Transition path sampling and analysis of complex activated (bio)molecular processes

ICTP-SISSA-CECAM Workshop on Molecular Dynamics and its Applications to Biological Systems

Sept 13-17 2021

Peter Bolhuis van 't Hoff institute for Molecular Sciences University of Amsterdam, The Netherlands

Outline

- Introduction
- Rare events

part 1:

- Transition Path Sampling
- Committor & Reaction coordinate analysis
- Rate constants with transition interface sampling
- reaction networks with multiple state TPS/TIS
- advanced developments & machine learning
- OPS software

part 2:

- imposing kinetic constraints
- path reweighting with Maximum Caliber
- conclusions

gas hydrate formation

Aim: predicting complex molecular processes difficult to access in experiments

 $m\ddot{\mathbf{r}} = -\nabla V(\mathbf{r})$

bonded interactions

Aim: predicting complex molecular processes difficult to access in experiments

 $m\ddot{\mathbf{r}} = -\nabla V(\mathbf{r})$

bonded interactions

Aim: predicting complex molecular processes difficult to access in experiments

 $m\ddot{\mathbf{r}} = -\nabla V(\mathbf{r})$

non-bonded interaction

Classical MD is able to yield at atomistic resolution

- equilibrium statistics: free energy landscapes, stable structures, transition states, ...
- **kinetics:** rates, mechanisms, transport properties, ...

Classical MD has two important sources of error:

- the sampling problem (part 1)
- the systematic force field error (part 2)

Aim: predicting complex molecular processes difficult to access in experiments

 $m\ddot{\mathbf{r}} = -\nabla V(\mathbf{r})$

 $\frac{b_{ij}}{r_{i}^{6}} + \frac{q_{i}q_{j}}{r_{i}^{6}}$

non-bonded interaction

Classical MD is able to yield at atomistic resolution

- equilibrium statistics: free energy landscapes, stable structures, transition states, ...
- **kinetics:** rates, mechanisms, transport properties, ...

Classical MD has two important sources of error:

- the sampling problem (part 1)
- the systematic force field error (part 2)

current MD limited to sub-millisecond, most activated events much longer

- transition state search futile in high dimensions
- enhanced sampling technique usually requires good reaction coordinate
 - umbrella sampling
 - metadynamics

- transition state search futile in high dimensions
- enhanced sampling technique usually requires good reaction coordinate
 - umbrella sampling
 - metadynamics

- transition state search futile in high dimensions
- enhanced sampling technique usually requires good reaction coordinate
 - umbrella sampling
 - metadynamics

- transition state search futile in high dimensions
- enhanced sampling technique usually requires good reaction coordinate
 - umbrella sampling
 - metadynamics

- transition state search futile in high dimensions
- enhanced sampling technique usually requires good reaction coordinate
 - umbrella sampling
 - metadynamics

Objectives: free energy barrier, rates, transition states and mechanism.

But if reaction coordinate is not correctly represented by the collective variable, all these might be wrong!

q'

Objectives: free energy barrier, rates, transition states and mechanism.

But if reaction coordinate is not correctly represented by the collective variable, all these might be wrong!

q'

Objectives: free energy barrier, rates, transition states and mechanism.

But if reaction coordinate is not correctly represented by the collective variable, all these might be wrong!

q'

Objectives: free energy barrier, rates, transition states and mechanism.

But if reaction coordinate is not correctly represented by the collective variable, all these might be wrong!

q

Need for methods that create pathways without prior knowledge of the RC: Transition path sampling

Part 1: Transition path sampling

- Importance sampling of the rare event path ensemble
- yields paths, mechanisms, reaction coordinates, kinetics, and free energy

PGB, Chandler, Dellago, Geissler, Annu. Rev. Phys. Chem 2002; Dellago, PGB, Adv Polym Sci, 2009

Part 1: Transition path sampling

- Importance sampling of the rare event path ensemble
- yields paths, mechanisms, reaction coordinates, kinetics, and free energy

PGB, Chandler, Dellago, Geissler, Annu. Rev. Phys. Chem 2002; Dellago, PGB, Adv Polym Sci, 2009

- TPS philosophy: Path ensembles mechanism kinetics Free Energy
- TPS gives exponential speed up w.r.t to rare event time scale
- advantages: unbiased dynamics, exact rates, independence of CVs
- Advanced Software Packages available

OpenPathSampling

Transition path probability density

$$\mathbf{x}(L) = \{x_0, x_1, \dots, x_L\} \qquad x \in \mathbb{R}^{6N}$$

$$\mathcal{P} [\mathbf{x}] = \rho(x_0) \prod_{i=0}^{L-1} p(x_i \to x_{i+1}), \qquad \rho(x_0)$$

hB

new

old

Define stables states A and B by indicator functions $h_A(x)$

$$h_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Path probability distribution

 $\mathcal{P}_{AB}[\mathbf{x}(L)] = h_A(x_0)\mathcal{P}[\mathbf{x}(L)]h_B(x_L)/Z_{AB}(L)$

Importance sampling using Metropolis-Hastings :

 $P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A[x_0^{(n)}]h_B[x_L^{(n)}]\min\left[1, \frac{\mathcal{P}[\mathbf{x}^{(n)}]\mathcal{P}_{gen}[\mathbf{x}^{(n)} \to \mathbf{x}^{(o)}]}{\mathcal{P}[\mathbf{x}^{(o)}]\mathcal{P}_{gen}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}]}\right].$

Transition path probability density

$$\mathbf{x}(L) = \{x_0, x_1, \dots, x_L\} \qquad x \in \mathbb{R}^{6N}$$

$$\mathcal{P} [\mathbf{x}] = \rho(x_0) \prod_{i=0}^{L-1} p(x_i \to x_{i+1}), \qquad \rho(x_0) \stackrel{i}{\leftarrow} \stackrel{i}{\leftarrow} \frac{x_i}{\Delta t} \stackrel{i}{\leftarrow} \frac{x_i}{t}$$
Initial (Boltzmann) distribution

hB

new

old

Define stables states A and B by indicator functions $h_A(x)$

$$h_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Path probability distribution

 $\mathcal{P}_{AB}[\mathbf{x}(L)] = h_A(x_0)\mathcal{P}[\mathbf{x}(L)]h_B(x_L)/Z_{AB}(L)$

Importance sampling using Metropolis-Hastings :

 $P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A[x_0^{(n)}]h_B[x_L^{(n)}]\min\left[1, \frac{\mathcal{P}[\mathbf{x}^{(n)}]\mathcal{P}_{gen}[\mathbf{x}^{(n)} \to \mathbf{x}^{(o)}]}{\mathcal{P}[\mathbf{x}^{(o)}]\mathcal{P}_{gen}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}]}\right].$

Transition path probability density

hB

new

 $h_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

Path probability distribution

 $\mathcal{P}_{AB}[\mathbf{x}(L)] = h_A(x_0)\mathcal{P}[\mathbf{x}(L)]h_B(x_L)/Z_{AB}(L)$

Importance sampling using Metropolis-Hastings :

