

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Introduction to FreeRTOS

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Characteristics of freeRTOS (Operating System)

● FreeRTOS is a “Embedded Operating System” for Embedded MicroController

Software that provides multitasking facilities.
● Open Source
● Introduces minimum overhead (1%-4% CPU Time)
● Takes up little memory space (~6KB Flash)

FreeRTOS features:
• Dynamic Task creation
• Priority-based multitasking capability
• Queues to communicate between multiple tasks
• Semaphores – mutex - to manage shared resource between multiple tasks
• Utilities to view CPU utilization, stack utilization etc.

Supported CPUs (Ports):
• http://www.freertos.org/RTOS_ports.html

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

FreeRTOS is supplied as a set of C source files. Some of the source files are
common to all ports, while others are specific to a port.

FreeRTOS
│ │
│ ├─Source Directory containing the FreeRTOS source files
│ │
│ └─ Demo Directory containing pre-configured and port specific FreeRTOS demo projects
│
FreeRTOS-Plus
│
├─Source Directory containing source code for some FreeRTOS+ ecosystem components
│
└─Demo Directory containing demo projects for FreeRTOS+ ecosystem components

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

FreeRTOS is supplied as a set of C source files. Some of the source files are
common to all ports, while others are specific to a port.

FreeRTOSConfig.h: configure FreeRTOS.

FreeRTOS
│
└─ Source

│
├─ tasks.c FreeRTOS source file - always required
├─ list.c FreeRTOS source file - always required
├─ queue.c FreeRTOS source file - nearly always required
├─ timers.c FreeRTOS source file - optional
├─ event_groups.c FreeRTOS source file - optional
└─ croutine.c FreeRTOS source file - optional

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Building FreeRTOS

tasks.c and list.c: FreeRTOS source code common to all the FreeRTOS ports
and they are located directly in the FreeRTOS/Source directory

In addition to these two files, the following source files are located in the same
directory: queue.c and timer.c

queue.c provides both queue and semaphore services. queue.c is nearly always
required.

timers.c provides software timer functionality. It need only be included in the build
if software timers are actually going to be used

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Data Types

two port specific data types:
TickType_t and BaseType_t (both in portmacro.h).

TickType_t: FreeRTOS configures a periodic interrupt called the tick interrupt.
The time between two tick interrupts is called the tick period. Times are specified
as multiples of tick periods.

BaseType_t: is generally used for return types that can take only a very limited
range of values, and for pdTRUE/pdFALSE type Booleans.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Function Names

Functions are prefixed with both the type they return, and the file they are
defined within. For example:

● vTaskPrioritySet() returns a void and is defined within task.c.

● xQueueReceive() returns a variable of type BaseType_t
and is defined within queue.c.

● pvTimerGetTimerID() returns a pointer to void and is defined within timers.c.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Repository (Library) for freeRTOS

• A stand-alone board support package (BSP) is a library generated by
the Xilinx SDK that is specific to a hardware design.

• It contains initialization code for bringing up the ARM CPUs in
ZYNQ and also contains software drivers for all available ZYNQ
peripherals.

The freeRTOS Repository

• The FreeRTOS port extends the stand-alone BSP to also include
FreeRTOS source files

• After using this port in a Xilinx SDK environment, the user gets all the
FreeRTOS source files in a FreeRTOS BSP library.

• This library uses the Xilinx SDK generated stand-alone BSP library.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Header Files

A source file that uses the FreeRTOS API must include ‘FreeRTOS.h’,
followed by the header file that contains the prototype for the API
function being used —

‘task.h’, ‘queue.h’, ‘semphr.h’, ‘timers.h’ or ‘event_groups.h’.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

TASKS

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

A Task

● Simple C Function
● A pointer to parameters (void*) as input
● Creates a forever loop (while (1))
● The tasks are controlled by the Scheduler (freeRTOS internal function)

Each task has his own Stack:

● Every variable you declare or memory allocate uses memory on the stack.

● The stack size of a task depends on the memory consumed by its local
variables and function call depth.

● Please note that if your task (or function) uses printf, it consumes around
1024 bytes of stack.

● At minimum however, you would need at least 256 bytes + your estimated
stack space above.

