
VHDL for FPGA 
Synthesis

Rodrigo A. Melo

Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, 
Embedded Microcontrollers and their Applications in 

Research and Industry | (smr 3557)

VHDL for FPGA
Synthesis
Rodrigo A. Melo

Oct | 2021



Outline

Basic VHDL

1

2

Introduction

Finite State Machines3

Considerations for Synthesis4

Advanced VHDL5

Conclusion6



Introduction



VHDL

● Very High Speed Integrated Circuit (VHSIC) + HDL

● U.S. Department of Defense (1983)

● Standard IEEE 1076 (87, 93, 00, 02, 08, 19)

Verilog

● VERIfication + LOGic

● Gateway Design Automation (1984), Cadence (1990)

● Standard IEEE 1364 (95, 01, 05)

● Verilog is now part of System Verilog (IEEE 1800)

Xcell Journal, issue 27, 1998

Hardware Description Languages

The most widely supported 
standards are VHDL 93 and 

Verilog 2001.



● VHDL is strongly typed, CasE InSEnSiTiVe and supports libraries. Based on ADA.
● Verilog is weakly typed, case sensitive and doesn’t support libraries. C-like syntax.
● You can achieve the same with both of them.
● Verilog is more concise but allows you to write wrong code.

VHDL vs Verilog

Source: VHDL vs Verilog (last 5 years) [Oct 2, 2021]

https://trends.google.com/trends/explore?date=today%205-y&q=VHDL,Verilog


Source: The 2020 Wilson Research Group Functional Verification Study (Siemens)

FPGA languages trends

https://blogs.sw.siemens.com/verificationhorizons/2020/12/16/part-6-the-2020-wilson-research-group-functional-verification-study/


ASIC languages trends

Source: The 2020 Wilson Research Group Functional Verification Study (Siemens)

https://blogs.sw.siemens.com/verificationhorizons/2021/01/20/part-10-the-2020-wilson-research-group-functional-verification-study/


HLS

● AKA algorithmic/behavioral synthesis.
● Subset of C (or variants) + directives (vendor-specific).
● The result is an extremely vendor-specific RTL.
● Useful for architecture exploration of algorithms.
● Can't be used to create processors or controllers, neither to deal with multiple clock 

domains.

Others

● Python based: (n)Migen, MyHDL
● Scala based: Chisel, SpinalHDL
● Haskell based: Clash, Bluespec
● Verilog based: TL-Verilog, Slice
● And more...

Alternatives



● Only a small subset of the language is synthesizable.

● It is used to describe the behavior and/or the structure of a digital design.

● You are no writing a software program, you are describing hardware 
(concurrent code, executed in parallel).

● You can write small combinational circuits parts (asynchronous) but is 
recommendable to perform synchronous design (based on one or multiple 
clocks).

Now, we will take a course about 
the VHDL fundamentals for 

synthesis.

Our basic guidelines
● Use UPPERCASE for constants
● Use indentation (4 spaces)
● Use coherent_and_descriptive names
● Use meaningful prefixes/suffixes (_i, _o, _r)

HDL for Synthesis



Basic VHDL



The file extension is usually
vhd or vhdl

Libraries & Packages

Entity
Generics, ports

Architecture
Declarations (signals, types, 

functions, procedures)
Begin

Functionality (sentences, 
instantiations, assignations)

OutIn

● Grouped into Libraries, a 
Package provides data types, 
functions and components, to 
extend the language support.

● The Entity defines the name and 
the interface of our component.

● An Architecture implements the 
functionality of a given Entity.

Commonly, you will have one Entity 
and one or more related Architectures 

per file.

Structure of a component



-- library LIBRARY;
-- use LIBRARY.PACKAGE.all;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

-- Synopsys non-standard packages
-- use IEEE.std_logic_arith.all;
-- use IEEE.std_logic_signed.all;
-- use IEEE.std_logic_unsigned.all;

These packages are commonly 
found in examples, but they 

are non-standard. Avoid 
them!!!