 $P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A[x_0^{(n)}]h_B[x_L^{(n)}]\min \left[1, \frac{\mathcal{P}[\mathbf{x}^{(n)}]\mathcal{P}_{gen}[\mathbf{x}^{(n)} \to \mathbf{x}^{(o)}]}{\mathcal{P}[\mathbf{x}^{(o)}]\mathcal{P}_{gen}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}]}\right].$

PGB, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, 421

ullet

Acceptance rule

$$P_{gen}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = p_{gen}(x_{\tau'}^{(o)} \to x_{\tau'}^{(o)}) \prod_{i=\tau'}^{L-1} p(x_i^{(n)} \to x_{i+1}^{(n)}) \prod_{i=1}^{\tau'} \bar{p}(x_i^{(n)} \to x_{i-1}^{(n)})$$
forward MD shot
$$backward MD shot$$

 $\bar{p}(x \to y) = p(\bar{x} \to \bar{y})$ backward in time by momenta reversal $\bar{x} = \{r, -p\}$ for $x = \{r, p\}$

assuming symmetric generation probability

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)}) \min\left[1, \frac{\rho(x_0^{(n)})}{\rho(x_0^{(o)})} \prod_{i=1}^{\tau'} \frac{p(x_i^{(n)} \to x_{i+1}^{(n)})}{\bar{p}(x_{i+1}^{(n)} \to x_i^{(n)})} \times \frac{\bar{p}(x_{i+1}^{(o)} \to x_i^{(o)})}{p(x_i^{(o)} \to x_{i+1}^{(o)})}\right]$$

microscopic reversibility $\frac{p(x \to y)}{\bar{p}(y \to x)} = \frac{\rho(y)}{\rho(x)}$

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})\min\left[1, \frac{\rho(x_{\tau'}^{(n)})}{\rho(x_{\tau'}^{(o)})}\right]$$

 $P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})$ for constant energy at shooting point

Standard TPS algorithm

- take existing path
- choose random time slice t
 - change momenta slightly at *t*
 - integrate forward and backward in time to create new path of length L
 - accept if A and B are connected, otherwise reject and retain old path
 - calculate averages
- repeat

Standard TPS algorithm

- take existing path
- choose random time slice t
 - change momenta slightly at *t*
 - integrate forward and backward in time to create new path of length L
 - accept if A and B are connected, otherwise reject and retain old path
 - calculate averages
- repeat

Standard TPS algorithm

- take existing path
- choose random time slice t
 - change momenta slightly at *t*
 - integrate forward and backward in time to create new path of length L
 - accept if A and B are connected, otherwise reject and retain old path
 - calculate averages
- repeat

 $P_{\rm acc}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})] = h_A[x_0^{(\rm n)}]h_B[x_T^{(\rm n)}]$

arbitrary frame selection probability $p_{sel}(\tau, x)$

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})\min\left[1, \frac{p_{sel}(\tau', \mathbf{x}^{(n)})}{p_{sel}(\tau, \mathbf{x}^{(o)})}\right]$$

PGB, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, 421

PGB 2003, Juraszek & PGB 2006)

 $P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})\min\left(1, \frac{L^{(o)}}{L^{(n)}}\right)$

 $P_{\rm acc}[x^{({\rm o})}(\mathcal{T}) \to x^{({\rm n})}(\mathcal{T})] = h_A[x_0^{({\rm n})}]h_B[x_{\mathcal{T}}^{({\rm n})}]$

arbitrary frame selection probability $p_{sel}(\tau, x)$

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})\min\left[1, \frac{p_{sel}(\tau', \mathbf{x}^{(n)})}{p_{sel}(\tau, \mathbf{x}^{(o)})}\right]$$

PGB, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, 421

reject

 $P_{\rm acc}[x^{({\rm o})}(\mathcal{T}) \to x^{({\rm n})}(\mathcal{T})] = h_A[x_0^{({\rm n})}]h_B[x_{\mathcal{T}}^{({\rm n})}]$

A

arbitrary frame selection probability $p_{sel}(\tau, x)$

$$P_{acc}[\mathbf{x}^{(o)} \to \mathbf{x}^{(n)}] = h_A(x_0^{(n)})h_B(x_L^{(n)})\min\left[1, \frac{p_{sel}(\tau', \mathbf{x}^{(n)})}{p_{sel}(\tau, \mathbf{x}^{(o)})}\right]$$

B

PGB, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, 421

One way flexible shooting efficient but needs to be checked for decorrelation of paths

Many shooting variants PGB and Swenson, Adv. Theor. Simul. 4, 2000237 (2021)

PGB, C. Dellago and D. Chandler, Faraday Discuss., 1998, 110, 421

Many shooting variants PGB and Swenson, Adv. Theor. Simul. 4, 2000237 (2021)

b) basin A basin B basin B basin B basin B basin B basin B

b)

b) hasin A basin b basin basin

Selected TPS applications

Chemical reactions in solution

Geissler et al Science 2001; Tiwari and Ensing, Farad Disc 2016; Joswiak et al, PNAS 2017

Glasses

Hedges et al Science 2009; Jack etc al PRL 2011; Turci

20 2 Crsystal Nucleation 200 300 4

Moroni et al PRL 2005, Bekcham et al JACS 2007l Lechner et al. PRL 2011; Diaz Leines & Rogal JPCB 2018; Arjun et al PNAS 2019....

Microphases

Ten Wolde et al PNAS 2002; Pool & PGB JCP 2007

Enzymatic reactions

Basner et Schwarz, JACS 2005; Knott et al, JACS 2013;Li et al JACS 2014; Paul and Taraphder, ChemPhysChem 2020; Silveira et al, JPCB 2021;....

Marti & Csajka 2004; Okazaki et al Nat Comm. 2019. Domanski, et al PLOS Comput. Biol. 2020,;

Biomolecular conformational change

Bolhuis PNAS 2003; Juraszek & Bolhuis 2006; Vreede et al PNAS 2010; Best & Hummer PNAS 2016; Brotzakis & PGB, JPCB 2019, Vreede et al. NAR 2019......

Path sampling of proton transfer

System

- 28244 atoms
- CPMD/QMMM
- BLYP functional
- Electronic mass 750 au
- QM region: pCA, Glu46,Tyr42, Thr50, Arg52
- Gromos96 force field

TPS settings

- two way shooting, perturbation temp 35 K
- 160 paths/ 50% acceptance
- average path length 0.5-1.5 ps
- reaction time microseconds (10⁶ x slower)

stable states	pR (reaction)	pB' (product)
pCA-Glu46(H)	> I.60 A	< 0.98 A
OX2-Tyr42	> 3.70 A	< I.80 A
OXI-Tyr42	> 5.30 A	< I.80 A

Path sampling of proton transfer

System

- 28244 atoms
- CPMD/QMMM
- BLYP functional
- Electronic mass 750 au
- QM region: pCA, Glu46,Tyr42, Thr50, Arg52
- Gromos96 force field

TPS settings

- two way shooting, perturbation temp 35 K
- 160 paths/ 50% acceptance
- average path length 0.5-1.5 ps
- reaction time microseconds (10⁶ x slower)

stable states	pR (reaction)	pB' (product)
pCA-Glu46(H)	> I.60 A	< 0.98 A
OX2-Tyr42	> 3.70 A	< I.80 A
OXI-Tyr42	> 5.30 A	< I.80 A

