget to rename the output file as well.

mpirun ${PW} -npool 2 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool02.ndiag01.log
mpirun ${PW} -npool 4 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool04.ndiag01.log
mpirun ${PW} -npool 8 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool08.ndiag01.log

For each output file collect the “WALL time” at end of the file:

 PWSCF : 5m53.84s CPU 5m58.18s WALL

NB: the CPU time is the amount of time spent by the CPU processing pw.x instructions, which
is a considerable portion of the whole execution time, but neglects, for example, I/O. For this
reason we use WALL time.

Exercise 2: optimize CPU execution

Pool parallelism

You should be able to produce a plot similar to this one:

Exercise 2: optimize CPU execution

Congrats! With the same
computational resources, the time
to solution is reduced by 1/3!

Exercise 2: optimize CPU execution

Remember the distribution of
the wavefunction

Pool parallelism
What is happening?

Exercise 2: optimize CPU execution

Remember the distribution of
the wavefunction

Pool parallelism
What is happening?

Exercise 2: optimize CPU execution

Since operators are usually
applied to single orbitals, most
of the communications (e.g.
mp_sum) are usually done
along the NPW dimension

Pool parallelism
What is happening?

Exercise 2: optimize CPU execution

When we parallelize over PW, all processes
need to communicate with each other

Rank 1 Rank 2

Rank 4Rank 3

Pool parallelism
What is happening?

Exercise 2: optimize CPU execution

Rank 1 Rank 2

Rank 4Rank 3

When we parallelize with pools, we strongly
reduce communications among processes

Pool parallelism
What is happening?

Parallel diagonalization

In this second part we want to speedup the code by solving the dense eigenvalue problem
using more than one core.

Set -npool to 4 and activate parallel diagonalization by changing -ndiag 4

mpirun ${PW} -npool 4 -ndiag 4 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool04.ndiag04.log

Inspect the beginning of the output file and look for this message

Subspace diagonalization in iterative solution of the eigenvalue problem:
one sub-group per band group will be used custom distributed-memory algorithm (size of sub-group: 2* 2
procs)

Check the time to solution

Exercise 2: optimize CPU execution

Parallel diagonalization

You should be able to produce a plot similar to this one:

Exercise 2: optimize CPU execution

Please consider that:

1)pool parallelism can be much more effective than this, especially when the system size
is larger and calculations are distributed among multiple nodes, since it can strongly reduce
the slow inter-node communications;

2)the eigenvalue problem is too small in this case to take fully advantage of parallel
diagonalization;

3)other libraries, e.g. Scalapack or ELPA, usually provide better performance in parallel
diagonalization.

Please keep in mind that for larger systems, and using optimized libraries, the parallel
diagonalization is a powerful option to strongly reduce the computational time to solution.

Exercise 2: optimize CPU execution

Scaling (Amdahl Law) for Quantum ESPRESSO code for both MPI and OpenMP portions of the
code.
OMP parallelization is usually less efficient than MPI for QE, but involves less communications

Exercise 2: more on CPU execution...

Exercise 2: more on CPU execution...

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications

Exercise 2: more on CPU execution...

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications

Exercise 2: more on CPU execution...

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications

Exercise 2: more on CPU execution...

MPI and OMP threads can be combined to better exploit computational resources. OMP
parallelization is usually less efficient than MPI for QE, but involves less communications

Exercise 2: more on CPU execution...

For large systems, OMP parallelization improves scaling because it allows to exploit many cores
without burdening the calculation with communications

Exercise 2: more on CPU execution...

A smart combination of MPIs, OMP Threads,
and pools allows to achieve drastic reductions
of computational burden

Exercise 3: (very) basic concepts about GPUs

Three things to keep in mind when installing QE:

1) The compiler

2) The linear algebra libraries

3) The FFT libraries

nvfortran

cuBLAS

cuFFT

When we use GPUs, each MPI process off-loads the calculation to one GPU

Rank 1 Rank 2

GPU 2GPU 1

 Exercise 5: running with GPUs

It is convenient to use one
MPI per GPU

When we use GPUs, each process off-loads
the calculation to one GPU

Rank 1 Rank 2

GPU 2GPU 1

GPU parallelism
What is happening?

 Exercise 5: running with GPUs

It is convenient to use one
MPI per GPU

Adding more MPIs usually will not improve
performances, and might also be less efficient
because the communication burden increases

Rank 1

Rank 2

Rank 4

Rank 3

 Exercise 5: running with GPUs

GPU 2GPU 1

GPU parallelism
What is happening?

