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Comparison of the Projected Color-singlet

Partition Function of the QGP Calculated

Within Different Terms in the Density of

States

The present work deals with the study of hadronic matter at extreme conditions of

temperature and/or baryonic density, where quarks and gluons are expected to be in

a deconfined state called Quark-Gluon Plasma (QGP). According to the color

confinement which is one of the main properties of Quantum Chromodynamics

(QCD), this QGP may be in a color-singlet state. We account for such a requirement

by projecting the partition function of the QGP on the color-singlet SU(3)

representation using the projection technique. The density of states used in the

calculation is that given by the Multiple Reflection Expansion (MRE) approximation,

where the surface and curvature terms are considered additionally to the volume

term, for the case of a QGP consisting of gluons and massless u and d quarks and s

quarks. We study the influence of considering the curvature term, as well as the

surface one on the obtained color-singlet partition functions and on some related

physical quantities characterizing the QGP phase of matter and we compare the

obtained results to previous results obtained in the absence of the contribution of the

curvature and area terms to the density of states.
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Frustration in coupled magnetic thin films

due to competition between exchange and

dipolar interactions.

The observation of alternated strip magnetic domains in monolayered films has been

reported when perpendicular anisotropy is present. The case of a strong

perpendicular anisotropy (SPA) has been modelled by the 2d-ferromagnetic Ising

model adding dipolar interactions. This term induces frustration due to the

competition with the exchange interaction, so structures with net zero magnetization

appear. The phase diagram exhibits many phases and transitions of different kind. At

low temperatures, antiferromagnetic and alternated spin stripes of width h emerge,

where h increases with the exchange and dipolar constant ratio δ=J/g. At higher

temperatures, a tetragonal-liquid phase (TL) takes place, where the spin stripes

intersect perpendicularly. Furthermore, it was found an intermediate nematic phase

for δ� 2. The phase transitions can be first, second order or the Kosterlitz-Thouless

type. On the other hand, when two ferromagnetic SPA films are separated by a

nonmagnetic layer, the interlayer coupling is RKKY like, i.e., presents a damped

oscillation from ferro to antiferromagnetic with the thickness of the nonmagnetic layer.

This fact leads to a complex phase behavior, whose study by means of Monte Carlo

simulations is the goal of this work. For doing this, the exchange and dipolar

constants are fixed to obtain stripes with different width on each film, and the

interlayer coupling is varied to have a ferro or antiferromagnetic interaction. The

equilibrium configurations at different temperatures and the phase transitions are

characterized and compared in relation to the respective monolayer phase behavior

for the same values of δ.
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Information dynamics as a potential

predictive tool for fluctuation-control in

recurrent feed-forward architectures

In the last decade, bioinformatic analyses have found several small-scale network

patterns which appear with appreciable statistical abundances in bacterial gene-

transcription networks. The coherent type-1 feed-forward loop (C1-FFL) motif is one

of such interaction patterns which plays crucial roles in the metabolic and chemotactic

activities of the model organism E. coli. Hence, a clear and simultaneous

understanding of the information processing and noise propagation in this abundant

motif is of prime importance from the standpoint of network evolution. We use the

metric of multivariate transfer entropy to evaluate the unique, synergistic and

redundant features of the dynamic information which flows from the transcriptional

regulators (predictors) to their jointly enslaved gene-product (target). Our

approximate analytical estimates which are obtained within the small noise regime

and further validated by exact Langevin stochastic simulation demonstrate that the

synergistic and redundant information transfers are anti-correlated with the noise

level of the output gene-product. Moreover, the former two information transfers are

maximized before the output fluctuations become minimum and then begin to rise.

We verify these findings under sufficiently broad regime of biologically relevant

parameterization in order to hypothesize that the synergistic and redundant

information transfers can act as suitable predictors for the output gene-expression

noise. The generic C1-FFL construct is empowered with tunable direct and indirect

regulatory control over the output gene-product so that various instances of the

network motif may be compared in terms of their information/fluctuation transduction

capabilities. Therefore, predictive insights about the interconnections between

network topologies and information dynamics are obtained.
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Criticality and the fractal structure of −5/3

turbulent cascades

Here we show a procedure to generate an analytical structure producing a cascade

that scales as the en- ergy spectrum in isotropic homogeneous turbulence. We obtain

a function that unveils a non-self-similar fractal at the origin of the cascade. It reveals

that the backbone underlying −5/3 cascades is formed by deterministic nested

polynomials with parameters tuned in a Hopf bifurcation critical point. The cascade

scaling is exactly obtainable (not by numerical simulations) from deterministic low

dimensional nonlinear dynamics. Consequently, it should not be exclusive for fluids

but also present in other complex phenom- ena. The scaling is obtainable both in

deterministic and stochastic situations.
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Antiresonant driven systems for particle

manipulation
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Electrically switchable and optically tunable

silicone oil/liquid crystal based complex

emulsion system for optical device

applications

In this study, we have reported a new approach for dynamic response to reconfigure

the complex colloidal systems. The liquid crystals community which still looking for

promising new directions for advancement of liquid crystal applications beyond

display one. For this nanotemplate, nanomaterials and complex colloidal systems are

already using to explore liquid crystals potentials. The recent findings which still not

explored well and many possibilities to address the unsolved brainteasers motivate us

to perform these investigations. Here, we are presenting the three different colloidal

systems i.e. ethanol, water and silicone oil using with nematic liquid crystal (8CB) to

form different emulsion systems to tune high electrical and optical properties. From

these three different emulsions systems, LC/silicone oil complex system proves a very

stable configuration with optimized concentration. The stable droplet morphology with

dynamic switching has been demonstrated through LC/silicone oil emulsion in respect

of other emulsions. In addition to this, a very nice optical properties has been

achieved through this emulsion system that show LC director field controlled well

through each LC/silicone oil interface. This enhancement in optical properties

attributes to boundary conditions as well, which allow us to create topological

deformations as influential prototype for accurate configuration near the droplet

interface. These results are revealing the controlled morphological dynamics of

complex LC/silicone oil colloidal systems make a potential candidate for electrical

switchable and optically tunable rich soft material platform which can be used in

photonics, metamaterials, sensing and liquid crystals elastomers applications.
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Role of current fluctuations in nonreversible

samplers

It is known that the distribution of nonreversible Markov processes breaking the

detailed balance condition converges faster to the stationary distribution compared to

reversible processes having the same stationary distribution. This is used in practice

to accelerate Markov chain Monte Carlo algorithms that sample the Gibbs distribution

by adding nonreversible transitions or non-gradient drift terms. The breaking of

detailed balance also accelerates the convergence of empirical estimators to their

ergodic expectation in the long-time limit. In this poster, we give a physical

interpretation of this second form of acceleration in terms of currents associated with

the fluctuations of empirical estimators using the level 2.5 of large deviations, which

characterises the likelihood of density and current fluctuations in Markov processes.

Focusing on diffusion processes, we show that there is accelerated convergence

because estimator fluctuations arise in general with current fluctuations, leading to an

added large deviation cost compared to the reversible case, which shows no current.

We illustrate these results for the Ornstein-Uhlenbeck process in two dimensions.
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Fundamental ingredients for discontinuous

phase transitions in the inertial majority vote

model

Discontinuous transitions have received considerable interest due to the uncovering

that many phenomena such as catastrophic changes, epidemic outbreaks and

synchronization present a behavior signed by abrupt (macroscopic) changes (instead

of smooth ones) as a tuning parameter is changed. However, in different cases there

are still scarce microscopic models reproducing such above trademarks. With these

ideas in mind, we investigate the key ingredients underpinning the discontinuous

transition in one of the simplest systems with up-down Z2 symmetry recently

ascertained in [Phys. Rev. E 95, 042304 (2017)]. Such system, in the presence of an

extra ingredient-the inertia- has its continuous transition being switched to a

discontinuous one in complex networks. We scrutinize the role of three central

ingredients: inertia, system degree, and the lattice topology. Our analysis has been

carried out for regular lattices and random regular networks with different node

degrees (interacting neighborhood) through mean-field theory (MFT) treatment and

numerical simulations. Our findings reveal that not only the inertia but also the

connectivity constitute essential elements for shifting the phase transition.

Astoundingly, they also manifest in low-dimensional regular topologies, exposing a

scaling behavior entirely different than those from the complex networks case.

Therefore, our findings put on firmer bases the essential issues for the manifestation

of discontinuous transitions in such relevant class of systems with Z2 symmetry.
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Intermittent oscillations in Embryonic Stem

Cells

Embryonic stem cells are pluripotent cells capable of generating every cell type in the

body through differentiation programs, usually driven by extracellular signals. Signal

transduction networks processes these signals, and can generate characteristic

dynamic activities that are shaped by their cell-type specific architecture. The dynamic

activities of target proteins rule the DNA expression that ends on activating the

differentiation programs. The stimulus that controls the differentiation of pluripotent

cells is known, but the dynamic activity that encodes this information remains

unexplored. Here we are interested in how the information carried by these external

inputs is encoded by the cell in signaling networks activity in mouse embryonic stem

cells. We measured the dynamic activity of a target protein in single cells under ligand

stimulation, and we present a characterization of the signalling dynamics that arises

from time series analysis. We developed a set of local observables to explore how the

extracellular stimulus concentrations correlate with signaling dynamic signatures, and

tested the hypothesis that arose from this analysis. We found that the target protein

activity is pulsatile in embryonic stem cells. Our analysis shows that single cells can

transit between oscillatory and non-oscillatory behavior, leading to heterogeneous

dynamic activities in the population. Oscillations become more prevalent with

increasing ligand dose, while maintaining a robust characteristic timescale. Our

results suggest that the signalling system operates in the vicinity of a transition point

between oscillatory and non-oscillatory dynamics. Currently, we are trying to find a

theoretical description of this system.
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Approximating the resistance distance and

eigenvector centrality from the network’s

eigenvalues

There are different measures to classify a network’s data set that, depending on the

problem, have different success rates. For example, the resistance distance and

eigenvector centrality measures have been successful in revealing ecological

pathways and differentiating between biomedical images of patients with Alzheimer’s

disease, respectively. The resistance distance measures an effective distance

between two nodes of a network taking into account all possible shortest paths

between them and the eigenvector centrality measures the relative importance of

each node in a network. However, both measures require knowing the network’s

eigenvalues and eigenvectors. Here, we show that we can closely approximate [find

exactly] the resistance distance [eigenvector centrality] of a network only using its

eigenvalue spectra, where we illustrate this by experimenting on resistor circuits, real

neural networks (weighted and unweighted), and paradigmatic network models —

scale-free, random, and small-world networks. Our results are supported by analytical

derivations, which are based on the eigenvector–eigenvalue identity. Since the

identity is unrestricted to the resistance distance or eigenvector centrality measures, it

can be applied to most problems requiring the calculation of eigenvectors.
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The success of an on-line movement could be defined in terms of the shift of scale and the later massive o↵-line
protest. The role of the social media in this process is to facilitate the transformation between small or local feelings
of disagreement into large-scale social actions. The way how social media achieves that e↵ect is growing clusters of
people and groups with similar e↵ervescent feelings, which in other case would be never in communication by several
constraints, as for instance, geographical distance.

Society is the emergent result from the interaction between their individuals. It is natural to think that any abrupt
change in the structure, led by the communication between all the constituents, could be related to the percolating
geometrical structures at the transition points. Independently of the kind of transition (in a physics sense), at the
critical point the correlation length is expected to growth attaining a power-law dominance. The latter will, then,
give rise to power-laws functionalities on the cluster’s statistics forms.
In this respect, we propose that the transition online-o✏ine protest is characterised by some signs of universality, as
the expected consequences from the divergence on the correlation function at the critical point.

We show that the frequency-distribution of hashtags for several social explosions are power-law shaped. We have
normalised our data-windows in terms of both the time and the number of hashtags. We defined as the transition
point the day of the o↵-line massive actions in the streets.

The analysis has been performed on four di↵erent large-scale spontaneous manifestations. The first data set is the
Spanish Indignados movement. The critical point for this data-set was the 15th of May 2011. The second and third
data sets were taken in Argentina during the year 2019 around two popular movements: a protest against high taxes
taking place between January 4th and 6th, and a mobilization asking for justice on November 9th. The last dataset
is related to the “Occupy Wall Street” massive demonstrations taking place around May 2012.

Each data-set has been divided into the periods before, during and after the event. The period during the event is
the most important, as it sets the time-scale. This is regularly of one day, except for the movement 9-N, which took
place during two-days, and the Occupy Wall Street, which is a long-term event. Then, we divided our analysis into
two parts, according to how we define the periods before and after the event: for the first analysis, we use the same
amount of time to designate the other two periods, namely, before and after. In a second analysis, we extend the
timeline before and after the event as to cover the same number of hashtag usages. In figure 1 we plot the number of
hashtags used in each period, each segment having the same time-window. Blue, yellow and red designate the periods
before, during and after, respectively. We can see completely di↵erent kinds of behaviors for the four movements. No
similarities seem to appear beyond the highest activity during the event. As an illustration, in figure 2 we show the
distributions for the frequency of hashtags on the the data set in figure 1 and the fit for the power-laws exponents.