Transition path sampling of partial

Table 1. Statistics of the TPS ensembles. The average path length is a weighted average over the whole ensemble. Decorrelated pathways have lost the memory of the previous decorrelated pathway. The aggregate time is the ensemble aggregate length

	$pB' - I_{\alpha}$	$U_{\alpha} - S_E$	$U_{\alpha} - S_X$	$S_E - pB$
acceptance	41%	25%	38%	44%
avg. path length	105 ps	1.8 ns	1.5 ns	1.7 ns
accepted paths	3847	305	584	311
decorr. paths	180	18	7	29
aggregate time (µs)	1.0	2.3	2.3	1.2

Vreede, Juraszek, PGB, PNAS 107 2397 (2010)

Transition path sampling of partial

Table 1. Statistics of the TPS ensembles. The average path length is a weighted average over the whole ensemble. Decorrelated pathways have lost the memory of the previous decorrelated pathway. The aggregate time is the ensemble aggregate length

	$pB' - I_{\alpha}$	$U_{\alpha} - S_E$	$U_{\alpha} - S_X$	$S_E - pB$
acceptance	41%	25%	38%	44%
avg. path length	105 ps	1.8 ns	1.5 ns	1.7 ns
accepted paths	3847	305	584	311
decorr. paths	180	18	7	29
aggregate time (µs)	1.0	2.3	2.3	1.2

Vreede, Juraszek, PGB, PNAS 107 2397 (2010)

 $p_B(x) =$ probability that a trajectory initiated at configuration x relaxes into B

 $p_{\rm B}=1/2$ surface

Reaction coordinate analysis

- Committor p_B(x) is THE reaction coordinate
- Committor is high dimensional function; difficult to gain physical insight
- **dimensionality reduction:** find best low dimensional order parameter combination that best represents committor

Interpret each TPS shot as a committor attempt.
Use info to optimise reaction coordinate model r(q1, q2,..)

$$L(\alpha) = \prod_{i=1}^{N_B} p_B(r(q(\mathbf{x}_i^{(B)}))) \prod_{i=1}^{N_A} (1 - p_B(r(q(\mathbf{x}_i^{(B)}))))$$

result: best model for the data given

Reaction coordinate of $helix_{\alpha 3}$ unfolding

Reaction coordinate by likelihood maximization (Peters & Trout, JCP 2006)

Order Parameters involved (out of 78): $RMSD_{\alpha}$ nwY42: water molecules around Tyr42 dPA: distance Ala44(N) - Pro54(C γ) dhb2: distance Ala44(O) - Asp48(H)

 δ Lmin = 4.17

n	In L	RC
I	-2117	3.89–29.10 × rmsdα
2	-2098	3.88–26.35 × rmsdα – 0.19 × nwY42
3	-2085	5.11–16.81 × rmsdα – 4.68 × dhb2 – 2.55 × dPA

Vreede, Juraszek, PGB, PNAS **107** 2397 (2010)

rc =-2.03 + 2.70 dXE

rate limiting step 16 k_BT: k \approx 1 ms⁻¹

TS U_{α} -S_E

rc = -5.05 + 5.02 dXYcom - 2.51 dXEcom + 4.30 dXE

uniform one way shoot has bad decorrelation •

bad decorrelation

uniform one way shoot has bad decorrelation •

bad decorrelation

uniform one way shoot has bad decorrelation •

bad decorrelation

Z.F. Brotzakis, PGB, JCP (2016)

uniform one way shoot has bad decorrelation •

bad decorrelation

Z.F. Brotzakis, PGB, JCP (2016)

uniform one way shoot has bad decorrelation •

bad decorrelation

• spring shooting algorithm:

$$p_{sel}(\tau) = c \exp(sk\tau)$$
$$P_{acc}^{sp}[\tau \to \tau'] = \min\left[1, \frac{\exp(sk\tau')}{\exp(sk\tau)}\right] = \min[1, e^{sk\Delta\tau}]$$

Z.F. Brotzakis, PGB, JCP (2016)

uniform one way shoot has bad decorrelation •

bad decorrelation

uniform one way shoot has bad decorrelation •

good decorrelation

Z.F. Brotzakis, PGB, JCP (2016)

• uniform one way shoot has bad decorrelation

spring shooting algorithm:

con: need optimisation of k and $\Delta \tau max$

good decorrelation

Z.F. Brotzakis, PGB, JCP (2016)
Protein dissociation

System: 65000 atoms, AMBER99SB-ILDM T=300K, P=1 atm, Δ G~30 kJ/mol (k_{off}< 0.1 s⁻¹)

important for signalling, regulation networks

TPS crucial to simulate on molecular scale

system: beta-lactoglobulin dimer

- important for food industry
- forms dimer in native state.

Protein dissociation

System: 65000 atoms, AMBER99SB-ILDM T=300K, P=1 atm, Δ G~30 kJ/mol (k_{off}< 0.1 s⁻¹)

important for signalling, regulation networks

TPS crucial to simulate on molecular scale

system: beta-lactoglobulin dimer

- important for food industry
- forms dimer in native state.

Protein dissociation

System: 65000 atoms, AMBER99SB-ILDM T=300K, P=1 atm, Δ G~30 kJ/mol (k_{off}< 0.1 s⁻¹)

important for signalling, regulation networks

TPS crucial to simulate on molecular scale

system: beta-lactoglobulin dimer

- important for food industry
- forms dimer in native state.

After sampling 100's of trajectories

we find several mechanisms

how do we understand molecular nature of the mechanism and identify transition states

Z.F. Brotzakis, PGB, JPCB **123**, 1883 (2019)

Reaction coordinate analysis

Outline

- Introduction
- Rare events

part 1:

- Transition Path Sampling
- Committor & Reaction coordinate analysis
- Rate constants with transition interface sampling
- reaction networks with multiple state TPS/TIS
- advanced developments & machine learning
- OPS software

part 2:

- imposing kinetic constraints
- path reweighting with Maximum Caliber
- conclusions

gas hydrate formation

Introduce set of interfaces λ_i

Introduce set of interfaces λ_i

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

Introduce set of interfaces λ_i

van Erp, Moroni, P.GB, J. Chem. Phys. **118**, 7762 (2003) Cabriolu, Skjelbred Refsnes, PGB, van Erp JCP **147**, 152722 (2019)

for each interface i **sample** pathways that cross λ_i with flexible shooting move

compute $P_A(\lambda_{i+1} | \lambda_i)$ = probability that path crossing λ_i for first time after leaving A reaches λ_{i+1} $k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0) = \phi_0 \prod_{i=0}^{n-1} P_A(\lambda_{i+1} | \lambda_i)$ ϕ_0 is flux through initial state interface λ_0 Yields exact rates independent on λ (note: also basis of FFS)

path by Conjugate peak refinement

Nikolova, Kim, Wise, O'Brien, Andricioaei and Al-Hashimi Nature 470, 498 (2011)

path by Transition path sampling

path by Conjugate peak refinement

Nikolova, Kim, Wise, O'Brien, Andricioaei and Al-Hashimi Nature 470, 498 (2011)

path by Transition path sampling

path by Conjugate peak refinement

Nikolova, Kim, Wise, O'Brien, Andricioaei and Al-Hashimi Nature 470, 498 (2011)

path by Transition path sampling

path by Transition path sampling

Vreede, Pérez de Alba Ortíz, PGB Swenson, NAR, 47, 11069 (2019)

parmbsc0/1

path by Transition path sampling

what is the rate constant of this process?

