
Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Microcontroller technology, architecture and peripherals

Dr. Luigi Calligaris (SPRACE/UNESP)

Day 1 - 18/10/2021

1

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Brief prologue: semiconductor devices

○ Semiconductor devices based mainly on Si technologies
○ Well-established industry with decades of experience
○ Many chip designers + a number of huge and smaller factories

○ Common production process in brief
○ Quartz sand → remove oxygen → Si + impurities
○ Purify Si → long Si monocrystal ingots → cut into wafer
○ Process wafers to build components & circuits → dice into chips

○ Making smaller chips has many advantages
○ Increase #chips/wafer and % yield → lower cost for same HW
○ Miniaturization (think about wearable or injectable electronics)
○ Thermal, power and frequency performance…

○ Use devices with just what you need → save $$$, space, pwr
○ Large variety of devices tries to match with application needs

2

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

General-purpose processor devices

○ NOTE: market variety is blurring these definitions
○ In this school Dr. Christian Sisterna will present extensively SoCs with programmable FPGA logic

3

Standalone CPU System on a Chip (SoC) Micro Controller Unit (MCU)

Computers & servers Complex embedded systems Simple embedded systems

Depends on external devices
(usually on motherboard/cards)

Most of functions in the package
(usually bulky DRAM sits outside)

Every function tries to be in
the same package (RAM included)

Large processing power Wide variety, usually mid-powered Small-medium processing power

Designed to run an OS Often OS, RTOS or bare-metal Only bare-metal or RTOS

AMD Epyc: a server-oriented CPU BCM2711B0 in an RPi4 ATMega328P: basis of ArduinoUNO

low-power, efficiency, small
high-power, performance, big

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Microcontroller structure

○ Core, clocks, debug, interrupt, power

○ Memories (Flash, RAM, boot ROM)

○ Peripherals
○ Accessory functions (crypto unit, DMA, …)
○ Interface with the external world (GPIO, I2C, SPI …)

4

Core(s)

Debug logic
(JTAG,trace,..)

RAM Boot ROM Programmable Flash

One or more interconnection bus

Peripheral 1 Peripheral 2 Peripheral 3...
Interrupt Cont.

Power
Mgmt

(LDOs)

A real example: STM32F411

Clock
Mgmt

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Fundamental components

5

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

MCU Core
○ It’s where your compiled application code runs

○ Orchestrates the operation of the various MCU peripherals
○ Defining aspect of a microcontroller product family
○ In MCUs, often instructions can be executed straight from flash memory

○ There are hundreds of different cores available for use
○ 8-, 16- or 32-bit address designs

○ Different architectures are used (even by the same company)
○ Von Neumann → instructions and data use the same memory
○ Harvard → strict separation of instruction and data memory spaces
○ Mod. Harvard → various compromises in between (most common)
○ These distinctions can be important, e.g when estimating memory use

○ Note: MCU companies often outsource core design to IP providers
○ e.g. XTensa (Tensilica), 68000 (Motorola), Cortex-M (ARM), SiFive
○ The design is customized to the needs of the MCU designer
○ Some documentation you need may be on the IP provider site

6

Tensilica designed the L106/LX6
used by ESP8266/ESP32

ARM Cortex-M are the most
common mid-high performance

MCU cores used today

SiFive licenses its RISC-V core IPs
(or can design entire chips)

Nordic & then Atmel developed
in-house the AVR cores, basis of

e.g. ATMega328P of Arduino

The CIP-51 designed in-house by
SiLabs derives from Intel is the basis

of the BusyBee MCUs

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Reset/boot logic & boot ROM

○ Reset state
○ Well-known initial state for the MCU and (some of the) peripherals
○ Power-on reset (PoR) generator → triggers reset at power-up
○ Package pin or internal register → triggers reset while running

○ Usually the MCU after reset runs boot code stored in ROM during fabrication
○ This early bootloader sets up the device based on pin state & non-volatile regs
○ Should I receive a new firmware image on UART/SPI/I2C? How?
○ Should I fetch the firmware in an external flash memory? How?
○ Which is the first execution address in flash memory?