Our results show that the lowest values for the exponents occur on the data-set ”during” for all the events. That
consequence of the highest heterogeneity on the distribution is expected for the case of the same-time data-sets, then
varying the number of hashtags. However, it starts to be interesting the fact that this is maintained also when the
data is divided by having the same number of hashtags, then varying the time. Here there are not more hashtags in
that window of time.

⇤ ygandica@gmail.com
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FIG. 1. Daily activity in each dataset in terms of number of tweets, classified as before, during, and after the
online-street-action switch-event date. Each segment has the same time-window. No similarities were found on
the four events beyond the higher activity on the period during.

One of the most interesting results is that the exponents of the periods ”before” and ”during” are the same, within
the error bars. That happens when the periods have the same time windows but also when they have, instead, the
same number of hashtags. The most surprising finding is that the last phenomena is robust against counting one or
all the usages of the hashtags.



3

FIG. 2. Probability distributions of hashtag usage for each data-set, classified as before, during, and after the events
(using a similar time extension for the 3 intervals), with their respective fitted exponents.



On the performance of a flow energy

harvester using time delay

This paper explores periodic vibration-based energy harvesting (EH) in a delayed

harvester device consisting of a delayed nonlinear oscillator subject to galloping ex-

citation and coupled to an electric circuit through a piezoelectric coupling mecha-

nism. It is assumed that the delay amplitude is modulated such that the frequency of

the modulation is near twice the natural frequency of the oscillator. Application of the

method of multiple scales gives approximation of the amplitude of periodic vibrations

and the corresponding power extracted from the harvester device. Results show that

the presence of modulated delay amplitude in the mechanical component increases

significantly the amplitude of vibrations and the output power in a certain range of the

wind speed. Numerical simulation is conducted to support the analyti- cal predictions.
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Markovain Anticipation in PERM simulations

of high-dimensional SAWs: A study of

guidance in rare-even simulations for non-

Markovian systems

"Guidance" is a strategy to reduce fluctuations in rare event simulations. For Markov

processes (including diffusion-type quantum Monte Carlo), ideal guidance can at least

be defined, but for non-Markovian processes only heuristic proposals are available.

One such heuristics is, in the framework of the PERM algorithm, "Markovain

anticipation (MA)". We study in this paper MA systematically in self-avoiding walks on

lattices with high coordination numbers. In particular, we present improved estimates

of the connectivity constant for fcc and bcc lattices in 3 dimensions, and for all

hypercubic lattices with d=4 to 10.

P13



Observation of bifurcations and hysteresis in

experimentally coupled logistic maps

Initially, the logistic map became popular as a simplified model for population growth.

In spite of its apparent simplicity, as the population growth-rate is increased the map

exhibits a broad range of dynamics, which include bifurcation cascades going from

periodic to chaotic solutions. Moreover, the study of coupled maps allows to identify

other qualitative changes in the collective dynamics, such as hysteresis. Particularly,

hysteresis is the appearance of different attracting sets, one when the control

parameter is increased and another one when it is decreased; that is, a multi-stable

region. In this work, we present an experimental study on the bifurcations and

hysteresis of nearly identical, coupled, logistic maps. Our logistic maps are an

electronic system that has a discrete-time evolution with a high signal-to-noise ratio

($\sim10^6$), resulting in easy, precise, and reliable experimental manipulations,

which include the design of a modifiable diffusive coupling configuration circuit. We

find that the characterisations of the isolated and coupled logistic-maps' dynamics

agrees excellently with the theoretical and numerical predictions (such as the critical

bifurcation points and Feigenbaum's bifurcation velocity). Here, we report multi-stable

regions appearing robustly across configurations, even though our configurations had

parameter mismatch, which we measure directly from the components of the circuit

and also infer from the resultant dynamics for each map, and were unavoidably

affected by electronic noise.
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Entropy production fluctuation in phase

transitions

The study of equilibrium systems is well established, however the vast majority of

phenomena occurring in nature or in technological applications are out of equilibrium.

Stochastic Thermodynamics is a framework developed to extend the knowledge of

equilibrium to non-equilibrium systems, which comprises the study of phase

transitions. During a first-order non-equilibrium phase transition, as in equilibrium

ones, the system presents a distinguishing bistable behavior, which features the

break of ergodicity. To assess the statistics of fluxes in out of equilibrium systems the

most common tool, Large Deviation Theory [1], considers the long-time limit. However

the bistable behavior can make this task quite tricky, the time it takes for the system

to jump between one stable state to the other increases exponentially with the volume

[2], hence it does not require much to make the so called long-time limit unfeasible. In

this work we address the subtleties of assessing the statistics of fluxes during a

discontinuous phase transition, in specific the entropy production, a key concept that

quantifies how much the system is out of equilibrium and presents striking features at

phase transitions [3]. Predictions are verified both analitically and numerically using

the second Schlogl’s model for chemical reactions [4] and a q-states Potts model. [1]

Touchette, Hugo. Physics Reports 478.1-3 (2009): 1-69. [2] Nguyen, Basile, and Udo

Seifert. Physical Review E 102.2 (2020): 022101. [3] Noa, CE Fernandez, Harunari,

Pedro E, et al. Physical Review E 100.1 (2019): 012104. [4] Schlogl, Friedrich.

Zeitschrift fur physik 253.2 (1972): 147-161
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Generalized Hamiltonian mean-field models 
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Hamiltonian mean field (HMF) model is a prominent example of a long-range interacting (LRI) system, which 
was widely discussed in the past, and it predicts plenty of interesting phenomena, such as the appearance of the 
second order equilibrium phase transitions [Campa et al. 2009] and slow relaxation towards the equilibrium 
in non-equilibrium regime [Yamaguchi et al. 2004]. In this paper we propose a family of general transformations 
of the HMF model, by which we construct a family of generalized HMF models, which includes previously 
discussed HMF alternatives [Anteneodo 2004], [Toral 2004], [Ilić-Gupta 2021], [Velazquez et al. 2003], and we 
expose the qualitatively same critical phenomena at the microcanonical level with the quantitatively different 
equilibrium and non-equilibrium behaviors compared to the ordinary HMF model. 

The transformations consist of Hamiltonian rescaling (H-rescaling) and rescaling of a conjugated variable (P-
rescaling), which are coupled with the rescaling of the time variable to preserve Hamiltonian equations of 
motion. We established a relationship between the H-rescaling, the extensivity of energy and the value of the 
phase transition point in the generalized HMF model, which deviates from the critical value of the ordinary HMF 
model. On the other hand, the P-rescaling is related to the extensivity of entropy and its Gibbs factor [Yûto-Ueda 
2007], as well as to the non-equilibrium behavior of the model, thus providing a new form of the famous ”1.7-
slow relaxation law“ [Yamaguchi et al.], which opens up new possibilities for the characterization of LRI systems 
such as a fully coupled network of classical rotators [Antoni-Ruffo 1995]. 
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Study of aging and failure using lifetime statistics of thin liquid films 
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Recently it has been demonstrated that collections of thin liquid films, contained in cylinders, 
may be used as model systems for the study of failure or aging. The experiments showed 
that the mortality/failure rate of such films displays the characteristic bath-tub curve found not 
only for many technical devices, but also in the statistics of human mortality; an initially high 
failure rate ("infant mortality") decreases to a minimum, only to rise again with time (called 
wear-out phase for technical devices). 
In this study, we focus on early-stage (infant) mortality for soap films as a simple well-
controlled physical system. Using measurements of lifetimes for soap films, we show how 
mortality/failure rate links to geometry of the system; here, this is the length of the tube 
containing the films. This is required to further explore the use of such films as an easily 
experimentally accessible model system for aging studies. 
 
 
[1] Haffner, B., Lalieu, J., Richmond, P., Hutzler, S.: Can soap films be used as models for 
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1Department of Computer Science, School of Science, Aalto University, FI-0007, Finland
2Mathematics Applications Consortium for Science & Industry, University of Limerick, Ireland

3CNetS, School of Informatics, Computing, & Engineering, Indiana University, Bloomington, IN, USA
(Dated: July 6, 2021)

Contact tracing via digital tracking applications installed on mobile phones is an important tool for
controlling epidemic spreading. Its e↵ectivity can be quantified by modifying the standard method-
ology for analyzing percolation and connectivity of contact networks. We apply this framework for
networks with varying degree distribution, the number of application users and the probability of
quarantine failure. Further, we include structured populations with homophily and heterophily and
the possibility of degree-targeted application distribution. Our results are based on a combination
of explicit simulations and mean-field analysis. They indicate that there can be major di↵erences
in the epidemic size and epidemic probabilities which are equivalent in the normal SIR processes.
Further, degree heterogeneity is seen to be especially important for the epidemic threshold but not
as much for the epidemic size. The probability that tracing leads to quarantines is not as important
as the application adoption rate. Finally, both strong homophily and especially heterophily with
regards to application adoption can be detrimental. Overall, epidemics are very sensitive to all of
the parameter values we tested out, which makes the problem of estimating the e↵ect of digital
contact tracing an inherently multidimensional problem.

In a pandemic era, until e↵ective vaccines are widely
deployed, carefully timed non-pharmaceutical interven-
tions [1] such as wearing face masks [2], school closures,
travel restrictions and contact tracing [3–7] are the best
tools we have for curbing the pandemic. Contact tracing
is an attempt to discover and isolate asymptomatic or
pre-symptomatic (exposed) individuals. In the absence
of herd immunity, contact tracing is a potent low-cost
intervention method since it puts people into quarantine
where and when the disease spreads. Therefore, it can
have a major role in 1) containing a pandemic by re-
laxing social-distancing interventions [8], 2) providing an
acceptable trade-o↵ between public health and economic
objectives [9, 10], 3) developing sustainable exit strate-
gies [11, 12], 4) identifying future outbreaks [13] and 5)
reaching the ‘source’ of infection [14].

Thanks to the emergence of low-cost wearable health
devices [15–21] and mobile software applications, digital
contact tracing can now be deployed with higher pre-
cision without the problems of manual contact tracing
such as the tracing being slow and labor-intensive or
having human issues related to blame, fear, confusion
and politics. On the other hand, smartphone cameras
and wearable devices also o↵er continuous access to real-
time physiological data which can be used to tune other
non-pharmaceutical or pharmaceutical strategies. Mod-
ern apps enable us to monitor COVID-19 symptoms [22–
24] and identify its hotspots [25], track mosquito-borne
disease such as Malaria, Zika and Dengue [26, 27] and
detect microscopic pathogens.

In both forms — manual [4, 5, 28–36] and digital [37–
40] — contact tracing has been commonly considered
as an e↵ective strategy and di↵erent empirical data sets
have validated this claim in short-time population-based
controlled experiments [37, 41–45]. It has been estimated

that for every percentage point increase in app users, the
number of cases can be reduced 2.3% (statistical anal-
ysis) [46]. Its real potential in heterogeneous [47–50]
populations, however, is not yet clear, especially because
of the homophily in app adoption and other health be-
haviors [51, 52]. It has been reported that app adop-
tion is correlated with people’s job, age, income and na-
tionality [53, 54]. Degree-heterogeneity in the contact
network [55] can alter epidemiological properties in the
form of variance in final outbreak size [56], vanishing
epidemic threshold [50, 57], hierarchical spreading [58],
strong finite-size e↵ects [59] and universality classes for
critical exponents [60].

To reduce the peak and total size of the epidemic, not
only the number of app adoption but also its distribution
is of great significance if contact tracing is done early
enough in the course of the spread. Therefore, in some
parameter settings, contact tracing may not be e↵ective
enough [8, 61, 62]. To curb the epidemic, app adoption of
super-spreaders [63, 64] are needed to be taken into ac-
count since it dictates the extent to which a virus spreads
in a bursty, power-law fashion [65–67] especially when
there is high individual-level variation in the number of
secondary transmissions [58, 68, 69].

Since the World Health Organization has declared the
COVID-19 outbreak as a Public Health Emergency of In-
ternational Concern, network scientists have developed
di↵erent approaches towards analyzing epidemic tracing
and mitigation with apps. Using the toolbox of network
science, di↵erent groups have investigated the e↵ective-
ness of contact tracing based on the topology and direc-
tionality of contact networks [14, 41, 70–76]. Recently,
a mathematical framework aimed at understanding how
homophily in health behavior shapes the dynamics of epi-
demics has been introduced by Burgio et al. [77].
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In this study, we investigate the e↵ect of varying app
coverage in homogeneous and heterogeneous contact net-
works with and without homophily in app adoption.
Further, we explore the e↵ect of distributing the apps
randomly and preferentially to high-degree nodes [70]
in these scenarios. Our main focus is on the epidemic
threshold and the final size of the epidemics, therefore,
we assume the dynamics of the epidemic to be governed
by the simple SIR model [55]. This model can be eas-
ily mapped to a static bond-percolation problem [78, 79]
so that the epidemiological properties can be measured
based on the topological structure of the underlying net-
work [55, 80–83]. The di↵erence in the spreading frame-
work with the app to the normal one is that the infec-
tion cannot spread further if it passes a link between two
app-users (app-adopters). That is, the infection process
model needs to include the memory of the type of node it
is coming from. We then extend the percolation frame-
work such that we can add memory [84, 85] to it in order
to keep track of the infection path. This leads to the
observation that the epidemic size is not the same as the
epidemic probability anymore.