Vreede, Pérez de Alba Ortíz, PGB Swenson, NAR, 47, 11069 (2019)

path by Transition path sampling

Vreede, Pérez de Alba Ortíz, PGB Swenson, NAR, 47, 11069 (2019)

path by Transition path sampling

Vreede, Pérez de Alba Ortíz, PGB Swenson, NAR, 47, 11069 (2019)

Sampling complex free energy landscapes

WW domain folding

J. Juraszek and PGB, Biophys. J.98, 646 (2010).

PYP signal transduction

J.Vreede J, J. Juraszek and PGB PNAS 107 2397(2010)

Markov state model

molecular dynamics trajectory

coarse grained trajectory

integrate equations of motion

time step $\Delta t \approx fs$

See also work of Noe, Chodera, Pande, etc

$$\frac{dp_i(t)}{dt} = \sum_{j \neq i} k_{ji} p_j(t) - \sum_{j \neq i} k_{ij} p_i(t)$$

master equation, solve analytically or by KMC time step set by rates

$$k_{Ai} = \frac{\langle \varphi_{\lambda_{m_A}} \rangle}{\langle h_A \rangle} \cdot P_A(\lambda_{0_i} | \lambda_{m_A})$$

$$k_{Ai} = \frac{\langle \phi_{\lambda_{m_A}} \rangle}{\langle h_A \rangle} \cdot P_A(\lambda_{0_i} | \lambda_{m_A})$$

TIS:
$$\frac{\langle \phi_A \rangle}{\langle h_A \rangle} \prod_{s=0}^{m-1} P_A(\lambda_{(s+1)_A} | \lambda_{s_A})$$

 $P_A(\lambda_{(s+1)A}|\lambda_{(s+1)A})$ = probability path crossing s for first time after leaving A reaches s+1 before A

 $k_{Ai} = \underbrace{\frac{\langle \phi_{\lambda_{m_A}} \rangle}{\langle h_A \rangle}}_{\langle h_A \rangle} \underbrace{P_A(\lambda_{0_i} | \lambda_{m_A})}_{\text{MSTIS:}}$ TIS: $\underbrace{\frac{\langle \phi_A \rangle}{\langle h_A \rangle}}_{s=0} \prod_{s=0}^{m-1} P_A(\lambda_{(s+1)_A} | \lambda_{s_A})$ no. of pathways coming from A, cross λ_{mA} , end i no. of pathways coming from A, cross λ_{mA} rates can be used in Markov state model $\frac{dp_i(t)}{dt} = \sum_{j \neq i} k_{ji} p_j(t) - \sum_{j \neq i} k_{ij} p_i(t)$

Problem: interfaces close to stable states will be favored Solution: bias with e.g. Wang Landau scheme

Du, PGB, JCP 2013

Trp-cage folding

		, PN	SN	Mg	meta	Pd	LN	LSN	Lm	Lo	I	W	other state	U
Ň		3.75×10^{-3}	2.33×10^{-4}	4.67×10^{-4}	1.65×10^{-2}	5.35×10^{-3}	2.43×10^{-3}		1.04×10^{-4}		1.00×10^{-5}	2.12×10^{-7}	9.08×10^{-5}	2.35×10^{-5}
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}		4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}		3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}		3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}		8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}			3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}					2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}			4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}		3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}		1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}		2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	

		, PN	SN	Mg	meta	Pd	LN	LSN	Lm	Lo	I	W	other state	U
N		3.75×10^{-3}	2.33×10^{-4}	4.67×10^{-4}	1.65×10^{-2}	5.35×10^{-3}	2.43×10^{-3}		1.04×10^{-4}		1.00×10^{-5}	2.12×10^{-7}	9.08×10^{-5}	2.35×10^{-5}
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}	_	4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}	_	3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}		3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}		8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}			3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}		_			2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}		_	4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}		3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}		1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}		2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	

Du & PGB, JCP **140**, 195102 (2014)).

to end

		, PN	SN	Mg	meta	Pd	LN	LSN	Lm	Lo	I	W	other state	U
N		3.75×10^{-3}	2.33×10^{-4}	4.67×10^{-4}	1.65×10^{-2}	5.35×10^{-3}	2.43×10^{-3}		1.04×10^{-4}		1.00×10^{-5}	2.12×10^{-7}	9.08×10^{-5}	2.35×10^{-5}
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}	_	4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}		3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}		3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}	_	8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}	_		3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}		_			2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}		_	4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}	_	3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}	—	1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}		2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	_

		, PN	SN	Mg	meta	Pd	LN	LSN	Lm	Lo	I	W	other state	U
N		3.75×10^{-3}	2.33×10^{-4}	4.67×10^{-4}	1.65×10^{-2}	5.35×10^{-3}	2.43×10^{-3}		1.04×10^{-4}		1.00×10^{-5}	2.12×10^{-7}	9.08×10^{-5}	2.35×10^{-5}
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}	_	4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}		3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}		3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}	_	8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}	_		3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}		_			2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}		_	4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}	_	3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}	—	1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}		2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	_

fast time scale 200 ns slow time scale 2 µs

Du & PGB, JCP 140, 195102 (2014)).

	N	PN	SN	Mg	meta	Pd	LN	LSN	Lm	Lo	I I	W	other state	II II
	···· (, 11	511	IVIS	incta	10		LDI			1	VV		0
Ν		3.75×10^{-3}	2.33×10^{-4}	$ 4.67 \times 10^{-4} $	$ 1.65 \times 10^{-2} $	$ 5.35 \times 10^{-3} $	$ 2.43 \times 10^{-3} $		$ 1.04 \times 10^{-4} $		1.00×10^{-3}	2.12×10^{-1}	9.08×10^{-3}	$ 2.35 \times 10^{-3} $
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}		4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}		3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}	_	3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}		8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}			3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}					2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}			4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}		3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}		1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}	—	2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	

fast time scale 200 ns

Experimental $t_1 = 150$ ns, $t_2 = 2.2 \ \mu$ s

Du & PGB, JCP 140, 195102 (2014)).