Mandatory for synthesizable designs.
It provides the std_logic (1 bit) and

std_logic_vector (bus) types (to
support 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H'

and '-' instead of only '0' and '1')

The numeric_std package provides 
arithmetic functions for vectors. It 
derives from std_logic_vector two 
other types: signed and unsigned.

Libraries and Packages inclusion

I recommend to know the content (read
the source code) of these two packages



My_Entity

entity My_Entity is
    port (
        -- name: mode type [:=default];
        port1_i : in  std_logic;
        port2_i : in  std_logic;
        port3_i : in  std_logic_vector(7 downto 0);
        port4_o : out std_logic_vector(7 downto 0);
        port5_o : out std_logic;
        port6_o : out std_logic -- don’t use ‘;’ here 
    );
end entity My_Entity;

Opt Opt

port1_i

port2_i

port3_i

port4_o

port5_o

port6_o

use only
std_logic and

 std_logic_vector
types

use only
in and out

modes

don’t use
the buffer

mode.

use inout
mode only

in the
Top-level.

Entity



architecture My_Arch of My_Entity is
    -- declarations
begin
    -- instantiations
    -- concurrent statements
    -- sequential statements
end architecture My_Arch;

● Each Architecture belongs to an Entity (of).

● Generally, you will have more than one Architecture per Entity when looking for 
alternatives to the same functionality (high-speed vs area, different algorithms, 
etc).

● The Architecture is where you “design” your component.

Opt Opt

Architecture



library IEEE;
use IEEE.std_logic_1164.all;

entity nor3 is
    port (
        a_i : in  std_logic;
        b_i : in  std_logic;
        c_i : in  std_logic;
        q_o : out std_logic
    );
end entity nor3;

architecture rtl of nor3 is
begin
    q_o <= not(a_i or b_i or c_i);
end architecture rtl;

● Imports std_logic

● Entity definition

− 3 x 1-bit inputs

− 1-bit output

● The architecture implements a 
3-input NOR logic function

Our first example



architecture alternative1 of top is
    component nor3 is
        port (
            a_i : in  std_logic;
            b_i : in  std_logic;
            c_i : in  std_logic;
            q_o : out std_logic
        );
    end component nor3;
begin
    -- label : name
    nor3_inst : nor3
    port map (
        a_i => port1_i, b_i => port2_i,
        c_i => port3_i, q_o => port4_o
    );
end architecture alternative1;

architecture alternative3 of top is
begin
    -- label: entity library.name(arch)
    nor3_inst : entity work.nor3
    port map (
        a_i => port1_i, b_i => port2_i,
        c_i => port3_i, q_o => port4_o
    );
end architecture alternative3;

Alternative 2: put your component declaration in a 
user defined package, in your own library.

work?

You can use named or positional
association, but the first is                     

strongly recommended (good practice).

Labels are optional but recommended.

Instantiation



signed

std_logic
_vector

unsigned

integer

to_signed(i,size) std_logic_vector(s)

to_unsigned(i,size) std_logic_vector(u)

unsigned(slv)

signed(slv)

to_integer(u)

to_integer(s)

Functions    Type casting

● std_logic

● std_logic_vectors

● signed/unsigned

● boolean (false, true)

● integer (-, 0, +)

● natural (0, +)

● positive (+)

● real (ej: 3.14)

It doesn't implement
floating point

Most used data types



Operator Description

a ** b exponentiation

abs a absolute value

not a complement

a * b multiplication

a / b division

a mod b modulo

a rem b remainder

+a unary plus

-a unary minus

a + b addition

a - b subtraction

a & b concatenation

Operator Description

a = b test for equality

a /= b test for inequality

a < b test for less than

a <= b test for less than or equal

a > b test for greater than

a >= b test for greater than or equal

a and b logical and

a or b logical or

a nand b logical complement of and

a nor b logical complement of or

a xor b logical exclusive or

a xnor b logical complement of exclusive or

Most languages
uses == and

!= to test
in/equality

Operators



Operator Description Function

a ssl N shift left logical shift_left(a, N)

a srl N shift right logical shift_right(a, N)

a sla N shift left arithmetic shift_left(a, N)

a sra N shift right arithmetic shift_right(a, N)

a rol N rotate left rotate_left(a, N)

a ror N rotate right rotate_right(a, N)

Explanation: Arithmetic and logical shifts and rotates are done with functions in VHDL, not operators

Defined into the numeric_std 
package. Another useful 

function there is resize(a, N). 