○ The boot process is a critical element of firmware & system design
○ You can play lots of nice tricks to update firmware & load it in stages

○ The presentations by André (OpenIPMC) and Oliver (ZynqMP boot) will show some magic

7

PoR timing diagram for an STM32F4 MCU

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

A general note on controlling components

○ In MCUs the logic present in the silicon is usually mapped to addresses
○ Everything that you can control from your code maps to a void*

○ Flash memory
○ RAM
○ Peripherals
○ Power tree control regs
○ Clock tree control regs

○ The address map is specified in datasheets

○ Modern IDEs do the work for you
○ You usually don’t have to deal with addresses
○ The addresses are hidden behind a C macro

8

Flash

RAM

Peripheral 1

Peripheral 2

Peripheral 3

Controls

0x0000 0000

0x0040 0000

0x0060 0000

0x0060 1000
0x0060 2000

0x0060 3000

...

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Clock management

○ MCUs usually use a simple & slow RC internal oscillator at startup
○ Quite imprecise, but compact and suitable for some applications
○ Clock source can be later switched to external crystal/oscillator

○ Clock trees can be highly configurable
○ Use multiple external clock sources
○ Generate new (faster) clocks with a PLL
○ Clock-gating parts of the chip to save power
○ Dynamic frequency setting
○ Export clock signals outside via a pin

○ Clocks usually configured via registers
○ C API provided by the manufacturer in SDK

9

Clock configuration utility for an STM32H755 MCU

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Power management

○ Many MCUs split the device in multiple power domains
○ These regions can be powered on/off to optimize power
○ Often there will be separate powering pins for some domains

○ e.g. for noise-sensitive peripherals like ADCs

○ MCUs usually come with internal voltage regulators
○ Generate core (usually very low) and peripheral internal V
○ Some MCUs can provide power to external devices
○ Some high-end MCUs come with switching mode PS

○ More efficient and better thermal performance

○ Power tree is usually controlled via registers
○ C API provided by the manufacturer in SDK

10

outside inside

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

RAM

○ MCUs can have one or more internal RAM banks
○ General-purpose data and instruction RAM
○ Back-up RAM → survives resets, can be powered by backup battery
○ High-performance MCUs often have

○ Low-latency RAM bound to main core (TCM, Tightly Coupled Memory)
○ Low-latency cache memory

○ Typical RAM memory sizes: from ~16 bytes to ~few MiB

○ Few MCUs add a memory controller to use external RAM
○ Grey zone between SoC and MCU

○ When designing firmware, care must be taken about RAM access:
○ In multi-core MCUs some RAM can be accessed just by specific cores / peripherals
○ RAM banks may be mapped at distinct & separate address ranges

○ Big chunks of data may not fit into the chosen bank

11

Core 0
(+ cache)

Core 1

TCM

Bus

RAM 0 RAM 1

Backup RAM

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Interrupt controller

○ Note: later there will be a class specific to this topic
○ Think about timescales in an MCU

○ Core and RAM: 1’000’000 Hz - 500’000’000 Hz
○ Terminal comm: 10’000 Hz - 1’000’000 Hz
○ Button press: few Hz?

○ Core wastes a lot of cycles waiting for slow events
○ It could be doing something else while waiting for the event
○ How does the core know when to go back to the old job?

○ Interrupt controller
○ Gets the attention of the core when a rare event happens
○ Fundamental in making efficient use of resources

12

Core

Peripheral 1

b
u
s

Peripheral 2

Peripheral 2

Interrupt
Controller

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Debug and test
○ Needs for FW development and HW production

○ Debug the execution flow in the device
○ e.g. follow step-by-step, set breakpoints, view variables…

○ Test device HW & program in-factory
○ e.g. boundary scan of the external pins, flash the product firmware

○ Some MCUs: standard JTAG Test Access Port (TAP) controller
○ JTAG → 4/5 wires (very common, but many wires)
○ cJTAG → 2 wires (rather uncommon)

○ ARM use proprietary CoreSight Debug Access Port (DAP)
○ Serial Wire Debug→ 2 wires
○ Compatible with JTAG

○ Some devices offer TRACE ports as well
○ Sample live execution flow → code analysis & profiling

○ Interface the MCU with a PC is through a USB debug adapter
○ Proprietary ones, or can be emulated in software (FTDI)

13

Segger JLink Atmel AVRISP

ST STLink

NXP MCU-Link

Generic FTDI board

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

JTAG and SWD pinout
4/5-wire JTAG (IEEE 1149.1)

TMS (Test Mode Select)

TCK (JTAG clock)