	N	PN	SN	Mo	meta	Pd	LN	LSN	Lm	Lo	I	W	other state	II II
N		$\frac{1}{2}$ $\frac{1}{7}$ $\frac{1}{2}$ $\frac{1}{7}$ $\frac{1}{2}$ $\frac{1}$	0.00.10-4	4.07.10-4	1 65, 10-2	F 95 10-3	0.49.410-3	Lon	1.04.10-4	E0	$\frac{1}{100 \times 10 - 5}$	0.10×10^{-7}	0.00×10^{-5}	0.25×10^{-5}
IN		3.75×10 °	2.33×10	4.07×10	1.05×10 -	5.35×10 °	2.43×10 °		1.04×10		1.00×10 °	2.12×10	9.08×10 °	2.35×10
PN	6.68×10^{-1}		6.73×10^{-4}	3.66×10^{-4}	8.61×10^{-3}	3.48×10^{-3}	2.21×10^{-3}		7.16×10^{-5}		2.02×10^{-4}		1.70×10^{-3}	4.92×10^{-5}
SN	1.18×10^{-3}	1.91×10^{-5}		4.48×10^{-6}	2.88×10^{-4}	8.16×10^{-4}	2.85×10^{-5}	8.81×10^{-4}		2.55×10^{-5}	1.10×10^{-4}	2.58×10^{-8}	1.05×10^{-3}	2.26×10^{-4}
Mg	4.47×10^{-1}	1.97×10^{-3}	8.50×10^{-4}		3.45×10^{-1}		8.25×10^{-2}		3.57×10^{-5}			2.37×10^{-6}	1.49×10^{-3}	
meta	7.65×10^{-1}	2.24×10^{-3}	2.64×10^{-3}	1.67×10^{-2}	_	3.68×10^{-3}	7.85×10^{-3}	2.19×10^{-5}	3.42×10^{-4}		1.50×10^{-4}	8.59×10^{-7}	1.07×10^{-3}	9.01×10^{-5}
\mathbf{Pd}	4.87×10^{-1}	1.78×10^{-3}	1.47×10^{-2}		7.22×10^{-3}		8.42×10^{-5}	1.01×10^{-4}		1.61×10^{-4}	1.46×10^{-4}	2.56×10^{-6}	4.79×10^{-3}	8.32×10^{-5}
LN	1.01×10^{-1}	5.16×10^{-4}	2.35×10^{-4}	3.59×10^{-3}	7.06×10^{-3}	3.85×10^{-5}		6.35×10^{-4}	2.16×10^{-3}		6.42×10^{-5}	7.31×10^{-6}		5.52×10^{-4}
LSN			3.23×10^{-2}		8.77×10^{-5}	2.06×10^{-4}	2.83×10^{-3}			3.68×10^{-3}	9.89×10^{-5}	3.96×10^{-7}	1.41×10^{-3}	1.08×10^{-3}
Lm	6.05×10^{-2}	2.34×10^{-4}		2.17×10^{-5}	4.29×10^{-3}		3.02×10^{-2}					2.71×10^{-6}		
Lo			2.27×10^{-3}			7.98×10^{-4}		8.95×10^{-3}			4.04×10^{-4}	1.74×10^{-6}	5.14×10^{-2}	8.69×10^{-3}
Ι	1.27×10^{-2}	1.44×10^{-3}	2.76×10^{-2}		4.10×10^{-3}	2.04×10^{-3}	1.95×10^{-3}	6.74×10^{-4}		1.13×10^{-3}		3.77×10^{-6}	1.25×10^{-2}	6.50×10^{-3}
W	1.00×10^{-2}		2.42×10^{-4}	1.17×10^{-4}	8.77×10^{-4}	1.33×10^{-3}	8.30×10^{-3}	1.01×10^{-4}	2.21×10^{-4}	1.83×10^{-4}	1.41×10^{-4}		1.05×10^{-5}	1.97×10^{-1}
other	9.16×10^{-3}	9.63×10^{-4}	2.10×10^{-2}	1.57×10^{-4}	2.34×10^{-3}	5.31×10^{-3}		7.65×10^{-4}		1.15×10^{-2}	1.00×10^{-3}	2.24×10^{-8}	—	2.94×10^{-3}
U	8.42×10^{-5}	9.92×10^{-7}	1.60×10^{-4}		6.98×10^{-6}	3.28×10^{-6}	4.75×10^{-5}	2.09×10^{-5}		6.91×10^{-5}	1.84×10^{-5}	1.50×10^{-5}	1.04×10^{-4}	

fast time scale 200 ns slow time scale 2 µs

Experimental $t_1 = 150$ ns, $t_2 = 2.2 \ \mu s$

er

to

SN state

Selected TPS applications

Chemical reactions in solution

Geissler et al Science 2001; Tiwari and Ensing, Farad Disc 2016; Joswiak et al, PNAS 2017

Glasses

¹⁴Hedges et al Science 2009; Jack etc al PRL 2011; Turci

20 2 Crsystal Nucleation 200 300 4

Moroni et al PRL 2005, Bekcham et al JACS 2007l Lechner et al. PRL 2011; Diaz Leines & Rogal JPCB 2018; Arjun et al PNAS 2019....

Microphases

Ten Wolde et al PNAS 2002; Pool & PGB JCP 2007

Enzymatic reactions

Basner et Schwarz, JACS 2005; Knott et al, JACS 2013;Li et al JACS 2014; Paul and Taraphder, ChemPhysChem 2020; Silveira et al, JPCB 2021;....

Marti & Csajka 2004; Okazaki et al Nat Comm. 2019. Domanski, et al PLOS Comput. Biol. 2020,;

Biomolecular conformational change

Bolhuis PNAS 2003; Juraszek & Bolhuis 2006; Vreede et al PNAS 2010; Best & Hummer PNAS 2016; Brotzakis & PGB, JPCB 2019, Vreede et al. NAR 2019......

Gas hydrate nucleation

- Gas hydrates provide
 - large repository of natural gas
 - possibility for CO2 sequestration
 - problem in pipes
- How do hydrates nucleate?
- Methane hydrate nucleation hypothesis
 - amorphous critical nucleus
 - transforms into crystalline form
- experimental testing difficult: simulations

Stable phase and Order Parameters

single methane cage

Stable phase and Order Parameters

we focus on two families of order parameters

SIZE: **MCG** (Mutually Coordinated Guests)

Barnes et. al (2014)

SHAPE: Cage type Identification

Cluster Analysis using MCG Cage Ratio $5^{12}6^{2}/5^{12} = 3$ for pure SI crystal smaller than 1 for amorphous solids

Walsh, M. R Science 2009, 326, 1095–1098

Solidification dependent on temperature

Solidification dependent on temperature

Solidification dependent on temperature

Path sampling at 280 K

2944 TIP4P/ice + 512 CH4 NPT 500 atm 250 K,

simulation time 1 ms, 2000 trial paths, acceptance 33%, >200 decorrelated paths, average path length 500 ns induction time > 30 kyears Green Spheres – Methane Dotted Lines – Water Hydrogen Bonds

Path sampling at 280 K

2944 TIP4P/ice + 512 CH4 NPT 500 atm 250 K,

simulation time 1 ms, 2000 trial paths, acceptance 33%, >200 decorrelated paths, average path length 500 ns induction time > 30 kyears Green Spheres – Methane Dotted Lines – Water Hydrogen Bonds

path density T=270 K

path density T=275 K

path density T=280 K

path density T=285 K

Amorphous Pathways

Red Cage

Amorphous Pathways

Amorphous Pathways

Crystalline Pathways

Amorphous Pathways

Crystalline Pathways

does not follow Ostwald step rule: metastable phase avoided

Reaction Coordinate Analysis

LME gives best model allowing two collective variables

important collective variables : nucleus size and big cage content

Machine learning of reaction coordinates

- Committor p_B(x) is THE reaction coordinate
- Committor is high dimensional function; difficult to gain physical insight
- **dimensionality reduction:** find best low dimensional order parameter combination that best represents committor
- Interpret each path of reweighted path ensemble as shot.
 Use info to optimise reaction coordinate model r(q1, q2,..)