As a reference, for a matrix size of 8192, the times required by a DGEMM on m100 cluster
should be something around:

code_cpu.x
 Full time: 66.449
 Product time: 63.170
code_gpu.x
 Full time: 0.785
 Product time: 0.167
code_mix.x
 Full time: 4.236
 Product time: 0.365

You can find the related source files (code_cpu.f90, code_gpu.f90, code_mix.f90) in the folder
of exercise3

 Exercise 3: (very) basic concepts about GPUs

Exercise 4: preparing QE (GPU version)

Download the last release of the GPU accelerated version of QE

cd $CINECA_SCRATCH

cd Day-9/exercise4.GPU-setup/

wget https://gitlab.com/QEF/q-e-gpu/-/archive/qe-gpu-6.7/q-e-gpu-qe-gpu-6.7.tar.bz2

tar xjf q-e-gpu-qe-gpu-6.7.tar.bz2

mv q-e-gpu-qe-gpu-6.7 qe-gpu

cd qe-gpu

Exercise 4: preparing QE (GPU version)

For the GPU version you must load the CUDA, together with the HPC-SDK package

 module purge
 module load hpc-sdk/2020--binary spectrum_mpi/10.3.1--binary fftw/3.3.8--spectrum_mpi--10.3.1--
binary cuda/11.0

You must also specify the cuda version when launching the configure script

 ./configure MPIF90=mpipgifort --enable-openmp --with-cuda=$CUDA_HOME --with-cuda-runtime=11.0 --
with-cuda-cc=70

Check
 setting DFLAGS... -D__PGI -D__CUDA -D__USE_CUSOLVER -D__FFTW -D__MPI
 [...]
 BLAS_LIBS=-lblas
 LAPACK_LIBS=-L/cineca/prod/opt/compilers/hpc-sdk/2020/binary/Linux_ppc64le/2020/profilers/
Nsight_Systems/host-linux-ppc64le -llapack -lblas
 FFT_LIBS=

Exercise 4: preparing QE (GPU version)

Compile again the code

 make -j4 pw

Check that your installation works by running in parallel a quick random test from the test-suite

 mpirun -np 2 PW/src/pw.x -inp test-suite/pw_dft/dft1.in

You will find an error on pseudopotentials, but it is fine because it means that the installation
works.

Exercise 4: preparing QE (GPU version)

 Exercise 5: running with GPUs

#!/bin/bash
#SBATCH --ntasks-per-node=2 # number of MPI per node
#SBATCH --ntasks-per-socket=2 # number of MPI per socket
#SBATCH --cpus-per-task=8 # number of HW threads
#SBATCH --gres=gpu:2 # number of gpus per node
#SBATCH --mem=230000MB
#SBATCH --time 00:10:00 # format: HH:MM:SS
#SBATCH --reservation=s_tra_qe
#SBATCH -A tra21_qe
#SBATCH -p m100_usr_prod
#SBATCH -J qeschool

module load hpc-sdk/2020--binary spectrum_mpi/10.3.1--binary fftw/3.3.8--spectrum_mpi--10.3.1--binary cuda/11.0

export QE_ROOT=/m100_scratch/usertrain/a08trd1f/Day-9/exercise4.GPU-setup/qe-gpu/
export PW=$QE_ROOT/bin/pw.x
export OMP_NUM_THREADS=1 # This sets OpenMP parallelism

Run pw.x with default options for npool and ndiag
mpirun ${PW} -npool 1 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool01.ndiag01.log

Job script (GPU)

First launch the job as is.

Then try to further improve the performance with OpenMP:

export OMP_NUM_THREADS=X (X=2, 4, 8)

with pool parallelism:

mpirun ${PW} -npool 2 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool02.ndiag01.log

 Exercise 5: running with GPUs

For small inputs, one can possibly obtain some additional performance by oversubscribing the
GPU.

#SBATCH --ntasks-per-node=4 # number of MPI per node
#SBATCH --ntasks-per-socket=4 # number of MPI per socket
#SBATCH --cpus-per-task=4 # number of HW threads per task

mpirun ${PW} -npool 4 -ndiag 1 -inp pw.CuO.scf.in | tee pw.CuO.scf.npool04.ndiag01.log

Exercise 5: running with GPUs

You should be able to produce a plot similar to this one:

Exercise 5: running with GPUs

Evaluate the ratio between the best time to solution of your CPU and GPU tests.

When we use GPUs, each process off-loads
the calculation to one GPU

Rank 1 Rank 2

GPU 2GPU 1

GPU parallelism
What is happening?

 Exercise 5: running with GPUs

It is convenient to use one
MPI per GPU

Rank 1 Rank 2

Again, using pools, will improve communications

 Exercise 5: running with GPUs

GPU 2GPU 1

GPU parallelism
What is happening?

51

Thanks for your a�en�on!

Ivan Carnimeo, Pietro Bonfa’

Paolo Pegolo, Mandana Safari, Riccardo Bertossa