● If you don't allocate enough stack space, your CPU will run to an exception
and/or freeze

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

A Task

void myTask (void *pvParameters){

/* variables declaration */
Int iVariableExample = 0;

/* Task implemented as a infinite loop */
for (;;)

{
/* Task Code here */

}

/* Function vTaskDelete () delete itself passing NULL parameter */
vTaskDelete (NULL);

}

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Top Level Task States

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Creating a Task

The Task function itself:

void ATaskFunction(void *pvParameters)
{
 // do initilisation
 while (1)
 {
// Task execution code
 }
}

Install the Task (in main.c):

portBASE_TYPE xTaskCreate(
pdTASK_CODE pvTaskCode, // pointer to the Task
Char* pcName, // String: name of Task for debug
unsigned short usStackDepth, // Stacksize
Void* pvParameters, // pointer to Parameters
unsigned short uxPriority, // Priority
XtaskHandle* pxCreatedTask);// Pointer to receive Task handle

Return pdPASS or pdFAIL (when insufficient heap memory)

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Example

void hello_world_task (void* p)
{
 while(1)
 {

Printf(" Hello World!");
vTaskDelay(1000);

 }
}

void main(void)
{
 XtaskCreate (hello_world_task, "TestTask", 512, NULL, 1, NULL);
 vTaskStartScheduler();
 // never comes here
}

The main function in FreeRTOS based projects creates tasks.
FreeRTOS will let you multi-task based on your tasks and their priority.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

void vTaskFunction(void *pvParameters)
{

char *pcTaskName;
volatile uint32_t ul;

/*The string to print out is passed in via the parameter.*/
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infiniteloop. */
For(;;)
{

vPrintString(pcTaskName);/* Print out the name of this task. */
for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)/*Delay for a period. */

{
}

}
}

Task running with the same priority

/* main function */
Static const char *pcTextForTask1 ="Task 1 is running\r\n";
static const char *pcTextForTask2 ="Task 2 is running\r\n";
int main(void)
{
/* Create one of the two tasks. */

xTaskCreate(vTaskFunction,"Task 1",1000,(void*)pcTextForTask1,1,NULL);
/* Create the second task from the SAME task implementation (vTaskFunction). Only the value
passed in the parameter is different. */

xTaskCreate(vTaskFunction,"Task 2",1000,(void*)pcTextForTask2,1,NULL);
/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler();
for(;;);

}

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Task running with the same priority

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Task running with the same priority

To select the next task to run,
the scheduler itself must
execute at each periodic
interrupt, called ‘tick interrupt’.

Tick interrupt frequency, is
configured by the application-
defined configTICK_RATE_HZ
contant (copilation time) within
FreeRTOSConfig.h.

100Hz typical value

Time slice= 10ms

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

void vTaskFunction(void *pvParameters)
{

char *pcTaskName;
volatile uint32_t ul;

/*The string to print out is passed in via the parameter.*/
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infiniteloop. */
For(;;)
{

vPrintString(pcTaskName);/* Print out the name of this task. */
for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)/*Delay for a period. */

{
}

}
}

/* main function */
Static const char *pcTextForTask1 ="Task 1 is running\r\n";
static const char *pcTextForTask2 ="Task 2 is running\r\n";
int main(void)
{
/* Create one of the two tasks. */

xTaskCreate(vTaskFunction,"Task 1",1000,(void*)pcTextForTask1,1,NULL);
/* Create the second task with higher priority*/

xTaskCreate(vTaskFunction,"Task 2",1000,(void*)pcTextForTask2,2,NULL);
/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler();
for(;;);

}

Task running with different priorities

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Task 2 with higher priority than
task 1

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Task running with different priorities

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Task 2 with higher priority than
task 1

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Task running with different priorities

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

To make the tasks useful they
must be re-written to be event-
driven.

A task is triggered when an
event occurs, and is not able to
enter the Running state before
that event has occurred.