Wrong defined, don't use them!!!
(unexpected behaviour and/or extra 

hardware).

Shift/rotate functions

https://jdebp.uk/FGA/bit-shifts-in-vhdl.html


architecture MyArch of MyEntity is
    -- signal name: type [:=default];
    signal slv8 : std_logic_vector(7 downto 0); -- default=“UUU”
    signal slv3 : std_logic_vector(2 downto 0):=”101”;
    signal slv5 : std_logic_vector(4 downto 0):=(others => ’0’);
    signal slv4 : std_logic_vector(3 downto 0);

    signal slva, slvb, slvc : std_logic_vector(3 downto 0);
    signal to1, to2 : std_logic_vector(1 to 4);
    signal nat : natural range 0 to 15:=1; -- default=0
begin
    -- signal_name <= expression;
    slv8 <= slv3 & slv5;      -- concatenation (“10100000”)
    slv4 <= slv5(3 downto 0); -- slice
    slva <= slvb xor slvc;    -- propagation time involved
    to2  <= “0101”;           -- hardwired value
    to1  <= to2;              -- connection
end architecture MyArch; <= is employed to assign the value of a signal 

(can be time involved).

For synthesis, always
use range with integers
and its subtypes
(natural, positive).

Default/initial values
are ignored by ASIC
synthesis tools.

By convention, we
generally use downto.

Signals



architecture MyArch of MyEntity is
    -- declarations
begin
    Concurrent statement;
    Concurrent statement;
    process ()
    begin
        Sequential statement;
        Sequential statement;
        Sequential statement;
    end process;
    Concurrent statement;
    begin
        Sequential statement;
        Sequential statement;
    end process;
end architecture MyArch;

Concurrent Statements
● Instantiation
● Signal assignment
● when/else
● with/select
● process

Sequential statements
● if/else
● case/when
● for/loop
● while/loop
● loop

Advanced

Concurrent vs Sequential statements



out <=
    val1 when exp1 else
    val2 when exp2 else
    ...
    valN; -- default

with sel select out <=
    val1 when op1
    val2 when op2
    ...
    valN when others;

valN

val2

val1

exp1 exp2

out

valN

val2

val1

sel

out

● valX can be a value, 
signal or expression.

● expX must be a boolean 
expression. 

● selX can ve a signal or 
expression.

● opX are different values 
of sel.

Priorities and differents
propagation times involved.

Concurrent statements



architecture MyArch of MyEntity is
    -- declarations
begin
    ...
    label : process (sensitivity list)
    begin
        Sequential statement;
        Sequential statement;
        Sequential statement;
    end process label;
    ...

end architecture MyArch;

● Is a circuit part which can be active or 
inactive.

● A process activates when a signal in the 
sensitivity list changes its value.

● All the process blocks are executed in parallel 
(concurrent statements).

● Sequential statements allow us to describe 
the abstract behaviour of a circuit rather than 
using low-level components (easier for 
humans).

Opt

Opt Opt

Inside a process, a signal can be
assigned multiple times, but
only the last assignment takes effect.

Sequential statements are
sequentially evaluated (not
executed as in a processor).

Processes



● Are similar but different than a signal.
● Are declared and visible inside a 

process.
● Its value changes without delay 

involved.
● Are assigned with := instead of <=.

label : process (a, b)
    -- variable name: type [:=default];
    variable tmp0, tmp1, tmp2 : std_logic;
begin
    -- variable_name := expression;
    tmp0 := ‘0’;
    tmp1 := tmp0 or a;
    tmp2 := tmp1 or b;
    y_o  <= tmp2;
end process label;

You can use a variable to produce
the same hardware than a signal,
but I recommend you to use them
only to store intermediate values.

The VHDL variables are similar to a
programming language variable because
you can assign them in a line and read
its updated value in the following one.
It doesn't happen with a signal.