$$L(\alpha) = \prod_{i=1}^{N_B} p_B(r(q(\mathbf{x}_i^{(B)}))) \prod_{i=1}^{N_A} (1 - p_B(r(q(\mathbf{x}_i^{(B)}))))$$

- Likelihood maximisation of predicted committor model
- use auto encoder to find optimal CV combination

Learning the sampling & the RC together

Learning the sampling & the RC together

Learning the sampling & the RC together

Summary hydrate formation

- TPS of hydrate formation under natural conditions using realistic models
 - path ensemble (over 1 ms) shows broad distribution of transitions
 - at high undercooling forms amorphous solid, at low undercooling forms crystal
 - not a gradual shift: at 280 K both routes can coexist
 - nucleation rate closer to experimentally predicted range
- reaction coordinate analysis
 - only size of the nucleus important at high undercooling
 - size & structure of nucleus important at low undercooling (anti correlated)
 - machine learning can identify non-linear function
- Polymorph selection:
 - 5(12)6(2) cages important at high T
 - occurs in precritical regime
- crystallisation at low undercooling does not follow Ostwald step rule: metastable phase avoided

Arjun, Berendsen, PGB, PNAS, 2019

Arjun and PGB. J Phys. Chem. B 2020, 124, 37, 8099

The OpenPathSampling package

- a python library for path sampling simulations
 - works with OpenMM and simple dynamics
 - Gromacs, Lammps support
 - uses MdTraj, OpenMM
- OPS allows flexible definition of
 - states, trajectory ensembles
 - sets of interfaces, networks of transitions
- OPS provides algorithms for sampling
 - TPS, (fixed or flexible length) MSTPS
 - TIS, MSTIS, RETIS (SRTIS)
 - committors, reactive flux
- OPS provides analysis tools
 - crossing probabilities
 - rates, free energies, path densities.....
- ✓ **Easy to use**: Beginners can quickly learn to use it
- ✓ Easy to extend: Advanced users can use it to develop new methods
- ✓ Independent of dynamics engine: Useful in many fields and to the broadest audience

OpenPathSampling

http://openpathsampling.org

Twitter: @pathsampling Development at: <u>http://github.com/openpathsampling/</u>

Swenson, Prinz, Noe, Chodera, PGB, JCTC, 2019

Conclusions

- transition path sampling yields unbiased ensemble of reactive trajectories
- committor based analysis yields reaction coordinate
- TIS yields kinetic rate constants predictions
- Multiple state versions allow sampling of kinetic reaction network
- Reweighted path ensemble allows evaluation of full reaction coordinate
- Simultaneous path sampling & RC analysis possible with Machine Learning
- Open Path Sampling makes all of this available to the community: www.openpathsampling.org

Conclusions

- transition path sampling yields unbiased ensemble of reactive trajectories
- committor based analysis yields reaction coordinate
- TIS yields kinetic rate constants predictions
- Multiple state versions allow sampling of kinetic reaction network
- Reweighted path ensemble allows evaluation of full reaction coordinate
- Simultaneous path sampling & RC analysis possible with Machine Learning
- Open Path Sampling makes all of this available to the community: www.openpathsampling.org

Transition path sampling allows exploration and understanding of kinetics of complex rare event protein and DNA dynamics

Acknowledgements

OPS

David Swenson

Prinz

John Chodera

Jocelyne

Vreede

Frank Noe

OpenPathSampling

Titus van Erp

Faidon

Brotzakis

Arjun

Christoph Dellago

Gerhard Hummer

Bernd

Ensing

Roberto Covino

UvA AI4Science Laboratory

Outline

- Introduction
- Rare events

part 1:

- Transition Path Sampling
- Committor & Reaction coordinate analysis
- Rate constants with transition interface sampling
- reaction networks with multiple state TPS/TIS
- advanced developments & machine learning
- OPS software

part 2:

- imposing kinetic constraints
- path reweighting with Maximum Caliber
- conclusions

Part 2: Imposing experimental kinetics

- Classical MD can predict statics and dynamics but has two sources of error:
 - sampling problem
 - systematic force field error
- Combining MD with experiments can compensate FF errors, using the maximum entropy (MaxEnt) framework. (*Vendruscolo et al; Cesari, Reißer and Bussi, Computation 2018, 6, 15*)
- Can we do the same for kinetics?

Part 2: Imposing experimental kinetics

- Classical MD can predict statics and dynamics but has two sources of error:
 - sampling problem
 - systematic force field error
- Combining MD with experiments can compensate FF errors, using the maximum entropy (MaxEnt) framework. (*Vendruscolo et al; Cesari, Reißer and Bussi, Computation 2018, 6, 15*)
- Can we do the same for kinetics?

Problem : (re)computing kinetics very expensive.

Better option: reuse existing trajectory data, and correct for error

Take cue from MaxEnt: put experimental constraint on path distribution, using the maximum path entropy approach

Maximum Caliber

the Maximum Caliber approach (Jaynes 1980) is a variational path based framework used in (non)-equilibrium statistical mechanics (mostly used in discrete systems, see e.g. Dill et al)

the path entropy (caliber) is

$$S[\mathcal{P} \| \mathcal{P}^0] = -\int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] \ln \frac{\mathcal{P}[\mathbf{x}]}{\mathcal{P}^0[\mathbf{x}]},$$

now optimise path distribution $\mathscr{P}[\mathbf{x}]$

$$\mathcal{P}^{MC}[\mathbf{x}] = \arg \max S[\mathcal{P} || \mathcal{P}^{0}],$$

subject to:
$$\begin{cases} \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] s_{i}[\mathbf{x}] = \langle s_{i}[\mathbf{x}] \rangle = s_{i}^{exp} \\ \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] = 1. \end{cases}$$

constraint could be kinetic rate constant

maximisation (with method of Lagrange multipliers) gives

$$\mathcal{L} = -\int \mathcal{D}\mathbf{x}\mathcal{P}[\mathbf{x}] \ln \frac{\mathcal{P}[\mathbf{x}]}{\mathcal{P}^0[\mathbf{x}]} - \nu \left(\int \mathcal{D}\mathbf{x}\mathcal{P}[\mathbf{x}] - 1\right) - \sum_i \mu_i \left(\int \mathcal{D}\mathbf{x}\mathcal{P}[\mathbf{x}]s_i[\mathbf{x}] - s_i^{exp}\right),$$

leading to $\mathcal{P}^{MC}[\mathbf{x}] \propto e^{-\sum_{i} \mu_{i} s_{i}[\mathbf{x}]} \mathcal{P}^{0}[\mathbf{x}].$ with path probability $\mathcal{P}^{0}[\mathbf{x}] = \rho(x_{0}) \prod_{i=0}^{L-1} p(x_{i} \to x_{i+1}),$