TDO (master-in slave-out)

TDI (master-out slave-in)

TRST (Test Reset) - optional

GND

TMS
SCK
TDO

TDI

SWDCLK
SWDIO

GND GND

2-wire JTAG (IEEE 1149.7)

TCK (cJTAG clock)

TMSC (cJTAG data)

(this is a rare interface)

GND

TCK
TMSC

GND

ARM Serial Wire Debug

SWDCK (SWD clock)

TMSC (SWD data)

GND

DUT DUT DUT

TRST

OTHER
MANUFACTURERS

HAVE SIMILAR
PROPRIETARY

DEBUG INTERFACES
(e.g. TI Spy-Bi-Wire)

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

On-chip buses
○ The various components of the MCU need to communicate

○ Usually accomplished with multiple common buses + interconnects
○ On-silicon buses: optimized for low latency and high bandwidth

○ Convergence towards bus standards
○ Majority of MCUs uses a few common internal bus types
○ Easier to design with IP cores of different manufacturers

○ Advanced Microcontroller Bus Architecture (AMBA)
○ Freely-available and open standard by ARM

○ Advanced Peripheral Bus (APB)
○ Advanced High performance Bus (AHB)
○ Advanced Extensible Interface (AXI)
○ AXI Coherence Extensions (ACE)
○ Coherent Hub Interface (CHI)

○ All the devices you’ll use in this school use AMBA buses! :)

15

Bus topology in an STM32H745

Fast & low latency
Scalable
RAM/Processors

Simple
Low bandwidth
Many peripherals

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Brief digression about on-PCB
communication

16

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Connecting devices on the PCB

○ Devices get more integrated → saves space, power, $
○ Microcontrollers, SoCs, SIPs with many functions

○ Some system features provided by a separate device
○ Need standard communication protocols allowing interoperability
○ One MCU peripheral to talk to a million types of different devices

○ Protocols/interfaces differ based on application
○ High bandwidth (e.g. PCI-e) and/or long-range (e.g. Ethernet)

○ Complex, expensive, energy-hungry, occupy lots of PCB space

○ Low-bandwidth and short-range
○ Simple, cheap in silicon, low power, PCB space-efficient

○ Most common on-PCB “slow” protocols
○ SPI, I2C, UART, single-wire

Fast & furious

Smol & efficient

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Serial Peripheral Interface (SPI)
○ Master-Slave with monodirectional (4-wire) or bidirectional data wire (3-wire)

○ Clock and data wires are shared between 1 master and one/many slaves
○ One additional wire per chip is needed to select it

○ Serves to signal the slave device that the communication is intended for him
○ The other slaves ignore the MOSI data and enter high-Z state

○ Data protocol depends on the specific device

○ Best case bandwidth is ~80-40 Mbps, typical 10 Mbps

Slave
Device 1

Slave
Device 2

Master
(e.g MCU)

NOT(chip select) = 0

SPI clock

Master OUT Slave IN

Master IN Slave OUT

CSB pulled low enables chip

NOT(chip select) = 1
TX in high-Z

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Serial Peripheral Interface (SPI) pinout
4-wire SPI (most common)

CSB or CSN (chip select bar/not)

SCK (serial clock)

MISO (master-in slave-out)

MOSI (master-out slave-in)

GND (PCB ground, no need for wire)

3-wire SPI (less common)

CSB or CSN (chip select bar/not)

SCK (serial clock)

SDIO (serial data in-out)

GND (PCB ground, no need for wire)

CSB
SCK
MISO
MOSI

CSB
SCK
SDIO

GND GND

SPI
SLAVE

SPI
SLAVE

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Inter-Integrated Circuit (I2C, IIC or I2C)
○ Master-Slave with shared clock & data wires (i.e. 2 wires)

○ Open drain mode (next slide)
○ Chips selected with a 7- or 10-bit address as first data

○ I2C protocol defines the start/stop conditions, address, r/w bit, ACKnowledge
○ The format of the data payload depends on the specific slave device
○ An example of a typical device with memory-like access is shown below

○ Best case bandwidth is ~3.4 Mbps, typical 100-400 kHz

Slave
Device
0x25

Slave
Device
0x48

Master
(e.g MCU)

SCL

SDA

VCC

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Open Drain
○ When many devices drive the same wire there is a risk of short circuit