Variables



label : process (...)
    -- declarations;
begin
    if exp1 then
        -- sentences
    elsif exp2 then
        -- sentences
    else
        -- default
        -- sentences
    end if;
end process label;

label : process (...)
    -- declarations;
begin
    case sel is
        when op1 =>
            -- sentences
        when op2 to op5 =>
            -- sentences
        when op6 | op8 | op11 =>
            -- sentences
        when others =>
            -- default
            -- sentences
    end case;
end process label;

Opt

Opt

Are similar and shares 
features with its 
concurrent counterpart 
(if and when/else, case 
and select/with), but 
allows grouping of 
statements and can be 
nested.

Be careful with
incomplete assignments
(memory inference).

Sequential statements



c_i

b_i

a_i

q_o

library IEEE;
use IEEE.std_logic_1164.all;

entity comb is
    port (
        a_i, b_i, c_i, d_i, e_i : in  std_logic;
        q_o : out std_logic
    );
end entity comb;

architecture alt1 of comb is
    signal int1, int2, int3 : std_logic;
begin
    int1 <= a_i and b_i;
    int2 <= c_i or d_i;
    int3 <= d_i and (not e_i);
    q_o <= int1 or int2 or int3;
end architecture alt1;

e_i

d_i

int1

int2

int3

● No internal state (no storage, so 
only LUTs are inferred)

● The outputs only depends on the 
inputs

Avoid combinational loops 
(a <= a + b;)

Concurrent circuits (combinational / asynchronous)



architecture alt2 of comb is
    signal int1, int2, int3 : std_logic;
begin
    process (
        a_i, b_i, c_i, d_i, e_i,
        int1, int2, int3
    )
    begin
        int1 <= a_i and b_i;
        int2 <= c_i or d_i;
        int3 <= d_i and (not e_i);
        q_o <= int1 or int2 or int3;
    end process;
end architecture alt2;

-- using variables
architecture alt3 of comb is
begin
    process (a_i, b_i, c_i, d_i, e_i)
        variable int1, int2, int3 :
            std_logic;
    begin
        int1 := a_i and b_i;
        int2 := c_i or d_i;
        int3 := d_i and (not e_i);
        q_o <= int1 or int2 or int3;
    end process;
end architecture alt3;

Synthesizers don't check the Sensitivity list. All the 
inputs must be included to avoid a simulation mismatch!

Concurrent circuits (using a process)



● They have an internal state (flip-flops, aka registers, are inferred)
● The output depends on the inputs and the internal state
● Depends on a clock (synchronous)

Asynchronous Synchronous

Speed Faster (max) Depends on clock and the arch

Power Probably lower Depends on the arch

Area Probably higher Depends on the arch

Development time Longer Shorter

Debug Very difficult Easiest

Reliability Need a lot of testing Strong

Sequential circuits (synchronous)



label : process (clk_i)
begin
    if rising_edge(clk_i) then
        -- do something
    end if;
end process label;

label : process (clk_i)
begin
    if falling_edge(clk_i) then
        -- do something
    end if;
end process label;

OR

label : process (clk_i)
begin
    if rising_edge(clk_i) or falling_edge(clk_i) then
        -- don’t do that!!! The FPGA has only one clock input per FF.
        -- You will be using more are to be slower
    end if;
end process label;

Clock



label : process (clk_i)
begin
    if rising_edge(clk_i) then
        if rst_i = ‘1’ then
            -- assign default 
            -- values
        else
            -- do something
        end if;
    end if;
end process label;

OR
label : process (clk_i, rst_i)
begin
    if rst_i = ‘1’  then
        -- assign default 
        -- values
    elsif rising_edge(clk_i) then
        -- do something
    end if;
end process label;

● With FPGA, you will normally use synchronous reset.
● Asynchronous reset is common in ASIC designs.

Additional read: How do I reset my FPGA?

Do you really need 
a reset?

Reset

https://www.eetimes.com/how-do-i-reset-my-fpga


● We will implement a counter 
module 12 (from 0 to 11).

● A constant is employed to avoid a 
magic number (good practice).