Our results are largely based on mean-field-type calcu-
lations of the percolation problem which are confirmed
by explicit simulations of SIR epidemic process and mea-
surements of component sizes in finite networks. Our
findings show that 1) number of app-users has a di-
rect e↵ect on the epidemic size and epidemic probabil-
ity and the di↵erence between these two observables is
larger in high-degree targeting strategy, 2) epidemics can
be controlled to much better in the high-degree target-
ing strategy, 3) even though degree-heterogeneity can
strongly a↵ect or even vanish the epidemic threshold,
high-degree targeting strategy can compensate this ef-
fect and increase the threshold significantly, 4) increas-
ing heterophily from random mixing always increases the
outbreak size and lowers the epidemic threshold, 5) in-
creasing homophily does the opposite until an optimum,
that is below the maximum homophily case, is reached
and 6) the probability of contact tracing succeeding in
preventing further infections is not as important as the
fraction of app-users, but can still have significant e↵ects
on the epidemic size and epidemic threshold. The only
exception is in the case of heterogeneous networks with
high-degree targeting strategy, since hubs play a signifi-
cant role there.

I. MODELLING APPROACH

A. Disease model and connection to percolation

We employ a standard SIR disease model on networks
with additional dynamics given by the disease interac-
tions with the disease tracking application. In the model,
an infected (I) node will infect susceptible (S) nodes it is
connected to by rate � and go to the removed state (R)
after time ⌧ .

In addition, if an app-user infects another app-user,
that second node will get infected but will quarantine
themselves with probability papp. The quarantined user
will have no further connections that would spread the
infection they received from the other app-user. A note-
worthy deviation from a realistic spreading case here is
that we do not model quarantines that would be caused
by another app-user but prevent the disease spreading
through a third node. That is, we only model the pri-
mary infection path from the other app-user causing the
alarm, but do not stop possible concurrent secondary in-
fection paths from a third node.
The SIR processes can be studied using component size

distributions of networks where parts of the links are ran-
domly removed. In the presence of apps, the SIR spread-
ing process can be mapped to a slightly more complicated
percolation problem [41, 70]. Thus, the epidemic thresh-
old, epidemic probability and epidemic size can be read
from percolation simulations [78, 86, 87]. In this map-
ping, every infected individual, regardless of app adop-
tion, can infect a susceptible neighbor with transmission
probability p = 1 � e��⌧ [78]. Moreover, to model the
quarantines by app-users one needs to delete the links be-
tween two app-users with probability papp. This ensures
that we ignore the infection paths that would go through
two app-users when one of them is successfully quaran-
tined. However, removing these links also removes the
second app-user from the component, even though they
are infected. To correct for this we need to first find
the components of the network, and then extend them,
by including all app-users outside of the component that
are connected to another app-user (and considering the
probability p that the link is kept). See Fig. 1 for an illus-
tration of this process, which leads us to two definitions
of components: normal and extended.

B. Components, epidemic size and epidemic
probability

In the SIR model without apps, the component size
distribution can be used to fully describe the late stages
of the epidemics. Given an initially infected node, the
size of the component it belongs to determines the size of
the epidemic. The relationship between percolation and
the final disease size is particularly simple if the popu-
lation is large enough that it can be approximated with
an infinite contact network. In this case, the percolation
threshold gives the epidemic threshold and below it the
epidemic always spans only a zero fraction of the popula-
tion, because all the components are of finite size. Above
the percolation threshold there is a single giant compo-
nent which spans smax = Smax/N fraction of the nodes.
This is equivalent to both the size of the epidemic, given
that there is one, and the probability that there is an epi-
demic starting from a single initially infected node [78].
The expected size of the epidemics is in this case given
as S2

max.
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(A) (B)

(D)(C)

FIG. 1. (a) Original contact network with app-users marked
with the oval symbol. (b) The normal largest component,
after the dotted links have been removed in the percolation
process by random. When apps are working perfectly, links
between a pair of app-users are removed with probability
papp = 1 and other links are removed with probability p. (c)
An example for a path of infection: the second app-user can
be infected therefore it must be included in the outbreak size
(d) Extending the giant component to include the secondary
app infections. The second infected app-adapter is added to
the giant component with transmission probability p.

When we introduce apps to the spreading process the
equivalence of the epidemic size and epidemic probability
breaks down. Both the normal component and the ex-
tended component become important. The probability
that there is an epidemic is still given by the component
size as in the normal SIR process. However, the epidemic
size, given that there is one, is now given by the extended
component size S0

max. The expected epidemic size is then
given by SmaxS0

max.
Similar relationships hold for finite-size systems. For

example, the expected size of the epidemics from single
source becomes

hEi =
X

c

Sc

N
S0
c , (1)

where Sc is the normal size and S0
c is the extended size of

the component c and N is the total number of nodes. In
this formula, Sc/N gives the probability that the initially
infected node is in the component c and S0

c gives the size
of the epidemic if a node in component c is chosen.

C. Network models

We aim to study how the network topology and the
locations of the app-users in the network a↵ect the epi-
demics. We study networks with degree distribution
P (k) and average degree hki such that each node is an
app-user with probability ⇡a and not an app-user with
probability 1� ⇡a. We use Poisson (ER) random graphs
[88] to model homogeneous contact patterns and scale-
free networks generated with the configuration model [55]

where P (k) / k�3 to model heterogeneous contact pat-
terns. The ⇡aN app-users can be picked 1) uniformly at
random from the underlying network or 2) by distribut-
ing the apps in the order of their degree such that the
high-degree nodes get the apps first.

To insert homophily (heterophily) in app adoption, we
assume that app-users are more likely (are less likely) to
be connected together. This can be controlled by the
probability ⇡aa that an app-user is connected to another
app-user; this stochastic block model network is a type
of Ei,i0 network introduced in Ref [89] with two groups
of nodes: app-users and individuals without the app.
The existence of homophily or heterophily of the network
structure is determined by comparing ⇡aa to its value for
the neutral case with no homophily or heterophily.

In the absence of homophily or heterophily, ⇡aa = ⌘a,
where ⌘a is the ratio of links that emerge from app-users
to the total number of stubs (nodes connections); this is
because if the nodes were connected purely at random,
the probability that a link from an app-user connects it to
another app-user equals the ratio of the number of stubs
that app-users have to the total number of stubs, i.e., ⌘a.
In the case of a random selection of app-users ⌘a = ⇡a,
since both app-users and non-app-users have on average
the same number of stubs and the fraction of stubs that
app-users have equals the fraction of app-users in the
system, i.e., ⇡a. Nonetheless, in a high-degree targeting
strategy, the number of stubs that app-users have on av-
erage is larger than that of non-app-users. In that case,
⌘a can be calculated from the degree distribution (see
Sec. II A). When ⇡aa > ⌘a, app-users are more likely to
be connected to each other than a purely random network
in which they are connected with probability ⌘a. Hence
in that case there is homophily in the connection between
the app-users, which means there is also homophily in the
connections between non-app-users. On the other hand,
when ⇡aa < ⌘a nodes are more likely to be connected to
the nodes of the other type (heterophilic network).

II. ANALYTIC AND SIMULATION METHODS

The epidemics are here studied with various methods
of approximation. We employ analytical computations
based on mean-field-type approximations to e�ciently
analyse the wide parameter space of our models and to
provide explicit formulas for our main observable quan-
tities. Here an approximation based on branching pro-
cesses can be used to determine the critical point. Follow-
ing Ref. [41], more detailed calculation based on perco-
lation arguments will give us the component sizes which
can be related to the final epidemic size and epidemic
probability. These mean-field approximations are then
complemented by simulations of the network connectiv-
ity. Finally, we explore the accuracy of the mean-field
approximations via explicit simulations of the SIR model.
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A. Giant component size from consistency
equations

To study the behavior of the epidemic dynamics we
form consistency equations for the giant component size.
In Ref. [41] the governing equations for the size of the
epidemic and the transition point were obtained for the
case of random networks in the absence of homophily.
Here we derive the analytical results for the more gen-
eral case of the spectrum of heterophilic to homophilic
networks, a special case of which are the non-homophilic
networks of Ref. [41]. We consider that app-users might
be connected together with a pattern di↵erent from pure
random chance, this can also be the case for the non-
users. In the case of a homophilic network where the
app-users are more likely to be connected together, the
non-users are also more likely to be connected to individ-
uals of the same kind. This is equivalent to saying that
groups of people who adopted the app are likely to be
groups of nodes in the network with members in rather
close distance from each other. To represent the bias
in connection probabilities we consider that a link from
an app-user is connected to another app-user with prob-
ability ⇡aa and other types of links were formed with
probabilities ⇡an = 1 � ⇡aa, ⇡na = ⇡a

1�⇡a
(1 � ⇡aa) and

⇡nn = 1 � ⇡na = 1�⇡a�⇡a(1�⇡aa)
1�⇡a

, where ⇡a is the proba-
bility that a person is an app-user and the second equal-
ity comes from the balance between the number of links
from app-users to non-app-users and from non-app to
app-users, that is, ⇡aN⇡anhki = (1� ⇡a)N⇡nahki.

Our aim is to write the self-consistency equations for
the probability, u0, that following a link to a non-app-
user does not lead to the giant component and proba-
bility ua, that following a link to an app-user does not
lead to the giant component. Using these probabilities
the relative size of the giant component s and the relative
size of the extended giant component s0 can be obtained,
where s is in fact the fraction of nodes infected through
non-app-users, while s0 also includes individuals caught
infection though an app-user before s/he could quaran-
tine her/himself (see Sec. II C 1).

Similar to Ref. [41], we can write the conditional prob-
abilities of u0 and ua given that they have degree k as

u0(k) =
kX

k0=0

✓
k

k0

◆
⇡k0

nau
k0

a (1� ⇡na)
k�k0

uk�k0

0 , (2)

ua(k) =
kX

k0=0

✓
k

k0

◆
⇡k0

aa(1� ⇡aa)
k�k0

uk�k0

0 . (3)

Then using a treatment similar to Ref. [41], the self-
consistency equations can be written as:

u0 = g1((1� ⇡na)u0 + ⇡naua ) , (4)

ua = g1((1� ⇡aa)u0

+⇡aa(papp + (1� papp)ua) ) , (5)

and

s = 1� (1� ⇡a)g0 ((1� ⇡na)u0 + ⇡naua)

� ⇡ag0( (1� ⇡aa)u0

+ ⇡aa(papp + (1� papp)ua)) , (6)

where g0 and g1 are, respectively, the generating func-
tions for degree and extended degree distributions [55],
papp is the probability the apps work as expected (1�papp
is then the probability that the app-user does not quar-
antine her/himself after being notified of exposure to an
infectious app-user). Note that ⇡na is determined by the
free parameters ⇡a and ⇡aa as we already showed that
⇡na = ⇡a

1�⇡a
(1� ⇡aa).

We can approximate s0 by writing:

s0 = 1� (1� ⇡a)g0 ((1� ⇡na)u0 + ⇡naua)

� ⇡ag0( (1� ⇡aa)u0 + ⇡aaua)) , (7)

where, as opposed to Eq. 6, the third term is not a func-
tion of papp and the reason is that Eq. 6 assumes that
if the app works (which happens with probability papp)
then the probability that a link connected to the app
node does not lead to the giant component is 1 (while
if the app doesn’t work it is ua). However, whether the
app works or not, the probability that an app user does
not get infected from another app user is ua (the di↵er-
ence between the two cases is only that when the app
works if the second app user is infected s/he quarantines
her/himself and s/he doesn’t infect any other node).
In the case of including a transmission probability p

which is less than 1 (in the above equations it was as-
sumed the links are transmitting with probability 1),
Eqs. 4 and 5 will change to:

u0 = 1� p+ pg1((1� ⇡na)u0 + ⇡naua) , (8)

ua = 1� p+ pg1((1� ⇡aa)u0

+ ⇡aa(papp + (1� papp)ua)) . (9)

When the fraction ⇡a of nodes selected to adopt the
app are all the highest degree nodes in the network, these
nodes all have a degree higher than ka�1 such that they
include some of ka nodes and the rest are comprised of all
nodes with degree larger than ka. Then for the fraction
⌘a of the links protruding from the app-users (which are
the top ⇡a fraction of nodes) can write:

⌘a = r⇤kapka/hki+
1X

ka+1

kpk/hki (10)

=
1X

ka,right

kpk/hki , (11)

where r⇤ is the fraction of degree ka nodes that are app-
users and in Eq. 11 we absorbed r⇤ into pk so that
pka,right = r⇤pka represents the fraction of nodes in the
network that have degree ka and are app-users (so in
Eq. 11, ka,right takes the value ka).
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Then for a network with homo/heterophily:

u0 = 1� p+ p
1

1� ⌘a

ka,leftX

k=0

qk[(1� ⇡na)u0

+ ⇡naua]
k , (12)

ua = 1� p+ p
1

⌘a

1X

ka,right

qk[(1� ⇡aa)u0

+ ⇡aa(papp + (1� papp)ua)]
k , (13)

and

s = 1�
ka,leftX

k=0

pk [(1� ⇡na)u0 + ⇡naua]
k

�
1X

ka,right

pk[(1� ⇡aa)u0

+ ⇡aa(papp + (1� papp)ua)]
k . (14)

A special case of which are networks with neutral (non-
existing) homophily, where ⇡aa is obtained to be equal to
⌘a and accordingly ⇡na = ⌘a, therefore,

u0 = 1� p+ p
1

1� ⌘a

ka,leftX

k=0

qk [(1� ⌘a)u0 + ⌘aua]
k ,(15)

ua = 1� p+ p
1

⌘a

1X

ka,right

qk[ ⌘a(papp + (1� papp)ua)

+ (1� ⌘a)u0 ]k , (16)

and

s = 1�
ka,leftX

k=0

pk [(1� ⌘a)u0 + ⌘aua]
k

�
1X

ka,right

pk[⌘a(papp + (1� papp)ua)

+ (1� ⌘a)u0]
k . (17)

These results predict the behavior of the epidemic dy-
namics in the thermodynamic limit, therefore they de-
scribe the dynamics very well when the network size is
large enough.