○ e.g. one device pulls a ‘1’ and another a ‘0’

○ Putting a protection resistor in series with each device would not help
○ What if 126 devices pull a ‘0’ and one device pulls a ‘1’ → maybe minority device fries?
○ What if 2 devices pull a ‘0’ and 2 devices pull a ‘1’ → undefined middle state

○ Solution: one state (usually ‘1’) is pulled by a common global resistor
○ The other state is just the transition of one device from high-Z to GND
○ This way the current does not depend on the number of devices

○ I2C and some other interfaces use Open Drain

○ Line capacitance tends to be large w.r.t. pull up resistors
○ The slow rise time of the line limits the min symbol period
○ Open-drain is slow compared to a CMOS gate

○ That’s why I2C is slower than SPI or UART

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Inter-Integrated Circuit (I2C, IIC or I2C)

I2C (uses just two wires)

SCL (serial clock)

SDA (serial data)

GND (PCB ground, no need for wire)

SCL
SDA

GND

I2C
DEVICE

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Universal asynchronous receiver-transmitter (UART)
○ Symmetric role (no master/slave) and two wires: A(tx)→B(rx), B(tx)→A(rx)

○ Symbols (e.g. bytes in the case of 8-N-1 mode) are sent one at a time

○ UART is asynchronous, uses independent clocks in A and B
○ When B(rx) gets A(tx) start condition, it starts sampling at the expected points

○ e.g. in a 115200 bps connection, every 1/115200 of a second after the start condition

○ This works if A and B clock’s frequency are not too off (max ~10% disagreement)

○ UARTS are everywhere you have a Linux embedded system (routers, cellphones, ...)

○ There is a synchronous version (USART)
○ One wire carries a clock from the master

Device B
(e.g CP2102)

Device A
(e.g MCU)

RX TX

TX RX

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Universal asynchronous receiver-transmitter (UART)

UART (uses just two wires)

TX (data out)

RX (data in)

GND (PCB ground, no need for wire)

TX
RX

GND

DEVICE

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Single wire interface
○ Some very simple devices use a single wire

○ Uses very little PCB space
○ Usually a rather slow connection
○ Often open collector bus
○ e.g. the DHT11, DHT22 and AM2302

thermometer sensors use this interface
○ Usually data encoded by pulse length

○ “1” = long high pulse
○ “0” = short high pulse

sensor

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Some common peripherals

26

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

GPIO, SPI, I2C, UART, CAN, Ethernet...

○ MCUs need to interact with the world
○ They always have General Purpose IO (GPIO) capability

○ Directly control the HIGH/LOW state of a pin
○ You can emulate any digital protocol
○ (you may pay a timing and speed penalty)

○ They often have plenty of communication peripherals
○ In-silicon protocol intelligence → fast & reliable

○ Usually restricted to the most popular protocols

○ SPI, I2C, UART, CAN, Ethernet MAC, …

○ These peripherals are slow wrt the core
○ 100 kHz - few MHz vs 10-500 MHz
○ They are a good case for the use of INT and DMA
○ We will see some examples in the lab exercises

27

SPI

I2C

UART

S
Y
S
T
E
M

B
U
S

CORE

INT

DMA

RAM

GPIO

ETH
MAC

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Direct Memory Access (DMA) controller
○ Device that can act as a memory/reg master like the core

○ Used to offload data copy/move operations from the core

○ Programmable to copy data between addresses
○ Copy ADC reads into memory (e.g. FIFO, ring buffer, …)
○ Play data from a memory buffer into a DAC
○ Transmit a large amount of characters in a buffer through UART
○ Receive a slow I2C data stream into memory

○ The DMA controller usually has multiple channels
○ When configuring them, each channel is given a priority
○ The DMA controller serves requests triggered by peripherals

○ e.g. the UART receive buffer on the peripheral is close to full

○ An MCU can have more than one DMA controller

28

DMA

RAM

Device

Core

= without using DMA
= using DMA

configure DMA

interrupts

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

603

Timers

○ Counter + one or more comparators
○ Counts up/down/up+down in a range [0, N]
○ Can be set to auto-reload or just do one round
○ Can be free-running or triggered by signals
○ Can generate interrupts upon under/overflow

○ Comparators store a fixed value
○ Output high if counter <, =, > the value
○ Can generate interrupts in case of match