● There are two reasons to use the 
signal cnt instead of the port cnt_o 
(next slide).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity cnt12 is
    port (
        clk_i : in  std_logic;
        rst_i : in  std_logic;
        cnt_o : out std_logic_vector(3 downto 0)
    );
end entity cnt12;

architecture RTL of cnt12 is
    constant MODULE : positive := 12;
    signal cnt : unsigned(3 downto 0); -- 16
begin

Remember (good practice):
use only std_logic and

std_logic_vector types for ports.

Example - Counter (part I)



● Addition (cnt + 1) is not defined for 
std_logic_vector.

● An output can’t be read (cnt <= cnt 
+ 1;). You need an intermediate 
signal connected to the output.

begin
    counter : process (clk_i)
    begin
        if rising_edge(clk_i) then
            if rst_i = '1' then
                cnt <= (others => '0');
            else
                if cnt < MODULE then
                    cnt <= cnt + 1;
                else
                    cnt <= (others => '0');
                end if;
            end if;
        end if;
    end process counter;

    cnt_o <= std_logic_vector(cnt);
end architecture RTL;

Remember (good practice):
use synchronous reset

(if needed).

Example - Counter (part II)



Finite State Machines



● A systematic design technique for 
sequential circuits, which leads to 
near/optimal implementations

● Clock-by-clock the machine will be in 
one of the finite possible states

● The state segmentation helps to detect 
where there are problems

Asynchronous/Combinational Synchronous/Sequential

No internal state (no memory) They have an internal state (FFs, registers)

Outputs only depends on the inputs Output depends on inputs/internal state

No depends on a clock Depends on a clock

Next 
State 
Logic

State 
Memory

Output 
Logic

clock

reset

Mealy Machines only (not in Moore Machine)

What is an FSM?

inputs

outputs



Very weak

Weak Strong

You can use a
counter instead

In case of 2
states you can
use an if instead

When to use an FSM?



● Graphical representation of the 
functional specification

● It must include all the possible states.

● All transition conditions that are not 
unconditional must be specified

● The list of output signals must be the 
same in all the states

States diagram



architecture FSM of My_Entity is
    type state_type is (IDLE_S, S1_S, S2_S);
    signal state: state_type;
begin
    -- the FSM process here
end architecture FSM;

my_fsm : process (clk_i) begin
    if rising_edge(clk_i) then
        if rst_i = ‘1’ then
            state <= IDLE_S;
        else
            case state is
                when IDLE_S =>
                    -- ...
                when S1_S =>
                    -- ...
                when S2_S =>
                    -- ...
            end case;
        end if;
    end if;
end process my_fsm;

● States in VHDL are defined using enumerations.
● Enumerations in VHDL are defined creating a new type.
● FSM are synchronous and modelated with a case/when 

statements.
● Each state specify actions and transaction conditions.
● All the states must be specified (use when others when 

needed).

States



● Sequential: conventional binary code (2N states)

● One-Hot: one bit per state (N states)

● Johnson: uses a Johnson ring counter (2xN states)

● Gray: uses Gray encoding (2N states)

● Modified One-Hot: the bit 0 is inverted to start in reset (N states)

● User-defined and auto (default)

It is normally selected by the Synthesis tool, but
you can specify another one with tool-specific options.

State encoding



when STATE1_S =>
    state <= STATE2_S; -- unconditional
when STATE2_S =>
    if cond1 then
        state <= STATE3_S;
    end if;
when STATE3_S =>
    if cond1 then
        state <= STATE1_S;
    elsif cond2 then
        state <= STATE2_S;
    else
        state <= STATE4_S;
    end if;

● The transition to a new state is 
achieved by assigning the 
signal that models the state.

● Conditional transitions are 
modeled with if, elsif, else (be 
careful with the priorities).

● condX could be input ports, 
signals (internal or external to 
the FSM, such a counter value), 
etc.