B. Mean-field approximation for the branching
process

An alternative to writing the consistency equations for
the giant component size is to assume that the epidemic
dynamics is governed by a branching process. Then, an
straightforward way of finding the epidemic threshold in
the SIR model is to find the critical point of a branch-
ing process, where the branching factor is given by the
expected excess degree q. In the epidemic setting the
branching factor k̄ = pq which gives the expected number

of people one infected person infects during the epidemic
process. Note that this is di↵erent from the basic repro-
duction number that has been defined in the networks
as R0 = �/�hki [79]. In the SIR model with the app,
we need to duplicate the populations so that we track
separately the ones without the app (Sn, In and Rn) and
with the app (Sa, Ia and Ra).
Given that the apps are uniformly distributed to ⇡a

fraction of the nodes and k̄ is the branching factor, we can
write a mean-field approximation based on the branching
process as follows:

I(t+1)
n = k̄

⇣
⇡nnI

(t)
n + ⇡anI

(t)
a

⌘
, (18)

I(t+1)
a = k̄

⇣
⇡naI

(t)
n + ⇡aa(1� papp)I

(t)
a

⌘
. (19)

By defining a = ⇡nnk̄, b = ⇡nak̄, c = ⇡ank̄ and d =
⇡aak̄(1 � papp), the di↵erence equations can be written
as:

Xt+1 = AXt , (20)

where Xt =

 
I(t)n

I(t)a

!
and A =

✓
a b
c d

◆
.

The steady state Xt+1 = Xt is possible if all the eigen-
values � of the transition matrix A (whether real or com-
plex) have an absolute value which is less than 1;

�± =
a+ d

2
±
r

(
a+ d

2
)2 � (ad� bc). (21)

Without contact tracing, there is a chance of epidemic
given the initial reproductive number is k̄ > 1. In the
case of app adoption, the critical value of app-users ⇡c

a
that are needed for reducing the reproductive number
can be derived by setting � = 1 which leads to:

1� ⇡a(2� ⇡aa)

1� ⇡a

⇣
k̄ + k̄2⇡aa(1� papp)

⌘

+ k̄⇡aa(1� papp) +
k̄2⇡a(1� ⇡aa)2

1� ⇡a
= 1.

(22)

When apps work perfectly, the epidemic threshold is
given by:

k̄c =

q
1 + ⇡a⇡aa

⇥
4(⇡a + ⇡aa)� 3(⇡a⇡aa + 2)

⇤

2⇡a(⇡aa � 1)2

+
2⇡a � ⇡a⇡aa � 1

2⇡a(⇡aa � 1)2
.

(23)

For each value of ⇡a there is a non-trivial optimum value
⇡opt
aa that leads to largest epidemic threshold in terms of

the branching factor, which is:

⇡opt
aa =

⇡a � 2

3⇡a � 4
. (24)
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The critical app adoption can be also calculated as:

⇡c
a =

1� k̄

k̄2(⇡aa � 1)2 + k̄(⇡aa � 2) + 1
. (25)

In the absence of homo/heterophily, ⇡aa = ⇡a, Eq. 22,
gives the same result as of Ref. [41], such that:

⇡c
a =

k̄ � 1 +
q�

k̄ � 1
��
k̄ + 3

�

2k̄
. (26)

C. Component size simulations

Next, we describe the way to extract the giant compo-
nent in simulated networks and how these simulation re-
sults can be used for finding the critical points of the dis-
ease spreading process. The component sizes can also be
used to find the epidemic size distributions as described
in Section IB.

1. Component Extension

In each simulation run, we simulate one network struc-
ture G and distribute the apps to the nodes according
to one of the models described in Section IC. From the
original network G, we keep each link with probability
p = 1� e��⌧ , which is the probability of infection going
through a link without apps. We also remove all the links
between two app-users with probability papp and call the
resulting network Ga. The components of graph Ga are
the normal components.

The extended components can be reached by going
through every normal component and extending it. For
every app-user in the component ↵ 2 C, we go through
the neighbors n↵ = {↵1,↵2, , ...,↵k} in the original net-
work G. If ↵i is an app-user and not in the component
↵i /2 C, we add it to the component extension C 0 with
probability p. The total set of infected nodes, if starting
from a node in C, is going to be C [ C 0. As these are
disjoint sets, we can compute the size as S0

C = |C|+ |C 0|
and Sc = |C|.

2. Susceptibility

In numerical simulations of finite size systems we can
use the peak of a susceptibility measure to find the crit-
ical transition point. Theoretically, susceptibility [55] is
a measure of fluctuation in the component sizes which is
singular at the epidemic threshold (the critical point). In
network percolation studies, it is defined as the expected
growth in the size of the giant component when a random
link is added to the network. Therefore, susceptibility in
an ordinary percolation problem can be written as:

� =

P
c 6=cmax

S2
c � S2

cmax

N � Scmax

, (27)

where Sc is the size of the component c, cmax =
argmaxcSc is the largest component.
This formulation of susceptibility is not suitable in the

current case. In fact, using the maximum value of Eq. 27
could lead to estimates of critical points that are very far
from the actual one. Instead, we want to compute the
expected growth in the extended giant component, which
can be computed as:

�0 =

P
c 6=cmax

ScS0
c(1�

S0
cmax
N )

N � Scmax

, (28)

where Sc and S0
c are the size and the extended size of

the component c and cmax = argmaxcS
0
c is the largest

component measured in the extended size.

D. Explicit compartment model simulations

Finally, we will perform explicit simulations of the
spreading processes to confirm the theoretical results we
arrived at via the approximations we presented above.
The e↵ect of tracking applications can be integrated into
compartment model simulation by introducing separate
susceptible and infected compartments for people with
and without app. The interactions between people with
no app installed is the same as normal SIR process,
namely, susceptible individuals with no app Sn can be-
come infected In by being in contact with infected people
that either don’t have the app installed In or have it in-
stalled Ia. However, if a susceptible individual with the
app Sa comes into contact with an infected individual
with app Ia, they will become infected but they will also
receive infection notification from the app which means
they will be quarantined Iq. Quarantined individuals
cannot infect anyone else. Eventually, all the infected
individuals will move to recovered compartment after a
certain predetermined amount of time has passed. The
recovered compartment is divided into three compart-
ment (Rn, Ra, and Rq) to track from which infected
compartment the node is originating from.
The set of all reactions can be written as follows:

Sn + In
��! In + In Sa + In

��! Ia + In

Sn + Ia
��! In + Ia Sa + Ia

��! Iq + Ia

In
��! Rn Ia

��! Ra

Iq
��! Rq .

(29)

Note that unlike most common SIR models, while edge
reactions governed by Poisson processes happening at a
constant rate �, node reactions are governed by constant
cuto↵ time 1/� and happen exactly 1/� units of time
after change in state.
As interactions in the simulation are bound to take

place over edges of a static network, with nodes belonging
to each of the compartments, as shown in Sec. III, the
results are similar to a component size simulation (which
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are described in Sec. II C) on a network with an e↵ective
connectivity of k̄ = hki(1�e��/�). As it is only the ratio
between � and � that plays as a parameter in the model,
from now on we set the value of � to 1.

In each simulation, starting from a single infected node
and running the simulation in discrete time steps of 10�4

units until no further reaction is possible, the final num-
ber of nodes that end up in Rq, Ra and Rn determine
total size of infection corresponding to the extended com-
ponent size S0 of the component that the initial seed node
belongs to. Final combined size of the Rn and Ra com-
ponent, however, represents the size of the component Sn

that the seed node belongs to, had we removed app-app
links. By adding Ia and Iq compartments, as compared
to normal SIR processes, and linking them to the state
of the source of infection and the internal state of each
node, we are including information about history of the
spreading agent more than one step back in simulation
of the spreading process.

III. NUMERICAL RESULTS

We will next illustrate using the theory and simulation
introduced in Sec. II how the various parameters a↵ect
the epidemic sizes and epidemic probabilities. The simu-
lation studies are done in networks of 104 nodes and aver-
aged over 10 realizations. We use two network topologies:
homogeneous networks (Erdős-Rényi networks) with ex-
pected degree hki = 10 and networks created with the
configuration model with power-law degree distribution
p(k) / k�3, where the amount of degree 1 nodes is ad-
justed such that the average degree is 10.

A. Di↵erences in normal and extended components

The di↵erence of the epidemic probability (normal
component size) and the epidemic size (extended compo-
nent size), is a phenomenon that is specific to epidemics
in the presence of app-adaptors. Breaking the equiva-
lence of these two measures can have practical conse-
quences as illustrated in Fig. 2a. The di↵erence between
these two grows with the fraction of app-users ⇡a. For
example, when ⇡a = 0.8 and the epidemic probability
(the normal component size) is smax ⇡ 0.5, the epidemic
size (the extended component size) reaches smax ⇡ 0.8.
This is reflected also in the expected epidemic sizes (see
Fig. 2b). Despite the two component definitions di↵ering
from each other, they still display the transition at the
same point and this point can be measured numerically
using the susceptibilities defined in Eqs. (27)-(28) (see
Fig. 2c).

The extended component size is not a conserved quan-
tity like the normal component size in the sense that
the sum of component sizes SP would always sum to the
number of nodes N . Instead, the sum of component sizes
can be significantly larger than the number of nodes (see

FIG. 2. Disease spreading statistics in an Erdős-Rényi net-
work as a function of the e↵ective degree k̄ when there are
⇡a applications that are distributed uniformly randomly. Re-
sults are normalised to the network size N and shown for
⇡a 2 [0, 0.2, 0.4, 0.6, 0.8] with di↵erent markers. (a) The nor-
mal component size, i.e., the epidemic probability, (dashed
lines and markers following them) and the extended compo-
nents, i.e. the epidemic size, (solid lines and markers following
them). Dashed and solid lines indicate the results from theory
introduced in Sec. II A and the markers are results computed
from component sizes of simulated networks as described in
Sec. II C. (b) The expected epidemic size computed with the-
oretical results introduced in Sec. II A (solid lines), simulated
component sizes introduced in Sec. II C (filled markers), and
explicit SIR simulations introduced in Sec. II C (empty mark-
ers). (c) Susceptibility of the normal giant component �
(dots) and the extended component �0 (solid lines). Peaks
are at the same positions for both types of curves. (d) The
fraction of sum of component sizes and network size SP/N .

Fig. 2d) and the maximum value it can reach grows with
the number of application users ⇡a. The deviation from
SP/N = 1 reaches its maximum with disease parameters
higher than the threshold values, but when the disease
reaches a large enough population the fraction SP/N
starts to decay reaching SP/N = 1 when everybody be-
longs to the normal giant component.

B. Quarantine failures

The assumption in Section IIIA is that i) apps work
perfectly and ii) an app-user always self-isolates before
having a chance to apps the infection, meaning that there
are no quarantine failures, papp = 1. It is of practical sig-
nificance to investigate the e↵ects of quarantine failures
[46] on the epidemic threshold and epidemic size. Fig. 3
shows that in the absence of major quarantine failures,
epidemic tracing and mitigation with apps can still be a
valid strategy if app adoption level in a society is high
enough. The e↵ect of app adoption rate ⇡a is more im-
portant than the rate at which apps function, but both
need to be relatively high in order for the apps to have a
significant impact.
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FIG. 3. The e↵ect of quarantine failures in homogeneous net-
works when app adoption is done uniformly randomly. (a)
The epidemic threshold as a function of quarantine probabil-
ity papp and app adoption rate ⇡a. All threshold values larger
than 4 are shown with the same color. By setting the e↵ec-
tive connectivity of the network to k̄ = 1.8 (b) the expected
epidemic size, (c) the extended giant component size and (d)
the normal giant component size are shown as a function of
papp and ⇡a.

Even if we are above the epidemic threshold, the apps
can be useful. Especially when the application adoption
⇡a is high, the quarantines can be very unreliable and
the outbreak size (Fig. 3b-c) and epidemic probability
(Fig. 3d) both remain small. Again, overall both the app
adoption and quarantine reliability are important, with
the app adoption rate being more important.

C. Degree heterogeneity and high-degree app
targeting

Real networks are degree-heterogeneous and this het-
erogeneity has a strong e↵ect on the final outbreak size
and the epidemic threshold. Fig. 4 shows the expected
epidemic sizes with two di↵erent strategies in app adop-
tion, random and high-degree targeting for di↵erent frac-
tions of app-users ⇡a in the network. In homogeneous
networks, Fig. 4a, contact tracing decreases the expected
epidemic size and pushes the epidemic threshold forward.
These e↵ects can be further amplified by shifting to the
high-degree targeting in app adoption. With 80% of app-
users, the epidemic threshold can move from k̄ = 1 to
k̄ = 4 which means at that point expected epidemic size
is zero while without contact tracing it would be almost 1.
Note that in homogeneous networks, the e↵ective average
degree of the contact network k̄, has a good correspon-
dence to the reproduction number of the infection.