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

When a task is waiting for an
event is Blocked

To types of events

Temporal - Delays

Synchronization – Waiting for
data in a queue

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

void vTaskFunction(void *pvParameters)
{

char *pcTaskName;
const TickType_t xDelay250ms = pdMS_TO_TICKS(250);
volatile uint32_t ul;

/*The string to print out is passed in via the parameter.*/
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infiniteloop. */
For(;;)
{

vPrintString(pcTaskName);/* Print out the name of this task. */
vTaskDelay(xDelay250ms);

}
}

 vTaskDelay() places the task into the Blocked state until the
delay period has expired.

void vTaskDelay(portTickType xTicksToDelay);

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

 Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

/* main function */
Static const char *pcTextForTask1 ="Task 1 is running\r\n";
static const char *pcTextForTask2 ="Task 2 is running\r\n";
int main(void)
{

xTaskCreate(vTaskFunction,"Task 1",1000,(void*)pcTextForTask1,1,NULL);
xTaskCreate(vTaskFunction,"Task 2",1000,(void*)pcTextForTask2,2,NULL);
vTaskStartScheduler();
for(;;);

}

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

 Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

/* main function */
Static const char *pcTextForTask1 ="Task 1 is running\r\n";
static const char *pcTextForTask2 ="Task 2 is running\r\n";
int main(void)
{

xTaskCreate(vTaskFunction,"Task 1",1000,(void*)pcTextForTask1,1,NULL);
xTaskCreate(vTaskFunction,"Task 2",1000,(void*)pcTextForTask2,2,NULL);
vTaskStartScheduler();
for(;;);

}

There must always be at least one
task that can enter the Running
state.

The Idle task is automatically
created by the scheduler when
vTaskStartScheduler() is called.

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

More efficient
implementation of tasks

Less use of processor
time

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

The Suspended State is
also a sub-state of Not
Running.

Tasks in the Suspended
state are not available to
the scheduler.

vTaskSuspend()API

vTaskResume() or
xTaskResumeFromISR()
API functions.

Most applications do not
use the Suspended state.

Expanding the ‘Not Running’ State

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Executing periodic tasks

Using vTaskDelay() does not guarantee that the frequency at which they run is fixed,

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

vTaskDelay(xDelay250ms); number of tick interrupts that the
calling task will remain in the
Blocked state

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Executing periodic tasks

Time of last left of the Blocked
state

void vTaskDelayUntil(TickType_t * pxPreviousWakeTime, TickType_t xTimeIncrement);

Time in number of ticks

The parameters to vTaskDelayUntil() specify the exact tick count value
at which the calling task should be moved from the Blocked state into the
Ready state.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Executing periodic tasks

void vTaskFunction(void *pvParameters){
char *pcTaskName;
TickType_t xLastWakeTime;
pcTaskName = (char *) pvParameters;
xLastWakeTime = xTaskGetTickCount();/* current tickcount.*/
for(;;){/* Print out the name of this task. */

vPrintString(pcTaskName);
/*This task should execute every 250 milliseconds exactly.*/

vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(250));
}

}

Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Combining blocking and non-blocking tasks
void vContinuousFunction(void *pvParameters)
{

char *pcTaskName;
volatile uint32_t ul;
pcTaskName = (char *) pvParameters;
For(;;)
{

vPrintString(pcTaskName);/* Print out the name of this task. */
}

}
void vPeriodicFunction(void *pvParameters){

char *pcTaskName;
TickType_t xLastWakeTime;
pcTaskName = (char *) pvParameters;
xLastWakeTime = xTaskGetTickCount();/* current tickcount.*/
for(;;){/* Print out the name of this task. */

vPrintString(pcTaskName);
vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(250));

}
}
/* main function */
Static const char *pcTextForTask1 ="Continuous task 1 running\r\n";
static const char *pcTextForTask2 ="Continuous task 2 running\r\n";
static const char *pcTextforperiodic ="Periodic task is running\r\n";
int main(void)
{

xTaskCreate(vContinuousFunction,"Task 1",1000,(void*)pcTextForTask1,1,NULL);
xTaskCreate(vContinuousFunction,"Task 2",1000,(void*)pcTextForTask2,1,NULL);
xTaskCreate(vPeriodicFunction,”Task periodic”,1000,(void*)pcTextforperiodic,2,NULL);
vTaskStartScheduler();
for(;;);

}

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

 Source:Mastering the FreeRTOS™ Real Time Kernel A Hands-On Tutorial Guide- Richard Barry

Combining blocking and non-blocking tasks

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Other task related functions

 void vTaskPrioritySet(TaskHandle_t pxTask, UbaseType_t uxNewPriority);

● pxTask: The handler of the task (last parameter of taskCreate function)

● uxNewPriority: New priority to be set

 UbaseType_t uxTaskPriorityGet(TaskHandle_t pxTask);

 void vTaskDelete(TaskHandle_t pxTaskToDelete);