Transitions



-- Output registered in the process
-- which implements the FSM
when STATE1_S =>
    port1_o <= ‘1’;
when STATE2_S =>
    if cond1 then
        port1_o <= ‘0’;
    end if;

-- Output registered in another
-- process
do_assign : process (clk_i)
begin
    if state=STATE2_S then
        port2_o <= ‘0’;
        if cond2 then
            port2_o <= ‘1’;
        end if;
    end if;
end process do_assign;

-- Combinational assign
port3_o <= ‘1’ when state = STATE3_S else ‘0’;

clk

state

reg

comb

Outputs



● Serial input data.

● While enabled, parity is observed.

● When enable goes down, the output indicates 
an even or odd quantity.

Parity
detector

ZERO_S
odd_o='0'

ONE_S
odd_o='1'

HOLD_S
odd_o='1'

1

2

3

4

5

data_i

ena_i

clk_i

rst_i

odd_i

rst_i

ena_i=’1’ & data_i=’1’ ena_i=’0’

ena_i=’1’ & data_i=’1’ena_i=’1’ & data_i=’1’

ena_i=’1’ & data_i=’0’

Example - Parity Detector - Definition



library IEEE;
use IEEE.std_logic_1164.all;

entity ParityDetector is
    port (
        clk_i  : in  std_logic;
        rst_i  : in  std_logic;
        ena_i  : in  std_logic;
        data_i : in  std_logic;
        odd_o  : out std_logic
    );
end entity ParityDetector;

architecture FSM of ParityDetector is
    type state_type is (ZERO_S, ONE_S, HOLD_S);
    signal state : state_type;
begin

Parity
detector

data_i

ena_i

clk_i

rst_i

odd_i

Example - Parity Detector - Entity



do_fsm : process (clk_i) 
begin
    if rising_edge(clk_i) then
        if rst_i = ‘1’ then
            state <= ZERO_S;
        else
            -- the case here
        end if;
    end if;
end process do_fsm;

odd_o <= ‘1’ when state/=ZERO_S;

end architecture FSM;

case state is
    when ZERO_S =>
        if ena_i=’1’ and data_i=’1’ then
            state <= ONE_S;
        end if;
    when ONE_S =>
        if ena_i=’1’ then
            if data_i=’1’ then
                state <= ZERO_S;
            end if;
        else
            state <= HOLD_S;
        end if;
    when HOLD_S =>
        if ena_i=’1’ then
            if data_i=’1’ then
                state <= ONE_S;
            else
                state <= ZERO_S;
            end if;
        end if;
end case;

1

2

3

4

5

Example - Parity Detector - Architecture



Considerations for Synthesis



architecture my_arch of my_ent is
    signal data : std_logic;
begin
    proc1 : process (clk_i)
    begin
        if rising_edge(clk_i) then
            data <= ‘0’;
        end if;
    end process proc1;

    proc2 : process (clk_i)
    begin
        if rising_edge(clk_i) then
            data <= ‘1’;
        end if;
    end process proc1;
end architecture my_arch;

Multiple drivers, 
can’t be 

synthesized.

entity bidir is
    port (
        data_io : inout std_logic;
        data_i  :    in std_logic;
        data_o  :   out std_logic;
        wr_i    :    in std_logic
    );
end entity bidirr;

architecture RTL of bidir is
begin
    data_io <= data_i when wr_i=’1’ else ‘Z’;
    data_o  <= data_io;
end architecture RTL;

You can use inout in the 
IO blocks of an FPGA, but 

normally not internally.

Signals



clk1_i

wen1_i

addr1_i

data1_i

data1_o

clk2_i

wen2_i

addr2_i

data2_i

data2_o

True Dual Port

clk1_i

wen1_i

addr1_i

data1_i

clk2_i

addr2_i

data2_o

Dual Port

clk1_i

wen1_i

addr1_i

data1_i

data1_o

Single Port

● Modern FPGAs support Single, Dual and True Dual Port RAMs.
● Can be instantiated or inferred.
● The description of an unsupported characteristic produces distributed memory.