○ Timers used in many real-time applications
○ e.g. FreeRTOS scheduler tick, data protocols, ...
○ They allow to offload the core from expensive polling

○ Also, timers can be used for PWM

29

0 6 0 3

clock

trigger

set

value

overflow INT

COUNTER

0 5 0 0

COMPARATOR 0
set

value

match INT

1 4 2 7

COMPARATOR 1
set

value

match INT

603

output to a pin
or to other
peripherals

output to a pin
or to other
peripherals

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Timers

30

Block diagram of the STM32F411 Advanced control timer (TIM1)

○ MCUs can have different timers
○ 8-, 16-, 32-bits (shorter/longer period)
○ Advanced/simple features
○ One/many channels
○ Features/space compromise

○ Choose the right TIMer for the job
○ The manual/datasheet holds the details

Block diagram of a STM32F411 General Purpose timer (TIM10/11)

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

DACs and ADCs

○ Digital-to-Analog Converters
○ Convert a stream of data to an analog V or I
○ Many different types of DACs → speed vs precision vs complexity

○ Analog-to-Digital Converters
○ Sample digitally an analog input signal
○ Many different types of ADCs → speed vs precision vs complexity

○ Some MCUs have highly configurable analog stages
○ e.g. look for the Cypress PSoC 5LP Architecture TRM

○ ADC sampling and DAC conversion: hard real time
○ Cannot get timing wrong sampling/generating a fast waveform
○ Excepting slow signals, very often ADC/DACs applications will use

○ An internal timer or external pulse to trigger the ADC/DAC
○ A DMA controller to copy data to/from a ring buffer in RAM

31

IN DAC OUT

DMATIM

Ring buffer in RAM

TIM

Ring buffer in RAM

DMA

sample ready

trigger

trigger

trigger

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

< COMPARATOR OUTPUT with N=50

1, 1, 1,...,, 1, 0, 0,,..., 0, 0, 0, 1, 1, 1

○ DACs can output very clean waveforms but..
○ Many applications do not need fast&clean waveforms

○ We can save silicon with a simpler circuit

○ Some applications prefer ‘1’ and ‘0’ states
○ example: power electronics (IGBTs, SiC transistors, ...)

‘0’ state → high R, no conduction → no dissipation
mid state → mid R, conduction → high dissipation
‘1’ state → low R, conduction → low dissipation

○ A timer can be used generate a square wave
○ example: TIM period set to 100
○ comparator set to N, output high for counter < N
○ → we control the duty cycle with the comparator!

32

COUNTER STATE

0, 1, 2,...,,49,50,51,,...,98,99,100, 0, 1, 2

< COMPARATOR OUTPUT with N=98

1, 1, 1,...,, 1, 1, 1,,..., 0, 0, 0, 1, 1, 1

< COMPARATOR OUTPUT with N=2

1, 1, 0,...,, 0, 0, 0,,..., 0, 0, 0, 1, 1, 1

Use of timers for PWM waveform generation

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

TIMER
(CODE VARYING THE COMPARATOR THRESHOLD)

0%

30%

66%

90%

100%

88%

48%

15%

WAVEFORM

Use of timers for PWM waveform generation
○ You want to generate a PWM waveform out of your system?

○ Set up the timer clk frequency >> typical frequency of your signal

○ Have the code set comparator value proportional to desired signal value
○ Now you are modulating the pulse with with the desired waveform

○ Filter the high frequency component of the switching with a Low Pass Filter
○ Voilá! You got the waveform you wanted!

33

LPF

i.e. average the voltage
along the timer cycle

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Applications of timers for PWM

○ Most of modern power electronics
○ High power traction motors for trains, metros, elevators, cars
○ AC/DC converters in electrical transmission
○ DC/AC converters in solar photovoltaic generation
○ E-bikes, E-scooters, hoverboards, drones
○ Sounds you hear when you ride a train accelerating/decelerating

○ PWM modulations of the motor winding voltages (VVVF drive)

○ YouTube has many demo videos showing the waveforms live on an oscope
○ Search for example for “PWM motor” or “VVVF drive”

○ Note: I am NOT an expert on PWM techniques and motor control
○ There are entire books just about the magic you can do with it
○ I just think this is a really cool topic on which to close this talk!

34

Luigi Calligaris Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry - October 2021

Questions? :)

School home

35

Thank you!

http://indico.ictp.it/event/9644/