Maximum Caliber

the Maximum Caliber approach (Jaynes 1980) is a variational path based framework used in (non)-equilibrium statistical mechanics (mostly used in discrete systems, see e.g. Dill et al)

the path entropy (caliber) is

$$S[\mathcal{P} \| \mathcal{P}^0] = -\int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] \ln \frac{\mathcal{P}[\mathbf{x}]}{\mathcal{P}^0[\mathbf{x}]},$$

now optimise path distribution $\mathscr{P}[\mathbf{x}]$

$$\mathcal{P}^{MC}[\mathbf{x}] = \arg \max S[\mathcal{P} || \mathcal{P}^{0}],$$

subject to:
$$\begin{cases} \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] s_{i}[\mathbf{x}] = \langle s_{i}[\mathbf{x}] \rangle = s_{i}^{exp} \\ \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] = 1. \end{cases}$$

constraint could be kinetic rate constant

similar to MaxEnt, but

depends on path x $-s_i^{exp}$,

maximisation (with method of Lagrange m

$$\mathcal{L} = -\int \mathcal{D}\mathbf{x}\mathcal{P}[\mathbf{x}] \ln \frac{\mathcal{P}[\mathbf{x}]}{\mathcal{P}^0[\mathbf{x}]} - \nu \left(\int \mathcal{D}\mathbf{x}\mathcal{P}[\mathbf{x}]\right)$$

leading to $\mathcal{P}^{MC}[\mathbf{x}] \propto e^{-\sum_i \mu_i s_i[\mathbf{x}]} \mathcal{P}^0[\mathbf{x}].$

with path probability $\mathcal{P}^0[\mathbf{x}] = \rho(x_0) \prod_{i=0}^{L-1} p(x_i \to x_{i+1}),$

Maximum Caliber

the Maximum Caliber approach (Jaynes 1980) is a variational path based framework used in (non)-equilibrium statistical mechanics (mostly used in discrete systems, see e.g. Dill et al)

the path entropy (caliber) is

$$S[\mathcal{P} \| \mathcal{P}^0] = -\int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] \ln \frac{\mathcal{P}[\mathbf{x}]}{\mathcal{P}^0[\mathbf{x}]},$$

now optimise path distribution $\,\mathscr{P}[\mathbf{x}]\,$

$$\mathcal{P}^{MC}[\mathbf{x}] = \arg \max S[\mathcal{P} || \mathcal{P}^{0}],$$

subject to:
$$\begin{cases} \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] s_{i}[\mathbf{x}] = \langle s_{i}[\mathbf{x}] \rangle = s_{i}^{exp} \\ \int \mathcal{D} \mathbf{x} \mathcal{P}[\mathbf{x}] = 1. \end{cases}$$

constraint could be kinetic rate constant

TIS gives expressions for rate constant based on path ensembles

$$k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0), \qquad P_A(\lambda | \lambda_0) = \int \mathcal{D} \mathbf{x} \mathcal{P}_A[\mathbf{x}] \theta(\lambda_{max}[\mathbf{x}] - \lambda),$$

we impose correct rate at all interfaces λi ; standard optimisation gives

$$\mathcal{P}_{A}^{MC}[\mathbf{x}] \propto e^{f_{A}(\lambda_{max}[\mathbf{x}])} \mathcal{P}_{A}^{0}[\mathbf{x}],$$

$$f_{A}(\lambda_{max}[\mathbf{x}]) \equiv -\sum_{i=1}^{n} \mu_{i}\theta(\lambda_{max}[\mathbf{x}] - \lambda_{i})P_{A}(\lambda_{n}|\lambda_{i}),$$

TIS gives expressions for rate constant based on path ensembles

$$k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0), \qquad P_A(\lambda | \lambda_0) = \int \mathcal{D} \mathbf{x} \mathcal{P}_A[\mathbf{x}] \theta(\lambda_{max}[\mathbf{x}] - \lambda),$$

we impose correct rate at all interfaces λi ; standard optimisation gives

$$\mathcal{P}_{A}^{MC}[\mathbf{x}] \propto e^{f_{A}(\lambda_{max}[\mathbf{x}])} \mathcal{P}_{A}^{0}[\mathbf{x}],$$

$$f_{A}(\lambda_{max}[\mathbf{x}]) \equiv -\sum_{i=1}^{n} \mu_{i}\theta(\lambda_{max}[\mathbf{x}] - \lambda_{i})P_{A}(\lambda_{n}|\lambda_{i}),$$

 $f(\lambda)$ is not fixed except at λ_{B} : determine $f(\lambda)$ from projected **configurational density**:

$$\rho_A^{MC}(\lambda) \propto \int \mathcal{D}\mathbf{x} \mathcal{P}_A^0[\mathbf{x}] e^{f_A(\lambda_{max}[\mathbf{x}])} \sum_{k=0}^{L[\mathbf{x}]} \delta(\lambda(x_k) - \lambda).$$

This should be equal the density obtained from a MaxEnt approach

$$\rho^{ME}(x) \propto e^{-\mu g(x)} \rho^0(x), \longrightarrow \rho^{ME}(\lambda) \propto e^{-\mu g(\lambda)} \rho^0(\lambda),$$

But what is $g(\lambda)$?

TIS gives expressions for rate constant based on path ensembles

$$k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0), \qquad P_A(\lambda | \lambda_0) = \int \mathcal{D} \mathbf{x} \mathcal{P}_A[\mathbf{x}] \theta(\lambda_{max}[\mathbf{x}] - \lambda),$$

we impose correct rate at all interfaces λi ; standard optimisation gives

$$\mathcal{P}_{A}^{MC}[\mathbf{x}] \propto e^{f_{A}(\lambda_{max}[\mathbf{x}])} \mathcal{P}_{A}^{0}[\mathbf{x}],$$

$$f_{A}(\lambda_{max}[\mathbf{x}]) \equiv -\sum_{i=1}^{n} \mu_{i}\theta(\lambda_{max}[\mathbf{x}] - \lambda_{i})P_{A}(\lambda_{n}|\lambda_{i}),$$

 $f(\lambda)$ is not fixed except at $\lambda_{B:}$ determine $f(\lambda)$ from projected **configurational density**:

$$\rho_A^{MC}(\lambda) \propto \int \mathcal{D}\mathbf{x} \mathcal{P}_A^0[\mathbf{x}] e^{f_A(\lambda_{max}[\mathbf{x}])} \sum_{k=0}^{L[\mathbf{x}]} \delta(\lambda(x_k) - \lambda).$$

This should be equal the density obtained from a MaxEnt approach

$$\rho^{ME}(x) \propto e^{-\mu g(x)} \rho^0(x), \longrightarrow \rho^{ME}(\lambda) \propto e^{-\mu g(\lambda)} \rho^0(\lambda),$$

But what is $g(\lambda)$? determine from known exp. equilibrium constant (fraction)

$$\frac{\int d\lambda g(\lambda)\rho(\lambda)}{\int d\lambda\rho(\lambda)} = K_{exp} = \frac{1}{1 + k_{BA}^{exp}/k_{AB}^{exp}}$$

TIS gives expressions for rate constant based on path ensembles

$$k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0), \qquad P_A(\lambda | \lambda_0) = \int \mathcal{D} \mathbf{x} \mathcal{P}_A[\mathbf{x}] \theta(\lambda_{max}[\mathbf{x}] - \lambda),$$

we impose correct rate at all interfaces λi ; standard optimisation gives

$$\mathcal{P}_{A}^{MC}[\mathbf{x}] \propto e^{f_{A}(\lambda_{max}[\mathbf{x}])} \mathcal{P}_{A}^{0}[\mathbf{x}],$$

$$f_{A}(\lambda_{max}[\mathbf{x}]) \equiv -\sum_{i=1}^{n} \mu_{i}\theta(\lambda_{max}[\mathbf{x}] - \lambda_{i})P_{A}(\lambda_{n}|\lambda_{i}),$$