Memory Inference (I)



architecture Memory of SinglePortRAM is
    type ram_type is array (0 to 15) of std_logic_vector(7 downto 0);
    signal ram : ram_type;
begin

    ram_p: process (clk_i)
    begin
        if rising_edge(clk_i) then
           data_o <= ram(to_integer(unsigned(addr_i)));
           if wen_i='1' then
               ram(to_integer(unsigned(addr_i))) <= data_i;
           end if;
        end if;
    end process ram_p;

    -- data_o <= ram(to_integer(unsigned(addr_i)));

end architecture Memory;

Single
Port
RAM

addr_i[3:0]

data_i[7:0]

wen_i[3:0]

clk_i[3:0]

data_o[7:0]

Memory Inference (II)



FFs FFs FFsComb
Logic

Comb
Logic

3ns 1ns 2ns

CLK

● Clock skew: the same clock signal arrives different 
components at different times.

● To reduce this effect, you must use global buffers, to 
employ the clock tree.

Clock



d     q d     q

Cond. 
logic

d     q

Cond. 
logic

Free running clock Free running clock 
+ clock gating

Free running clock 
+ clock enable

FPGAs have a
predefined clock tree.

The FFs of an FPGA have
a chip-enable port.

Don't do that in an 
FPGA.

Clock strategies



● Metastability can cause system failures in digital devices when a signal is 
transferred between unrelated or asynchronous clock domains.

● CDC techniques:

− Chain of FFs

− Handshake

− Dual-port RAM

− Asynchronous FIFO

− Others (debouncer)

d       q d       q

clk2

d       q

clk1

Additional read: Understanding Metastability in FPGAs (Altera white paper)

Clock Domain Crossing

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01082-quartus-ii-metastability.pdf


architecture Latches of my_ent is
begin

    process (ena_i, data_i)
    begin
        if ena_i = ‘1’ then
           latch1_o <= data_i;
        end if;
    end process ram_p;

    latch2_o <=
        “0000” when sel_i = “00” else
        “0011” when sel_i = “01” else
        “1111” when sel_i = “10”;

end architecture Latches;

● FFs are active by a clock edge, while 
latches are active by level.

● Latches are created when you have an 
incomplete assignment using a 
combinational process or a conditional 
assignment.

● Latches should never be used in your 
FPGA design:

− They are usually unintentional.

− They are usually a problem for the 
FPGA tools (which normally 
complains about them).

Latches



Advanced VHDL
(parametric and reutilizable code)



entity RAM is
    generic (
        -- NAME: type [:=default];
        AWIDTH : positive := 4;
        DWIDTH : positive := 8;
        DEPTH  : positive := 16
    );
    port (
        clk_i  :  in std_logic;
        addr_i :  in std_logic_vector(AWIDTH-1 downto 0);
        data_i :  in std_logic_vector(DWIDTH-1 downto 0);
        data_o : out std_logic_vector(DWIDTH-1 downto 0);
        wr_i   :  in std_logic
    );
end entity RAM;
architecture Memory of RAM is
    type ram_type is array (0 to DEPTH-1) of std_logic_vector(DWIDTH-1 downto 0);
    signal ram : ram_type;

Generics are constant values 
defined at instantiation time. It 

allows writing of parametric 
designs (reusability).

They are commonly natural, positive 
or boolean. Sometimes (Xilinx), you 

can found string or real.

Generics - Declaration



architecture my_arch of my_ent is
    signal in1, in2, out1, out2 : std_logic_vector(7 downto 0);
    signal addr1, addr2         : std_logic_vector(2 downto 0);
begin
    ram1 : ram
    generic map (AWIDTH => 2, DWIDTH => 8, DEPTH => 4)
    port map (
        clk_i  => clk_i, wen_i => ‘1’,
        addr_i => addr1(1 downto 0), data_i => in1, data_o => out1
    );
    ram2 : ram
    generic map (AWIDTH => 3, DEPTH => 8) -- DWIDTH = 8 (default)
    port map (
        clk_i  => clk_i, wen_i => ‘1’,
        addr_i => addr2, data_i => in2, data_o => out2
    );
end architecture my_arch;

Generics - Instantiation



entity my_ent is
    generic (
        ENABLE   : boolean  := true;
        QUANTITY : positive := 2
    );
    port (
        ...
    );
end entity my_ent;

architecture my_arch of my_ent is
begin
    label_if : if ENABLE generate
        -- concurrent statements
        -- or instantiation
    end generate label_if;

    label_not :
    if not ENABLE generate
        -- there is not an
        -- else generate
    end generate label_not;
end architecture my_arch;

architecture my_arch of my_ent is
begin
    label_for : for i in 0 to QUANTITY-1 generate
        -- concurrent statements
        -- or instantiation
    end generate label_for;
end architecture my_arch;

You must 
deal with 
indexes!