FIG. 4. Expected epidemic size hEi as a function of e↵ec-
tive degree k̄. Results are shown for di↵erent values of ⇡a

using di↵erent markers: 0 (stars), 0.2 (triangles), 0.4 (discs),
0.6 (diamonds), and 0.8 (crosses). The solid lines with mark-
ers indicate the high-degree targeting strategy while single
markers indicate the random app adoption. The insets show
the epidemic threshold for the two strategies as a function of
app-adoption rate ⇡a (such that the upper point is always the
high-degree targeting strategy). Results are shown for two
network topologies; (a) homogeneous networks with Poisson
degree distribution and (b) heterogeneous networks with a
power-law degree distribution P (k) / k�3.

In networks with degree-heterogeneity, the epidemic
threshold vanishes in normal SIR processes. This ef-
fect holds in contact-traced epidemics if we distribute
the apps uniformly randomly. However, from Fig. 4b
it is clear that contact tracing can significantly reduce
the expected epidemic size even when the apps are ran-
domly distributed and the epidemic threshold remains
unchanged. With a high-degree targeting strategy, it
is possible to move the epidemic threshold. Comparing
the expected epidemic size at di↵erent values of k̄ < 3
shows that in real-world situations, app adoption of su-
per spreaders is of significant importance. Since hubs
become the app-users, this strategy has drastic e↵ects
on the size and threshold of the epidemic, such that the
threshold get pushed from somewhere near zero to a value
k̄ > 5 with the app adoption rate ⇡a = 0.8. Therefore,
the reproduction number can be much more controlled
in the high-degree targeting strategy.

D. The e↵ect of homophily and heterophily

In previous sections, there was an assumption that
app-users are disturbed with random mixing patterns;
the fact that one of the connections of a node is an
app-user has no e↵ect on the probability of that node
being an app adopter. Next, we explore how ho-
mophily/heterophily a↵ects the epidemics based on the
app usage.
The Fig. 5 illustrates that increasing heterophily leads

to lower epidemic threshold and larger epidemics for a
fixed k̄. Increasing homophily from random mixing is
initially preferable, but the optimum lies between ran-
dom mixing and full homophily. For the expected epi-
demic size, strong heterophily is especially detrimental
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FIG. 5. The e↵ect of homophily/heterophily in app adoption
in homogeneous networks. Expected epidemic size at k̄ = 1.8
for (a) random app adoption and for (c) high-degree targeting
strategy. Epidemic threshold for (b) random app adoption
and for (d) the high-degree targeting strategy. Thresholds
are from theoretical results and expected epidemic sizes are
from percolation simulations. The empty white region is the
spectrum that having such a homo/heterophilic population is
impossible.

(see Fig. 5a for the homogeneous network and with ran-
dom app adoption and in Fig. 5c for high-degree targeting
strategy). The optimum value for heterophily/homophily
is especially visible for the epidemic thresholds in Fig. 5b
and Fig. 5d, respectively, for the random and high-degree
targeting strategies. Fig. 6b gives a more clear picture of
existence of an optimum value for the epidemic thresh-
old in the case of homophily. According to Eq. 23, for
each fraction of app-users ⇡a in the network, the epidemic
threshold k̄c(⇡a,⇡aa) can be maximised by controlling
the homophily in app adoption ⇡aa. The pattern in the
Fig. 6b is very similar to the convex pattern in Fig. 5b,
even though they are calculated using di↵erent approxi-
mations and approaches (see Sec. IIA and Sec. II B).

Another view on the e↵ect of homophily and het-
erophily is given by finding the critical fraction app-users
⇡c
a that is needed to go beyond the epidemic threshold as

function of (⇡aa and k̄). Fig. 6a depicts this relation-
ship based on Eq. 25 and shows that ⇡c

a is not monotonic
function of (⇡aa but there is an optimal value of (⇡aa giv-
ing a lowest fraction apps that are needed to stop the
epidemic. Note that in a network without homophily or
heterophily ⇡c

a increases monotonically as the function of
the e↵ective connectivity k̄ (see the inset of Fig. 6a).

FIG. 6. Existence of optimum value for homophily based on
branching process approximation. (a) The critical value of
app users ⇡c

a that are needed for reducing the reproductive
number as a function of e↵ective connectivity and homophily
probability ⇡aa. The value of ⇡

c
a remains the same within each

black curve. The inset is the graph of ⇡c
a as a function of k̄

in the absence of homophily ⇡aa = ⇡a given by Eq. 26. (b)
The epidemic threshold k̄ as a function of ⇡aa and ⇡a. The
red symbols show the ⇡opt

aa for each ⇡a which is given by to
Eq. 24. The pattern here is consistent with another approx-
imation which is show in Fig. 5b, while epidemic threshold
values are slightly di↵erent due to di↵erent levels of approx-
imations. Note that here we display the epidemic threshold
for all values of ⇡aa and ⇡a even if networks with some of these
parameters cannot be created in practise [89] as indicated by
the white regions in Fig. 5b.

IV. DISCUSSIONS

In this article we have developed two flexible analytic
approximations to SIR epidemics in the presence of con-
tact tracing apps. First, we use a branching processes
to derive explicit analytical solutions for the epidemic
thresholds. Second, we expand the framework of using
consistency equations to analyze digital contact tracing
[41], which is an alternative to other approaches [70].
Contrary to the conventional SIR spreading, a full pic-
ture of the late-state epidemics in the presence of digital
contact tracing is not given by a single observable (the
component size) but one also needs two variables (normal
and extended component sizes). These correspond to the
probability of the epidemic and the epidemic size, which
are equivalent in the SIR process. Here we see that the
two quantities can be significantly di↵erent if the number
of application users is high.
Our numerical work illustrates that the results of dig-

ital contact tracing can be very sensitive to the network
structure, how applications are distributed among the
population and how well the tracing works. That is, re-
alistic estimates of the e↵ects of digital contact tracing
can only be achieved if one is able to choose correct pa-
rameter ranges in a high-dimensional parameter space.
In this study, we had 6 of such parameters: shape of
the degree distribution, average degree, amount of het-
erophily/homophily, application prevalence, quarantine
probability and targeting strategy. While we were able to
establish and confirm basic laws governing individual pa-
rameters and some combinations of parameters, explor-
ing such a parameter space fully for possible compound
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e↵ects is out of the reach in simulations. However, these
types of e↵ects can be largely revealed by inspecting the
analytic equations we derived.

There are several open questions for which the results
are only hinted by this study and other studies. Clearly,
there are types of network structures we ignore here. For
example, the heterophily and homophily could be con-
structed in the network in slightly di↵erent ways. From
a practical point of view, one could create networks based
on real age-based contact structures and digital contact
tracing prevalence and estimate the benefits of applica-
tions relative to the risk groups.

Overall the problem of digital contact tracing o↵ers
not only a practical problem to solve, but an interest-
ing theoretical puzzle, because it introduces memory to
the epidemic process. This memory is limited to one
step within the tracing model we use here, but one could
also use multi-step tracing, where also the second neigh-
bors of infected nodes are quarantined in the case that
the first neighbors have already passed on the infection.

Further, here we ignore e↵ects such as quarantines that
do not directly stop the infection from one application
user to another from spreading further. However, in the
case that there is a strong group structure in the net-
work, there could be for example situations where a non-
application user A infects application user B who alerts
another application user C, who actually gets infected
by A and stops the spreading because of the quarantine.
Analyzing such more complicated phenomena can pro-
vide challenges for network scientists for years to come.
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APPENDIX

About quarantine failures, as it was shown in Fig. 3,
Fig. 7 and 8 also show that contact tracing can yield very
good results in terms of reducing the epidemic threshold
and expected epidemic size if every thing goes right at
least for 50% and half of the people use the apps. This
e↵ect is larger if we go for the high-degree targeting strat-
egy especially in heterogeneous networks as is shown in
Fig. 7d and 8d. Fig. 9 and 10 show that there is an
optimum value for homophily in app adoption as it was
shown in Fig. 5 and Fig. 6. The only exception is when
we follow high-degree targeting strategy in heterogeneous
networks. In this case we can see the hub e↵ect on the
epidemic threshold and size.

FIG. 7. The epidemic threshold as a function of quaran-
tine probability papp and app adoption rate ⇡a. The e↵ect of
quarantine failures in homogeneous networks with (a) random
app adoption (b) and high-degree targeting strategy. Also for
heterogeneous networks with a power-law degree distribution
with (c) random app adoption (d) and high-degree targeting
strategy. All threshold values larger than 5 are shown with
the same color.

FIG. 8. Expected epidemic size in the case of quarantine
failures. Expected epidemic size at k̄ = 1.8 for homogeneous
networks with (a) random app adoption (b) and high-degree
targeting strategy. Also for heterogeneous networks with a
power-law degree distribution with (c) random app adoption
(d) and high-degree targeting strategy. In (b) and (d) the
pattern is di↵erent due to the e↵ects of hubs. When doing
high-degree targeting strategy, quarantine failures are more
significant since the infected ones are highly influential on the
dynamics of the spreading.

FIG. 9. The e↵ect of homophily/heterophily in app adoption
on the expected epidemic size. Expected epidemic size at k̄ =
1.8 from percolation simulations for homogeneous networks
with (a) random app adoption (b) and high-degree targeting
strategy. Also for heterogeneous networks with a power-law
degree distribution with (c) random app adoption (d) and
high-degree targeting strategy. The empty white region is the
spectrum that having such a homo/heterophilic population is
impossible.
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FIG. 10. The e↵ect of homophily/heterophily in app adop-
tion on the epidemic threshold and optimum pattern for ho-
mophily. Epidemic thresholds for homogeneous networks with
(a) random app adoption (b) and high-degree targeting strat-
egy. Also for heterogeneous networks with a power-law de-
gree distribution with (c) random app adoption (d) and high-
degree targeting strategy. The empty white region is the
spectrum that having such a homo/heterophilic population
is impossible.



Magnetic properties of BaCuTe2O6

X-ray diffraction, thermodynamic measurements, and density-functional band-

structure calculations are used to study the magnetic behavior of BaCuTe2O6, a

member of the ACuTe2O6 structural family that hosts complex three-dimensional

frustrated spin networks with possible spin-liquid physics. Temperature-dependent

magnetic susceptibility and heat capacity of the Ba compound are well described by

the one-dimensional spin-1/2 Heisenberg chain model reminiscent of the Sr-analog

SrCuTe2O6. While the intrachain coupling J/kB≃37K is reduced compared to 49 K in

the Sr compound, the Néel temperature increases from 5.5 K (Sr) to 6.1 K (Ba).

Unlike the Sr compound, BaCuTe2O6 undergoes only one magnetic transition as a

function of temperature and shows signatures of weak spin canting. We elucidate the

microscopic difference between the Sr and Ba compounds and suggest that one of

the interchain couplings changes sign as a result of negative pressure caused by the

Sr/Ba substitution. The Néel temperature of BaCuTe2O6 is remarkably insensitive to

the magnetic dilution with Zn2+ up to the highest reachable level of about 20 %.
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Analytic continuation over complex

landscapes

Continuation of models to complex parameters or phase space integrals to complex

degrees of freedom is useful in a variety of contexts—for defining an otherwise

divergent theory or ameliorating the sign problem in Monte Carlo—and relies on

knowledge of the critical points of the energy landscape. We study complex

continuation of models with complex, or 'rugged,' energy landscapes. Unlike real

landscapes, there is no useful classification of saddles by index. Instead, the

spectrum at critical points determines their tendency to trade topological numbers

under continuation. These trades, which occur at Stokes points, proliferate when the

spectrum includes marginal directions and are exponentially suppressed otherwise.