 $f(\lambda)$ is not fixed except at $\lambda_{B:}$ determine $f(\lambda)$ from projected **configurational density**:

$$\rho_A^{MC}(\lambda) \propto \int \mathcal{D}\mathbf{x} \mathcal{P}_A^0[\mathbf{x}] e^{f_A(\lambda_{max}[\mathbf{x}])} \sum_{k=0}^{L[\mathbf{x}]} \delta(\lambda(x_k) - \lambda).$$

This should be equal the density obtained from a MaxEnt approach

$$\rho^{ME}(x) \propto e^{-\mu g(x)} \rho^0(x), \longrightarrow \rho^{ME}(\lambda) \propto e^{-\mu g(\lambda)} \rho^0(\lambda),$$

But what is $g(\lambda)$? determine from known exp. equilibrium constant (fraction)

$$\frac{\int d\lambda g(\lambda)\rho(\lambda)}{\int d\lambda\rho(\lambda)} = \frac{\int d\lambda p_B(\lambda)\rho(\lambda)}{\int d\lambda\rho(\lambda)} = -\frac{\int d\lambda\rho_B(\lambda)}{\int d\lambda\rho(\lambda)} = K_{exp}$$

TIS gives expressions for rate constant based on path ensembles

$$k_{AB} = \phi_0 P_A(\lambda_B | \lambda_0), \qquad P_A(\lambda | \lambda_0) = \int \mathcal{D} \mathbf{x} \mathcal{P}_A[\mathbf{x}] \theta(\lambda_{max}[\mathbf{x}] - \lambda),$$

we impose correct rate at all interfaces λi ; standard optimisation gives

$$\mathcal{P}_{A}^{MC}[\mathbf{x}] \propto e^{f_{A}(\lambda_{max}[\mathbf{x}])} \mathcal{P}_{A}^{0}[\mathbf{x}],$$

$$f_{A}(\lambda_{max}[\mathbf{x}]) \equiv -\sum_{i=1}^{n} \mu_{i}\theta(\lambda_{max}[\mathbf{x}] - \lambda_{i})P_{A}(\lambda_{n}|\lambda_{i}),$$

 $f(\lambda)$ is not fixed except at $\lambda_{B:}$ determine $f(\lambda)$ from projected **configurational density**:

$$\rho_A^{MC}(\lambda) \propto \int \mathcal{D}\mathbf{x} \mathcal{P}_A^0[\mathbf{x}] e^{f_A(\lambda_{max}[\mathbf{x}])} \sum_{k=0}^{L[\mathbf{x}]} \delta(\lambda(x_k) - \lambda).$$

This should be equal the density obtained from a MaxEnt approach

yielding corrected committor

yielding corrected committor

$$p_B(\lambda) = \frac{\rho_B^0(\lambda)}{\rho_A^0(\lambda) e^{-\mu_A} e^{(\mu_A + \mu_B)p_B(\lambda)} + \rho_B^0(\lambda)}$$

yielding corrected committor

$$p_B(\lambda) = rac{
ho_B^0(\lambda)}{
ho_A^0(\lambda) e^{-\mu_A} e^{(\mu_A + \mu_B)p_B(\lambda)} +
ho_B^0(\lambda)}$$

The MaxEnt posterior density should be same as the MaxCal density posterior

 $\rho_A^{MC}(\lambda) = e^{-\mu g(\lambda)} \rho_A^0(\lambda), \quad \text{with} \quad g(\lambda) = p_B(\lambda)$

yielding corrected committor

$$p_B(\lambda) = rac{
ho_B^0(\lambda)}{
ho_A^0(\lambda) e^{-\mu_A} e^{(\mu_A + \mu_B)p_B(\lambda)} +
ho_B^0(\lambda)}$$

The MaxEnt posterior density should be same as the MaxCal density posterior

 $\rho_A^{MC}(\lambda) = e^{-\mu g(\lambda)} \rho_A^0(\lambda),$ with $g(\lambda) = p_B(\lambda)$ gives f(λ)! Brotzakis, Vendruscolo, PGB, PNAS 118, e2012423118 (2021).

Application to 2D potential

Brotzakis, Vendruscolo, PGB, PNAS **118**, e2012423118 (2021).

Interpretation of the MaxCal method

- MaxCal based method reweights existing trajectories or path ensembles (from MD, TIS, FFS, or other adaptive schemes).
- reweighting based on progress along λ : made more/less probable in the path ensembles
- rate constants are automatically constrained to the correct value (via $f_{A,B}(\lambda)$).
- fixing $f(\lambda)$ requires a bias $g(\lambda)$ based on the committor function
- method is enslaved to the original dynamics: so only distribution of initial conditions for paths is altered via the reweighting, the trajectories themselves do not change: analogous (but not identical) to microcanonical trajectory reweighting (e.g in Nested TPS)

Brotzakis, Vendruscolo, PGB, PNAS **118**, e2012423118 (2021).
Application to chignolin folding

DE Shaw trajectory yield rate constants at exp. melting 341 K k_{f} = 1.667 μs^{-1} k_{u} = 0.455 μs^{-1}

correct FF error by constraining folding rate also to $k_f = 0.455 \ \mu s^{-1}$

Chignolin 106 μs Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). Science, 334(6055), 517–520

Application to chignolin folding

DE Shaw trajectory yield rate constants at exp. melting 341 K k_{f} = 1.667 μs^{-1} k_{u} = 0.455 μs^{-1}

correct FF error by constraining folding rate also to $k_f = 0.455 \ \mu s^{-1}$

Chignolin 106 μs Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). Science, 334(6055), 517–520

Summary

- New general method that
 - imposes experimental dynamical constraints on path ensembles with MaxCal
 - can impose rate constant, and yields consistent free energy (configurational density) correctly, via committor.
 - is post-processing, no costly reevaluation of path ensembles needed.
 - reveals shifting of transition states and mechanisms.
 - is applicable to many processes in biology, physics, chemistry & material science.
- Outlook :
 - improve force fields, e.g. by computing the derivative of the path ensemble based rate constants w.r.t. to FF parameters.
 - make independence from CV definition

FAQ

- Why does shooting work?
 - Stable states are attractors of the trajectories, while molecular chaos cause paths to diverge quickly
- How many trajectories?
 - About 10³ trajectories per ensemble should suffice, but more is better.
- How long do the paths need to be?
 - Long enough to be able to relax to the stable states (about τ_{mol}). More quantitative measures based on correlation functions.
- How does it scale?
 - Just like MD, linear in time, linear in system size. Larger systems might need longer time.
- How to create initial path?
 - Many ways: pulling, high T, interpolation, metadynamics, committor analysis, TIS, etc
- What requirements do stable state definitions have?
 - Should distinguish states, but also representative. Path should quickly find state, but not with a false positive.
- What about other types of dynamics?
 - All eqs of motion, e.g. *ab initio* MD, Langevin, dynamic MC can be used.
- What about multiple channels and intermediates?
 - Should be included in sampling. Otherwise use e.g. RETIS, MSTIS or other advance path sampling methods.