● pxTaskToDelete: The handler of the task

● Have to Select INCLUDE_VtaskDelete in FreeRtosConfig.h file

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

 void vTaskSuspend(TaskHandle_t pxTaskToSuspend);

● PxTaskToSuspend: Handler of the task. With NULL means
the task itself

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

● Fixed priority: Do not change priorities assigned to tasks

● Pre-emptive: Pre-empt immediately the running task if a task of higher
priority enters to Ready state

● Time slicing: is used to share processing time between tasks of equal
priority - Time between two RTOS tick interrupts

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 1

● configUSE_TIME_SLICING 1

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

● Fixed priority: Do not change priorities assigned to tasks

● Pre-emptive: Pre-empt immediately the running task if a task of higher
priority enters to Ready state

● Time slicing: is used to share processing time between tasks of equal
priority - Time between two RTOS tick interrupts

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 1

● configUSE_TIME_SLICING 1

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

● Fixed priority: Do not change prorities assigned to tasks

● Pre-emptive: Pre-empt immediately the running task if a task of hgher
priority enters to Ready state

● Time slicing: is used to share processing time between tasks of equal
priority - Time between two RTOS tick interrupts

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 1

● configUSE_TIME_SLICING 1

To much time for
idle task

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

● Fixed priority: Do not change prorities assigned to tasks

● Pre-emptive: Pre-empt immediately the running task if a task of hgher
priority enters to Ready state

● Time slicing: is used to share processing time between tasks of equal
priority - Time between two RTOS tick interrupts

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 1

● configUSE_TIME_SLICING 1

● configIDLE_SHOULD_YIELD 1

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

 Fixed Priority Pre-emptive Scheduling without Time Slicing

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 1

● configUSE_TIME_SLICING 0

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Scheduling Algorithms

 Round Robin Scheduling

 Fixed Priority Pre-emptive Scheduling with Time Slicing

 Fixed Priority Pre-emptive Scheduling without Time Slicing

 Co-operative Scheduling

Configured in FreeRTOSConfig.h

● configUSE_PREEMPTION 0

● configUSE_TIME_SLICING any

Running state call
taskYIELD() function to
re-schedule

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Synchronization and
Communications between

tasks

FreeRtos provides with different mechanisms to share information between
tasks and to control the access to shared resources

 Queues.

 Binary Semaphores

 Counting Semaphores

 Mutexes

 Recursive Mutexes

 Interrupts

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queues

‘Queues’ provide a task-to-task, task-to-interrupt, and interrupt-to-task
communication mechanism.

 Queues hold a finite number of fixed size data items

 Queues are normally used as First In First Out (FIFO) buffers

FreeRTOS use queue by copy method.

 Stack variable can be sent directly to a queue.

 Data can be sent to a queue without first allocating a buffer.

 The sending task and the receiving task are completely de-
coupled.

 The RTOS takes complete responsibility for allocating the memory
used to store data.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

Creating a queue

A queue must be explicitly created before it can be used.

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength, UbaseType_t uxItemSize);

● UxQueueLength: The maximum number of items that the queue being created can hold
 at any one time.

● UxItemSize: The size in bytes of each data item that can be stored in the queue.

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

Writing in a queue

BaseType_t xQueueSend(QueueHandle_t xQueue,
 const void * pvItemToQueue,
 TickType_t xTicksToWait);)

BaseType_t xQueueSendToFront(QueueHandle_t xQueue,
const void * pvItemToQueue,
TickType_t xTicksToWait);

BaseType_t xQueueSendToBack(QueueHandle_t xQueue,
const void * pvItemToQueue,
TickType_t xTicksToWait);

● xQueue: The handle of the queue
● pvItemToQueue: A pointer to the data to be copied into the queue
● xTicksToWait: The maximum amount of time the task should remain in the

Blocked state to wait for space to become available on the
queue

Return:
● pdPASS – OK
● errQUEUE_FULL – Error, queue full

≡ xQueueSend

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Acts as a LIFO

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

Reading in a queue
BaseType_t xQueueReceive(QueueHandle_t xQueue,

 const void * pvBuffer,
 TickType_t xTicksToWait);)

● xQueue: The handle of the queue
● pvBuffer: A pointer to the buffer where the read value will be copied to.
● xTicksToWait: The maximum amount of time the task should wait for available

data.
Return:

● pdPASS – OK
● errQUEUE_EMPTY – Error, queue empty

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

Reading in a queue
BaseType_t xQueueReceive(QueueHandle_t xQueue,

 const void * pvBuffer,
 TickType_t xTicksToWait);)

● xQueue: The handle of the queue
● pvBuffer: A pointer to the buffer where the read value will be copied to.
● xTicksToWait: The maximum amount of time the task should wait for available

data.
Return:

● pdPASS – OK
● errQUEUE_EMPTY – Error, queue empty

Example
if (xQueueReceive (MyQueue, &valueFromQueue, portMAX_DELAY) ==pdPASS) {
Serial.println (valueFromQueue);

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Queue Management

Reading in a queue
BaseType_t xQueueReceive(QueueHandle_t xQueue,

 const void * pvBuffer,
 TickType_t xTicksToWait);)

● xQueue: The handle of the queue
● pvBuffer: A pointer to the buffer where the read value will be copied to.
● xTicksToWait: The maximum amount of time the task should wait for available

data.
Return:

● pdPASS – OK
● errQUEUE_EMPTY – Error, queue empty

After reading an element in a queue, this element is normally removed from it; however, an other read
function given in allows to read an element without having it to be deleted from the queue.

BaseType_t xQueuePeek(QueueHandle_t xQueue,
 const void * pvBuffer,
 TickType_t xTicksToWait);)

Queue Management

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Binary Semaphores

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Used to control the access of shared resources
l de San Luis 2019

Can be seen as a queue of one element

A semaphore can be taken by only one task. If another task
try to take the semaphore it will be blocked until the owner
or the semaphore gives them.

Binary Semaphores

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

API Functions for managing semaphores

Creating a semaphore

SemaphoreHandle_t xSemaphoreCreateBinary(void);

Take

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait);

Give

BaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

Give asemaphore from ISR

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore,

 BaseType_t *pxHigherPriorityTaskWoken);

Mutex

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

The Mutex es un special kind of binary semaphore to control the access to the
same resource for two of more tasks.

It Includes a priority inheritance mechanism.

While the binary semaphores are the best option for synchronization between tasks or
between tasks and interruptions, mutexes are the best option for simple mutual
exclusion implementation.

Mutex

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Mutex

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Mutex

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

Events

Embedded real-time systems have to take actions in response to events that originate from the
environment.

How should they be detected? Interrupts, polling
What kind of processing needs to be done? Inside ISR, outside ISR

Interrupt priority vs task priority

Lowest priority interrupt pre-empt highest priority task

Interrupt Safe APIFunction

FreeRTOS provides two versions of some API functions:
one for use from tasks,
and one for use from ISRs (“FromISR” appended to their name).

Interrupts should be deferred to a task

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

Binary Semaphores Used for Synchronization

The deferred processing task can be controlled using a ISR

● The ISR “gives” a semaphore to unblock the deferred task

● The deferred task “takes” the semaphore to enter in the blocked state

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

Using a queue (writing) from an interrupt

BaseType_t xQueueSendToFrontFromISR(QueueHandle_t xQueue,
void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken);

BaseType_t xQueueSendToBackFromISR(QueueHandle_t xQueue,
void *pvItemToQueue,
BaseType_t *pxHigherPriorityTaskWoken);

● xQueue: The handle of the queue
● pvItemToQueue: A pointer to the data to be copied into the queue
● pxHigherPriorityTaskWoken : a variable to inform the application writer that a

context switch should be performed
.

Return:
● pdPASS – OK
● errQUEUE_FULL – Error, queue full

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

Using a queue (reading) from an ISR

BaseType_t xQueueReceiveFromISR(QueueHandle_t xQueue,
 void *pvBuffer,
 BaseType_t *pxHigherPriorityTaskWoken);

● xQueue: The handle of the queue
● pBuffer: A pointer to the memory into which the data will be copied
● PxHigherPriorityTaskWoken: a variable to inform the application writer that a

context switch should be performed
.

Return:
● pdPASS – OK
● errQUEUE_EMPTY – Error, queue full

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Interrupt Manangement

Nested interrupts

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

Any Question?

THANKS AND GOOD LUCK!!

 UNSL – San Luis 2021 – Julio Dondo Gazzano

Joint ICTP-SAIFR and UNESP School on Systems-on-Chip, Embedded
Microcontrollers and their Applications in Research and Industry

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63