This gives a direct interpretation of the 'threshold' energy—which in the real case

separates saddles from minima—where the spectrum of typical critical points

develops a gap. This leads to different consequences for the analytic continuation of

real landscapes with different structures: the global minima of "one step replica-

symmetry broken" landscapes lie beyond a threshold and are locally protected from

Stokes points, whereas those of "many step replica-symmetry broken" lie at the

threshold and Stokes points immediately proliferate.
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Thermodynamics of structure-forming

systems

Structure-forming systems are ubiquitous in nature, ranging from atoms building

molecules to self-assembly of colloidal amphibolic particles. The understanding of the

underlying thermodynamics of such systems remains an important problem. Here, we

derive the entropy for structure-forming systems that differs from Boltzmann-Gibbs

entropy by a term that explicitly captures clustered states. For large systems and low

concentrations the approach is equivalent to the grand-canonical ensemble; for small

systems we find significant deviations. We derive the detailed fluctuation theorem and

Crooks’ work fluctuation theorem for structure-forming systems. The connection to

the theory of particle self-assembly is discussed. We apply the results to several

physical systems. We present the phase diagram for patchy particles described by

the Kern-Frenkel potential. We show that the Curie-Weiss model with molecule

structures exhibits a first-order phase transition. Reference: Nature Communications

12 (2021) 1127.
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Irreversibility, heat and information flows

induced by non-reciprocal interactions

In complex systems far from equilibrium, such as active matter, Newton's third law

does not always hold, giving rise to non-reciprocal interactions. Here, we study the

thermodynamic properties induced by non-reciprocal interactions between stochastic

degrees of freedom. We show that non-reciprocal coupling alone implies a steady

energy flow through the system, as well as a nontrivial information flow. Remarkably,

non-reciprocal coupling can induce a reversed heat flow from cold to hot. We also

discuss the dynamics and thermodynamics seen by a marginal observer, who only

sees one of two non-reciprocally coupled systems. We show that, due to the non-

reciprocity, the non-Markovian dynamics seen by the marginal observer involves

complex types of memory, and that the marginal entropy production obeys a

generalized second law involving the information flow. [SAM Loos, SHL Klapp, NJP

22, 123051 (2020).]
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Thermodynamics of Gambling Demons

The stochastic nature of games at the casino allows lucky players to make profit by

means of gambling. Like games of chance and stocks, small physical systems are

subject to fluctuations, thus their energy and entropy become stochastic, following an

unpredictable evolution. In this context, information about the evolution of a

thermodynamic system can be used by Maxwell's demons to extract work using

feedback control. This is not always the case, and a challenging task is then to

develop efficient thermodynamic protocols achieving work extraction in situations

where feedback control cannot be realized, in the same spirit as it is done on a daily

basis in casinos and financial markets. We introduce and realize gambling demons

who, following a customary gambling strategy to stop a nonequilibrium process at

stochastic times, are able to extract more average work than the free energy change.

We derive second laws in the presence of gambling, and a set of universal stopping-

time fluctuation relations for the work done in classical and quantum stochastic non-

stationary processes. We test experimentally our results in a single-electron box,

where an electrostatic potential is used to drive the dynamics of individual electrons

tunneling into a metallic island.
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Study of electronic, magnetic and magnetocaloric properties of double perovskites  
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We have used the density fonctional theory base on full potential linearized augmented plane 
wave combined and Monte Carlo Simulation to study the magnetic, electronic and 
magnetocaloric properties of double perovskites A2BB’O6 with B, B’ and A are metal ions, 
alkali, alkaline earth or rare earth ions, respectively. The total and partial densities of states for 
spin up and spins down are found. The thermal magnetization, magnetic susceptibility and 
specific heat are given. The magnetic entropy change and relative cooling power are found.  
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Asymmetric coupling of two-channel exclusion process with interactions 

   Tripti Midha 

Department of Mathematics, Akal University, Talwandi Sabo, Punjab, India,151302 
 
Molecular motors or motor proteins are enzymatic molecules that support various biological 
processes such as intracellular transport, cell division, synthesis of proteins, cell motility and signalling. 
They perform mechanical work by typically converting the chemical energy derived from the 
hydrolysis of ATP. Experiment evidence suggest that the motors work in parallel channels 
(microtubules) and undergo various intermolecular interactions. In this work, we examine an open 
two-channel asymmetrically coupled interactive totally asymmetric simple exclusion process. The 
model incorporates the inter as well as intra channel interactions in the thermodynamically consistent 
way. We developed a modified cluster mean-field approach to capture the correlations in the system. 
The theory can analytically compute the steady-state phase boundaries and phase diagram of the 
system. We also analytically calculate the correlations and discuss its nature for repulsive and 
attractive interaction energy. We validate our theoretical results with extensively performed Monte 
Carlo simulations. Further, the biological significance of the results is also examined. 
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Adsorption of a confined polymer chain:

Exact results

In this paper, we report exact results on the adsorption-desorption phase transition

for a confined flexible polymer chain. The chain is confined in-between a pair of

attractive impenetrable surfaces/plates; and the adsorption transition point is obtained

analytically for the possible values of the plate separation. Our study showed that the

adsorption transition point is a function of the confining plate's separation, provided

both surface have attractive interaction with the monomers of the chain. We have also

obtained exact results for other possible options of the plate-monomer interaction to

understand the adsorption-desorption phase transition behavior of the confined

polymer chain.
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STUDY OF TIME SERIES OF EPIDEMIC PREVALENCE
USING THE VISIBILITY GRAPH

J. T. Moraes (juliane.moraes@ufv.br) and S. C. Ferreira (silviojr@ufv.br)
Departamento de Física, Universidade Federal de Viçosa

Introduction

A modern method of time series analysis is to map them onto com-
plex networks and analyze these structures, called visibility graphs
(VG). In this work we have studied the VG generated from time series of
epidemic prevalence in the SIS epidemic model on regular and complex
networks.

Methods

Given two values (ta, ya) and (tb, yb) will have visibility, i.e will be con-
nected in the associated graph, if any point (tc, yc) between them satisfy
[1]

yc < yb + (ya ≠ yb)
(tb ≠ tc)
(tb ≠ ta)

. (1)

Figura 1: (a) Illustration of the visibility criteria (Eq.(1)) applied to a time series. (b)
The VG generated from it, of size N = 16 nodes.

We studied the susceptible-infected-susceptible (SIS) epidemic model [2]
for di�erent structures.

Figura 2: Illustration diagram showing the possible transitions for the SIS epidemic
model. A susceptible node i (S) will become infected (I) with probability ki⁄, with ki

being the node’s degree and ⁄ the infection rate. Then, it will become susceptible again
with a healing rate µ, fixed as µ = 1 for this work.

Using quasi-stationary methods [3], we generate the time series of epi-
demic prevalence fl, which is the fraction of infected individuals in the
population as a time function. Varying the infection rate ⁄ of the model,
a phase transition in ÈflÍ can be reached in the thermodynamic limit. In
Fig.3 an example of the SIS epidemic model in a square lattice is shown.
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Figura 3: SIS epidemic model in a square lattice of side n = 500. (a) Average quasi-
stationary epidemic prevalence as a function of the infection rate. (b) Example for time
series of epidemic prevalence in the critical region for ⁄ = 0.412.

Every kind of original networks have di�erent activation mechanisms [4]
for the SIS model:
· Regular networks are activated collectively;
· Power law (PL) degree distributed networks, that is P (k) ≥ k≠“, have
some structures that activate and sustain the epidemic [5].

In order to study the VG properties, we calculated the degree corre-
lation [6], a measure that captures the relationship between the degrees
of nodes that link to each other. We evaluated the average degree of the
nearest neighbors Knn. Then, we analyzed the Knn as a function of the
degree Knn(k) ≥ k≠µ [7]. So the degree correlations can be:
· assortative (µ > 0) when nodes of similar degree are connect to each
other;

· disassortative (µ < 0) for the inverse situation;
· neutral (µ ¥ 0).

After a finite size analysis, all the epidemic prevalence time series (and
so the VG) used in this work have size t = 106. The original networks
have size N = 107, except for the square lattice, with size N = n2 and
the 4D lattice N = n4.

Results and Discussion
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Figura 4: Average neighbors degree for VG generated from critical time series for di�erent
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with di�erent “. (d) SIS model in a RRN with degree k = 4.

· For networks with col-
lective activation mecha-
nism the Knn(k) of the
VG becomes disassorta-
tive for a given k as can
be seen in Fig.4.

· The contact process
(CP) model is similar
to the SIS model but
with degree independent
infection probability.

· The SIS model in
PL degree distributed
networks with “ < 2.5
are activated by the
maximum k-core [4].

· Networks with strong lo-
calization as PL degree
distributed with “ > 3
can exhibit outliers, that
are nodes with degree
kout ∫ kaverage.

· The susceptibility (‰)
in Fig.5(a) measures the
fluctuations in the order
parameter fl. For values
of ⁄ close to the critical
point, ‰ will present a
peak.
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2 show the transitions points for which the time series were taken. (b) Average neighbors
degree for the VG generated from the time series on the critical points.

· In Fig. 5(b) the Knn(k) for the VG are shown. Note that the curves from the first peak are strongly
assortative. This peak is related to the outliers presence on the network.
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Conclusions

Knowing the network architecture where the epide-
mic spreads is important on the elaboration of strate-
gies for combating the disease [8]. However, in many
real cases the network data are not available. In con-
trast, the values of new cases of a disease are easier
to be accessed, and a time series of epidemic preva-
lence can be constructed. Our results show that the
VG degree correlations are connected to the activa-
tion mechanism of the original network, becoming
more assortative as the localization increases. This
indicates that it may be possible to infer information
about the original network’s structure by analyzing
the epidemic time series in the critical regime.

· Networks with PL degree distribution and 2.5 <
“ < 3 are activated by hubs in the SIS epide-
mic model [5]. But our results show that these
networks are not strongly localized neither exhi-
bit collective pattern.

· As can be seen in Fig.6, the average neighbors de-
gree become neutral for a given k, indicating that
there is a competition of activation mechanisms.
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A different way to analyze model

membranes

A lipid membrane is a complex system, even when we talk about a in silico model.

The amphiphilic molecules composing the system have a range of motion over an

enormous time span, from picoseconds to hours, for that reason is very hard to study

all kind of movements in a molecular dynamic simulation with an all atom

representation. Even microseconds simulations can be a challenge in this moment.

Considering the difficulty of study this systems, we consider a new approach, in which

we use the Pearson Correlation matrix to understand linear correlation between pairs

of lipids and we used that information to construct not directed networks. After that,

we use some tools from information theory to study non linear correlations and

asymmetry in information flow between pairs of lipids. Considering that Transfer

entropy is capable of measuring the amount of directed (time-asymmetric) transfer of

information between two time series (lipid trajectories), we can use it to gain insight

about what agent in the plasma membrane is acting as an influencer and who is

acting like influenced.
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Abstract 

We study the density driven deconfinement phase transition at fixed 

temperature T as a function of quark chemical potential µq in a finite 

volume V within the framework of the phase coexistence model. The 

localization of the critical transition point at fixed T, as a function of µq 

and V is investigated. The study of the quark number susceptibility in 

finite volume and with the color-singletness condition, is well 

confirming the first-order of the deconfinement phase transition. This 

order is determined by calculating the critical exponents relative to the 

quark number susceptibility as well as to other quantities. 

 

 Keywords: Deconfinement phase transition, Quark number 

susceptibility, Color-singletness, Critical exponents. 
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Explaining Balanced Triad Statistics in

Society by Dyadic Interactions

Triadic interactions often account for the evolution of social (signed) triads towards

the so-called balanced state with either three or one positive link. We argue that such

balanced triads can also emerge from dyadic interactions if these interactions are

determined by homophily between agents. Without knowledge of triads in their

neighbourhoods, agents modify their opinions so as to minimize an individual social

tension defined via the weighted sum of opinion overlaps with friends and opinion

discordance with enemies. The model exhibits a transition from unbalanced to

balanced society at a critical temperature which depends on the number of opinions,

G, the mean degree, K, and the relative strength of positive interactions to that of

negative ones, α. When α exceeds 1/2 at fixed temperature, a transition between

steady states with different fractions of balanced triads occurs.
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Non-reciprocal mechanics of crystals

violating Newton's third law

The effective interactions between the constituents of driven and active soft matter

generically defy Newton's third law. Combining simulations and theory, we showed

that microscopic forces violating action-reaction principles cannot stabilize crystalline

order on their own. When competing with conventional potential interactions in 2D

isotropic solids, non-reciprocal forces define six classes of mechanical responses with

no counterparts in equilibrium crystals, all turning otherwise quiescent dislocations

into motile singularities.
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Structure of Wavefunction for Many-Boson

Systems in Mean-Field with Random k-Body

Interactions

Recent experimental developments on ultra-cold atoms have renewed interest in

theoretical investigations on problems like Bose Einstein condensation, quantum

many-body chaos and thermalization in finite interacting many-particle complex

quantum systems. This requires analysis of wavefunction properties, for which it is

crucial to examine the so-called strength functions (or local density of states) in detail

as they give information about how a particular basis state spreads onto the

eigenstates. The chaos measures like number of principal components (NPC),

information entropy, fidelity decay etc. can also be determined by examining general

features of the strength functions. Recently, q-Hermite polynomials have been

employed to study spectral densities of SYK model and the Gaussian to semi-circle

transition in spectral density follows q-normal distribution (f_qN). Recently for fermion

systems it is shown that conditional q-normal density (f_CqN) can be used to

represent strength functions in thermalization region. We analyze wavefunction

structure for interacting bosons in presence of a mean-field using embedded random

matrix ensembles of k-body interactions. The Hamiltonian H is a sum of one-body

h(1) and an embedded Gaussian Orthogonal Ensemble (GOE) of k-body interaction

V(k) with interaction strength λ (denoted by BEGOE (1+k)). A complete analytical

description of variance of strength function as a function of λ and k is derived and

marker λ_t defining thermalization region is obtained. In thermalization region (λ>λ_t),

f_CqN describes Gaussian to semi-circle transition in strength functions as body rank

k of interaction increases. This interpolating form of strength function is utilized to

obtain smooth form for NPC.
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Experiments are carried out in an acrylic three-phase fluidized bed (1.2 m height and
0.1 m inner diameter), provided with a distributor, mounted onto a structure jointlyliquid
to an array of 1 (2”x2”) NaI(Tl) scintillation detectors (Fig.1).6

Calcium alginate gel beads of 4mm mean diameter is the solid phase ( ). TheTable 1
liquid, a dilute solution of CaCl (0.05M), at 2,4 cm/s. The solid holdup at rest is2 flows
10% and the solid to liquid density ratio is 1.01. The tracer path is followed for several
hours (Fig. 4 right) with a sampling period of 30 ms.

For the reconstruction, a calibration stage was carried
out previously by measuring the counts when the tracer is
positioned at known coordinates within the system.

Using the signal distribution, the tracer radioactivity,
the media attenuation coefficient and the dead time of the
detection system were fitted for each detector to estimate their
response and vinculate it with the mean tracer position within the sampling period [1].
Fig. 4 (right) shows portions of trajectories reconstructed from RPT data.

The column is discretized in voxels and the velocity of the tracer whenever crossing
each voxel is computed. Then, the velocities obtained for each voxel are time averaged
to get the experimental 3D averaged velocity field (Fig. 5).

2) Objective

Radioactive tracer (Fig.2) is made of Au, a198

gamma ray source (Fig. 3), inserted in a 1mm
sphere made of polypropylene (PPP). After
activation by neutron bombardment, the tracer is
covered with sodium alginate and then
polymerized in aqueous CaCl2 .[1]

3) Experimental section

Photopeak (k )EV

Liquid-Solid fluidized bed CFD-DEM simulation
and validation by Radioactive Particle Tracking

Salierno, Gabriel ; Maestri, Mauricio, ; Picabea, Julia ;1,2 1,2 1,2 Cassanello, Miryan1,2

Cardona, María Angélica ; Hojman, Daniel ; Somacal, Hector3 3 3,4

1) Introduction

1 mm

198Au

PPP

Calci
um alginate

5) Force models
The model proposes a strategy to calculate the exchange of[2]
momentum between the two phases present; (Eq. 1) and the

solid s and 7position and velocity of each of the particles (Eq . 2 ).
Eq. 1: momentum

change (liquid phase)

Eq. 2: particle linear
momentum change

! ! " "f s f s; ; y are density and volumetric fractions of fluid and solid respectively
u is the local average velocity of liquid, n is the local number of particles per

, p is the local liquidunit volume, is the local average force on the particlesfi

pressure field, is the stress tensor, .and Is the acceleration of gravityg#

Fig. 2: Radioactive tracer.

Fig. 3: Decay pattern of Au
198

Eq. 3: particle-fluid
interaction

Eq. 4: buoyancy + fluid
pressure gradient force

Eq. 5:
shear force

Eq. 6: Drag force
(Di Felice´s model)

Eq. 7: particles rotational
momentum change

for beingThe forces of Basset, Saffman and Magnus are omitted
3.several orders of magnitude lower than those considered in Eq.

The movement of fluids and solids in multiphase equipment was simulated through
the open source CFDEM software on Linux platform. Its use required obtaining the®

source code and compiling the components:
OpenFOAM for the resolution of the Navier-Stokes equations of the fluid with the

Solver Pressure-Implicit with Splitting of Operators (PISO), using k - model;"
LIGGHTS for the simulation of the movement of 5 00 solid particles  being the0 ,

optimum on the order of 3 times the particle diametermesh ;
ParaView for the visualization of the results.

4) CFD-DEM simulation

Fig. 1: Experimental setup.

10 mc

6) Results

Table 1: System properties.

Observables calculated from an experiment carried out with RPT in a
LSFB of alginate beads suspended in water have been compared to
those estimated from CFD-DEM simulations.

V , mixing times and solid dispersion coefficientselocity fields
are satisfactorily predicted.

Financial support from  Universidad de Buenos Aires – UBA ; Consejo Nacional de
Investigaciones Cientícas y Técnicas – CONICET and Agencia Nacional de
Promoción Científica y Tecnológica – ANPCyT – is gratefully acknowledged.

7) Conclusions

Interparticle colission
(plastic component)
(elastic component)

Fig. 5: Comparison of axial-radial velocity fields
(time and azimuthally averaged ; u = 2,4 cm/s).L

$ (Kg/m
3
) dp (mm) % (mPa.s)

Liquid 1018 ---- 1.07

Solid 1027 4.1 ± 0.5 ----

Tracer 1025 5 ----
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.Facultad de Ciencias Exactas y Naturales, Dto  de Industrias. Buenos Aires, Argentina. ( )miryan@di.fcen.uba.ar
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Comisión Nacional de Energía Atómica (CNEA), San Martín, Buenos Aires, Argentina
4Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires.

Many catalytic processes and operations in the chemical and related industries
are carried out in liquid-solid fluidized beds (LSFB).
Information of their underlying dynamics is fundamental for proper design of the
units and for implementing strategies of process intensification Moreover, the.
validation of LSFB modeling to estimate their performance requires comparison
with experimental results.

The objective of this work is to compare experimental results obtained with
Radioactive Particle Tracking (RPT) in a pilot scale LSFB with those predicted by a
Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) model.
The motion of calcium alginate spheres induced by the upward flow of water in a
cylindrical column (Fig. 1) is examined.

Simulation of the liquid and solid motion is solved using the CFDEM coupling software.

[1] Salierno, G.L., Maestri, M., Piovano, S., Cassanello, M., Cardona, M.A., Hojman, D., Somacal, H.,
Calcium alginate beads motion in a foaming three-phase bubble column
Chemical Engineering Journal 324 pp. 358-369(2017)
[2] Maestri, M.; Salierno, G.L.; Piovano, S.; Cassanello, M.C.; Cardona, M.A.; Hojman, D.; Somacal, H.:
CFD-DEM modeling of solid motion in a water-calcium alginate fluidized column and its comparison
with results from radioactive particle tracking, Chem. Eng. J. (2018) in press
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Simulation Experimental

The liquid inlet distribution
has a non-negligible effect
on the predictive capacity

of the simulations [2].
The model reasonably

predicts the solid phase
distribution (Fig. 4 left) and
dispersion coefficients once

the steady state is attained [2].
Fig. 5 shows the radial-axial

projection of the solid velocities
determined by azimuthally

averaging the 3D velocity field.

Fig. 4: Simulation of the LSFB (left)
and trajectories acquired by RPT (right).

Eq. 2: particle linear
momentum change

Eq. 3: particle-fluid
interaction

Eq. 4: buoyancy + fluid
pressure gradient force

Eq. 5:
shear force

Eq. 6: Drag force
(Di Felice´s model)

Eq. 7: particles rotational
momentum change

Interparticle colission
(plastic component)
(elastic component)

Fig. :7 .Comparison of  solid dispersion coefficients
Fig. :6 .Comparison of mixing times
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Direction reversing active Brownian particle in a harmonic trap

Ion Santra

Abstract

We study the two-dimensional motion of an active Brownian particle of speed v0, with inter-

mittent directional reversals—commonly observed among a large class of bacteria like M. xanthus

and P. putida—in the presence of a harmonic trap of strength µ. The presence of the trap ensures

that the position of the particle eventually reaches a steady state bounded within a circular region

of radius v0/µ, centered at the minimum of the trap. Due to the interplay between the rotational

di↵usion constant, reversal rate, and the trap strength, the steady state probability density shows

a rich behaviour in the (DR, �, µ
�1

) space, showing four qualitatively di↵erent types of shapes,

which we refer to as active-I & II, and passive-I & II phases. In the active-I phase, the weight of

the distribution is concentrated along an annular region close to the circular boundary, whereas in

active-II, an additional central diverging peak appears giving rise to a Mexican hat-like shape of

the distribution. The passive-I is marked by a single Boltzmann-like centrally peaked distribution

in the large DR limit. On the other hand, while the passive-II phase also shows a single central

peak, it is distinguished from passive-I by a non-Boltzmann like divergence near the origin. We

find the exact analytical forms of the distributions in various limiting cases and study the transi-

tions between these phases. In particular, we show that for DR ⌧ �, the transition from active-II

to passive-II occurs at µ = �. We compliment these analytical results with numerical simulations

beyond the limiting cases and obtain a qualitative phase diagram in the (DR, �, µ
�1

) space.

Reference: Direction reversing active Brownian particle in a harmonic potential, I Santra, U

Basu, S Sabhapandit, arXiv:2107.12640 (2021)

1

P34



Critical Behavior of the Ising Model under an

external shear field: The Conserved Case

The non-equilibrium phase transitions of the two-dimensional magnetization-

conserved Ising model under the action of an external shear field is investigated. This

field, that simulates a convective velocity profile with shear rate γ, introduces

anisotropic effects and forces the system to evolve into non equilibrium states. By

employing the short-time dynamics (STD) methodology, it was possible to detect first-

and second- order phase transitions, and in this last case the critical exponent were

calculated. As a function of the absolute magnetization |M| the system exhibits phase

transitions of different order. On the one hand, If |M|=0, the model undergoes a

second-order phase transition. The estimated critical temperature Tc depends on γ

and two regimes can be distinguished: a power-law regime for low γ’s and a

saturation regime at larger values of it. For the investigated shear field interval, the

estimated values of the anisotropic critical exponents suggest that the critical behavior

is on a crossover between the Ising and mean-field critical behaviors, respectively. On

the other hand if |M|> 0, the model exhibits for each γ first-order phase transitions,

ending in a critical point at |M|=0.
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Nonequilibrium tricritical point in the

Kuramoto model with additional nearest-

neighbor interactions

The Kuramoto model serves as a paradigmatic framework to study the phenomenon

of spontaneous collective synchronization. The usual Kuramoto model involves phase

oscillators of distributed natural frequencies interacting via a mean-field interaction. In

our present work, we study a variation of the model by including nearest-neighbor

interactions on a one-dimensional periodic lattice. For unimodal and symmetric

frequency distributions, we show that a competition between the two types of

interactions brings in new features, and consequently, the resulting dynamics in the

nonequilibrium stationary state exhibits a very rich phase diagram with both

continuous and first-order transitions between synchronized and unsynchronized

phases, with the transition lines meeting at a tricritical point. Our results are based on

numerical integration of the dynamics as well as an approximate theory involving

appropriate averaging of fluctuations in the stationary state. Reference: Mrinal Sarkar

and Shamik Gupta, \textit{Kuramoto model with additional nearest-neighbor

interactions: Existence of a nonequilibrium tricritical point}, \textbf{Phys. Rev. E 102,

032202 (2020)}.
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Continuous quasi-attractors for irregular

memories

Animals, like humans, navigate in complex territories. It is believed that mammals, at

least, create cognitive maps of the environments they explore. The

neurophysiological discovery of spatially selective cells in the hippocamal formation

provided neuronal candidates involved in this capability. As a consequence, it has

been hypothesized that the dynamics underlying the retrieval of environmental

cognitive maps could be driven by continuous attractors, brittle mathematical objects

which break with irregularities. However, the wilder the environment the more spatially

selective cells seem to be activated unevenly. Can a continuous attractor theory

contemplate also complex nonuni-form activity? In this chapter we argue that it can,

relaxing the requirement of a continuous manifold of fixed points to a quasi-attractive

continuous manifold, intended as a direction of flow. We find that quasi-attractive

manifolds persist under noise up to a critical value at which they abruptly break up.

We show that some remarkably variable experimental recordings lie just at the edge

of this transition.
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Chaotic behavior of disordered nonlinear

lattices

We focus on the mechanisms of energy transport in multidimensional heterogeneous

lattice models, studying in particular the case of the Klein-Gordon model of coupled

anharmonic oscillators in one and two spatial dimensions. We report the effects of the

type of the impurity (heterogeneity) parameter on the systems' transport properties

and classifies the transport mechanisms of the nonlinear versions of the models into

various dynamical regimes. We also perform an extensive numerical investigation of

the dynamics of the considered models revealing that for their nonlinear versions

chaotic transport persists and chaotic hotspots meander in the region of energy

concentration supporting the spreading mechanism.
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Network Reconstruction from Data

Prediction of critical transitions can avert a lot of real-world problems such as heart

attack or epilepsy crisis. Network reconstruction and prediction of critical transitions in

a data-driven way is not just a learning problem because of parameter changes. The

project aims to learn the evolution rule from the time series and then determine the

network's topology using dynamical systems and statistical learning tools. In this

numerical study, we mainly focus on the reconstruction of neural networks using a

network obtained from the cerebral cortex image dataset of a mouse. We assume

that we access measurement data from each node of this network as an application.

On the other hand, we validate these learning tools on clinical data of cerebral

vessels to predict the hemodynamic parameters.
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They act on objects immersed in a fluctuating medium which constrain or modify its
fluctuations (e.g. Casimir force in QED, Van der Waals and London forces...)

Strength Ã energy of fluctuations (≥ ~ if quantum, ≥ kBT if thermal)
Range Ã range of the correlations

Can have Casimir-like interactions in a fluid close to a bulk critical point!

2MRMQEPQSHIP

Optically trapped colloid immersed in a near-critical medium [1]

H =
Z

ddx
1
2(Ò„)2 + 1

2r„2
�

| {z }
H„

+ k

2X2

| {z }
UX

≠⁄
Z

ddx „(x)V (x ≠ X)
| {z }

HX
int

Dynamics:
Ẋ(t) = ≠‹ÒXH + ›(t)

ˆt„(x, t) = ≠D(iÒ)– ”H
”„(x, t) + ’(x, t)

in a thermal bath @ T and satifying FDT,

È›i(t)›j(tÕ)Í = 2‹T ”ij”(t ≠ tÕ)
È’(x, t)’(xÕ, tÕ)Í = 2DT (iÒ)–”d(x ≠ xÕ)”(t ≠ tÕ) .

In equilibrium,

Peq(X) Ã
Z

D„e≠—H[„,X] Ã e≠—UX

but what happens out of equilibrium?

Relaxation towards equilibrium

Perturbative analysis in ⁄:

X(t) =
X

n
⁄nX(n)(t)

„(x, t) =
X

n
⁄n„(n)(x, t)

The leading correction shows a
power-law decay close to criticality,
also observed in numerical simulations:

ÈX (2)(t)Í ≥

8
>>><

>>>:

t≠
�
1+d

2
�

, Model A, r = 0
t≠

�
1+d

4
�

, Model B, r = 0
t≠

�
2+d

2
�

, Model B, r > 0

Adiabatic approximation

In Fourier space,

Ẋ(t) = ≠‹kX(t) + ‹⁄
Z

R

ddq

(2fi)d
iqV≠q„q(t)eiq·X(t) + ›(t)

„̇R,I
q (t) = ≠Dq–(q2 + r)„R,I

q (t) + ⁄Dq–Vq

h
e≠iq·X(t)

iR,I + ’R,I
q (t)

Field modes are:

decoupled
fast variables for large D.

Using adiabatic elimination we obtain

ˆtP (X, t) = LeffX P (X, t)

where in the case of an isotropic interaction potential

LeffX = ‰
n
Ò · (‹kX) + ‹TÒ2

o
+ O

✓ 1
D2

◆
, ‰ © 1 ≠ ⁄2‹

Dd

Z

R

ddq

(2fi)d

q2≠–

(q2 + r)2|Vq|2

unable to describe algebraic relaxation!

&QEXXIV SJ XMQIWGEPIW

Relaxation timescales are set by the trap strength and by the field correlation length
› ≥ r≠2, which diverges at criticality (r = 0):

·≠1
X = ‹k

·≠1
„ = Dq–(q2 + r)

Any adiabatic approach fails when ·„ ∫ ·X : beware of slow modes close to r = 0!

+SVGIH SWGMPPEXMSRW 
3*���

Model:

H = H„ + UY + UZ ≠ ⁄
n
HY
int + HZ

int

o

Colloid Z is trapped in a stiff moving trap,

HZ = kz

2 [Z ≠ ZF (t)]2

ZF (t) = � + A sin(�t)

Esperiments [2] show colloid Y to start moving
if the surrounding medium (e.g. a binary mixture)
gets close to a continuous PT.

Master equation

In the NESS, we can derive perturbatively
ˆtP1(y, t) = L0P1(y, t) + ⁄2Lz(t)P1(y, t) + O

⇣
⁄3
⌘

where
L0 = Òy · (‹ky + ‹TÒy)

Lz(t) = Òy · ‹
Z ddq

(2fi)d
iq|Vq|2e≠iq·y

Z t

t0
ds ‰q(t ≠ s)eiq·Z(s)

and ‰q(t ≠ s) is the dynamical field susceptibility.
This can be used to obtain the full moment generating function.

Adiabatic approach

At equilibrium, the joint distribution is canonical

P(Y, Z) = e≠—(Hy+Hz)
Z

D„e≠—(H„≠⁄Hint) Ã e≠—
�

HY +HZ≠⁄2Vc(Y,Z)
 

with the induced interaction potential

Vc(Y, Z) =
Z ddq

(2fi)d

|Vq|2
q2 + r

eiq·(Z≠Y) .

We can write an effective EOM pretending we are at equilibrium, instant by instant:

Ẏeq(t) = ≠‹yÒy

h
Hy ≠ ⁄2Vc(Y, Z)

i
+ ›(t)

Comparison

Using harmonic analysis,

The dynamical amplitude may be bigger or smaller than its adiabatic prediction,

but there exists a value of r such that the system becomes effectively adiabatic:

8
<

:
·≠1

„ ≥ Dq–(q2 + r)
·≠1

� ≥ �
∆ rA ≥ � , rB ≥ �1

2
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[1] U. Basu, V. Dèmery, and A. Gambassi.
Dynamical behavior of a colloidal particle surfing a critical gaussian field.
In preparation.

[2] Ignacio A. Martínez, Clemence Devailly, Artyom Petrosyan, and Sergio Ciliberto.
Energy transfer between colloids via critical interactions.
Entropy, 19(2), 2017.
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Dragged colloids in (active) fields
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Probability density of bipolaron in a parabolic

potential two-dimensional quantum dot under

external magnetic and electric fields

In this article, we study the probability of the presence of electrons at any point in

space in a parabolic potential quantum dot under the effect of an external magnetic

and electric fields. The ground state and the first excited state energies were

evaluated using the Pekar-type variational method. Numerical calculations indicate

that the application of electric and magnetic fields have effects on the properties of

the bipolaron. We also observed that when the system is in the presence of both

fields electric and magnetic, the probability of the appearance of the two electrons

near the center of the quantum point is greater. In addition, we found that for some

values of both fields in the system, we can better control the bipolaron and we can

also be able to obtain some polaronic behavior.
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Distinguished correlation properties of

Chebyshev dynamical systems

We study distinguished correlation properties of a family of shifted Chebyshev maps

T_{N, a}, present analytic results for two-point and higher-order correlation functions

and show that T_{N, 0} are most random-like among all smooth 1D maps conjugated

to a Bernoulli shift of N symbols, in the sense that they have least higher-order

correlations. Results for eigenfunctions of the transfer operator for Chebyshev maps

are also reviewed. We further consider coupled map lattices of shifted Chebyshev

maps and numerically investigate zeros of the temporal and spatial nearest-

neighbour correlations, which are of interest in chaotically quantised field theories and

other spatially extended systems. [Chaos, Solitons & Fractals: X Vol.5, 100035

(2020)]
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In order to statistically describe the dynamics of a plethora of
complex systems, nonextensive statistics has been proposed in [1].
In the last decades, this new generalized statistical mechanical
formalism have found a large variety of very successful

2. Harmonic Oscillator-like 
Hamiltonian

I just show results for the partition function
here but the mean energy usually shares the
same poles.
Let us take 𝐻 𝑝, 𝑥 = 𝑝2 + 𝑥2, where 𝑝2 and
𝑥2 have dimensions of energy. The solution of
eq. (1) in 𝜈 dimensions is [2]:

𝑍 =
𝜋𝜈

𝛽 𝑞 − 1 𝜈

Γ 1
𝑞 − 1 − 𝜈

Γ( 1
𝑞 − 1)

3

The singularities are given by the poles of the
Γ function, i.e., for:
1

𝑞 − 1
− 𝜈 = −𝑛 𝑓𝑜𝑟 𝑛 = 0,1,2… 4

Or 𝑞 = 2, 3
2
, 4
3
, 5
4
, … ,

Represented in figure 1 for the cases 𝜈 = 1,
𝜈 = 2 and 𝜈 = 3.
The poles are not a particularity of this
Hamiltonian, as I will show next.

1. Introduction

Fig. 1- Partition function of the harmonic
oscillator vs. nonextensivity parameter 𝑞 for
different dimensions and 𝛽 = 1 . It can be
appreciated the poles at 𝑞 = 2, 3

2
, 4
3
, …

The singularities are given by the poles of the
Beta functions, i.e., for:

−
1

𝑞 − 1
+
𝜈
2
= −𝑛 𝑓𝑜𝑟 𝑛 = 0,1,2, 3… 6

Or, for the case 𝜈 = 2, 𝑞 = 2, 3
2
, 4
3
, 5
4
, …

This is represented in figure 2 for the region
𝑞 > 1.

applications, even beyond the realm of physics. It was found in [2] that classical Tsallis'
theory exhibits poles in the partition function and the mean energy. This occurs at a
countable set of the q-line. I give a mathematical account of them. Further, by focusing
attention upon the pole, one encounters interesting effects. The study and elimination of
divergences of a physical theory is perhaps one of the most important aspects of theoretical
physics nowadays. I propose two different approaches to solve those divergences: i- a
perturbative approximation [3], useful for the weak non-additive limit, and ii- dimensional
regularization [4]. The partition function and the mean energy in the nonextensive
framework are defined as:

𝑍 = ∫ 1 + 𝑞 − 1 𝛽𝐻 𝑝, 𝑥
1

1−𝑞 𝑑𝑝𝑑𝑥 1

𝑈 =
1
𝑍
∫ 𝐻 𝑝, 𝑥 1 + 𝑞 − 1 𝛽𝐻 𝑝, 𝑥

1
1−𝑞 𝑑𝑝𝑑𝑥 2

Where p is the momentum, x the coordinate, 𝛽 the inverse temperature, H the Hamiltonian,
and q a real parameter. The limit q=1 recover the usual statistics. I will show here their
divergences by appealing to two very different examples: an harmonic oscillator and the
gravitational potential.

Fig. 2- Partition function of the gravitational
Hamiltonian vs. nonextensivity parameter 𝑞 > 1 for
𝜈 = 2 and 𝛽 = 1. It presents poles at 𝑞 = 2, 3

2
, 4
3
, …

Inset: Zoomed-in region close to 𝑞 = 1.

4. Avoiding divergences: approximation
When working out with the nonextensive statistical mechanics of a given system, the
divergences of the partition function and the mean energy can lead to useful results.
Consider, for example, one wants to study the thermostatistics of a system. One could
restricts the domain and work in the well-defined region between two consecutives
divergences. However, suppose one wants to study the behaviour of the system in the
region close to the extensive limit (𝑞 = 1), which is the case of several important
applications in nonextensive statistics. The previous examples illustrate the fact that, when
approaching to the limit, the poles appear more often.

A way to avoid divergences is to use an approximation instead of the Tsallis’ entropy. This is
based on a first order expansion of the q-exponential function around a particular value of
the nonextensivity parameter, for example, 𝑞 = 1.

1 + 1 − 𝑞 𝑥
1

𝑞−1 ≈ 1 +
1 − 𝑞 𝑥2

2
𝑒−𝑥 (7)

In [3] we demonstrate that this ‘new entropy’ does not present poles and a MexEnt process
can be performed leading to:

𝑍 = ∫ 1 +
1 − 𝑞 𝛽𝐻 2

2
𝑒−𝛽𝐻𝑑𝑝𝑑𝑥 (8)

The approximation is quite good for small values of the argument. The fig. 3 shows the ratio
R between the approximated and exact solution.

Highlights

Fig. 3- Ratio 𝑅 between approximate and exact
solution to the MaxEnt process vs argument 𝑥
and different values of 𝑞 close to 1.

Of course one can improve the
approximation as much as one desires by
taking more terms in the expansion, but
making the calculus more complicated.

3. Gravitational Hamiltonian
Let us consider a particle of mass m under the influence of the Newtonian gravitational

potential of a mass M>>m. The Hamiltonian reads 𝐻 𝑝, 𝑥 = 𝑝2

2𝑚
− 𝐺𝑚𝑀

𝑟
. The solution

of eq. (1) in 𝜈 dimensions for this case is [4]:

𝑍 =
2[2𝜋2𝛽 𝑞 − 1 𝐺2𝑀2𝑚3]

𝜈
2

Γ2 𝜈
2

𝐵
𝜈
2
,

1
𝑞 − 1

+ 1 𝐵
𝜈
2
+

1
1 − 𝑞

,−𝜈 (5)

5. Solving divergences: Dimensional 
Regularization

A more exact and intricate calculus involve solving
the poles through dimensional regularization (DR).
It constitutes perhaps one of the most important
theoretical physics advances in the last decades. A
more detailed explanation can be founded in [4].

To practical aims, the idea is that if we have, for
instance, a function 𝐹(𝜈) depending of the
dimension 𝜈, we perform the Laurent-expansion of
𝐹(𝜈) around the desired dimension 𝜈0 and select
afterward, as the physical result, the 𝜈0 -
independent term.
For example, going back to eq. 5, we can
particularize for 𝑞 = 3/2 and applying the RD
procedure for 𝜈 = 3 we obtain:

𝑍 =
4𝜋2

3
𝛽𝐺2𝑀2𝑚3

3
2[
23
3
− ln(16𝜋2𝛽𝐺2𝑀2𝑚3)]

This procedure leads to some coherent results,
such as negative specific heats, in accordance with
that astronomers knew about the specific heat of
self-gravitational systems. Figure 4 shows the
dimensionless specific heat for the system
considered here. It can be appreciated also that a
lower bound exists for the temperature of the
system.

The poles of some main measures
of nonextensive statistics are
presented by appealing to two
examples.

The first example is the partition
function of an Harmonic Oscillator-
like Hamiltonian.

The second example is a particle in
a gravitational potential. The
partition function presents infinite
poles in the q-line.

Two approaches are proposed to
solve the poles.

The first approach is an
approximation which allow us to
avoid the divergences at the
expense of losing exactitude.

The second approach involves using
the dimensional regularization
technique. This solves the
divergence for a particular value of
the nonextensivity parameter.

Fig. 4- Dimensionless specific heat versus 𝑘𝐵𝑇/𝐸 for
𝑞 = 3/2 , where 𝐸 = 𝐺2𝑀2𝑚3 . Specific heat is
negative, as befits gravitation.
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