Generates



entity vector_inv is
    generic (WIDTH : positive := 4);
    port (
        data_i :  in std_logic_vector(WIDTH-1 downto 0);   
        data_o : out std_logic_vector(WIDTH-1 downto 0)
   );
end entity my_ent;

architecture my_arch of my_ent is
begin
    my_for : process (data_i)
    begin
        for i in 0 to WIDTH-1 loop
            data_o[WIDTH-1-i] <= data_i[i];
        end loop;
    end process my_for;
end architecture my_arch;

The range must 
be a CONSTANT 

value!

You must 
deal with 
indexes!

● Useful for iterative 
HW replication. Be 
careful! Think on 
loop unrolling.

● The range attribute 
can be useful 
(data_i’RANGE).

● You can use while 
and loop but  
uncommon for 
synthesis.

Loops



architecture my_arch of my_ent is
    function bin2gray(arg: unsigned) return unsigned is
        -- declarations (no signals)
    begin
       return shift_right(arg, 1) xor arg;
    end function bin2gray;

    function bin2gray(arg: std_logic_vector) return std_logic_vector is
    begin
       return std_logic_vector(bin2gray(unsigned(arg)));
    end function bin2gray;

    signal aux1 : unsigned(7 downto 0);
    signal aux2 : std_logic_vector(7 downto 0);
begin
    aux1 <= bin2gray(“10101010”);
    aux2 <= bin2gray(“10101010”);
end architecture my_arch;

● Only inputs
● Sequentially evaluated
● No time (no signals)
● One output (return)
● Supports overloading

Subprograms - functions



architecture my_arch of my_ent is
    procedure example(in1, in2 : in unsigned; q : out unsigned) is
        -- declarations
    begin
       q <= in1 + in2;
    end procedure example;

    signal a, b, c : unsigned(7 downto 0);
begin
    example(in1 => a, in2 => b, q => o);
end architecture my_arch;

● Inputs and outputs as 
argument

● Sequentially evaluated
● Time involved
● Supports overloading

● Functions and Procedures are like C macros (replaced in place).

● For synthesis, you can found simple functions (types conversion or small 
computations), being the procedures rarely employed (similar to components).

Subprograms - procedures



architecture my_arch of my_ent is
    type instruction_t is record
        opcode : std_logic_vector(3 downto 0);
        addr   : std_logic_vector(11 downto 0);
        data   : std_logic_vector(15 downto 0);
    end record instruction_t;
    signal ir : instruction_t;
begin
    ...
    ir.opcode <= “1010”;
    ir.addr   <= X“123”;
    ir.data   <= X“CAFE”;
    ...
    data_o    <= ir.data;
    ir_o      <= ir;
end architecture my_arch;

comp1 comp2

comp1 comp2

records

Records



library IEEE;
use IEEE.std_logic_1164.all;

package My_Package is
    -- constants
    -- components declarations
    -- functions declarations
    -- procedures declarations
    -- types, subtypes, records
end entity My_Package;

package body My_Package is
    -- functions implementations
    -- procedures implementations
end package body My_Package;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library My_Library;
use My_Library.My_Package.all;

The library name 
definition is 

tool-dependant.

User defined Libraries and Packages



● Attributes:

− Provides additional information about a signal (S’EVENT)) or a type 
(T’RIGHT).

− There are predefined attributes in the VHDL specification, predefined 
attributes per tool and can be also user-defined.

− Allows parametric and more clear code (normally employed in libraries).

● Types:

− You can define new types (such as std_logic_vector) and subtypes (such as 
signed and unsigned).

− Essential for FSM (enumerations) and memory inference (arrays).

● Configurations: I have never seen FPGA projects using a configuration (ASIC?).

Others



Conclusion



● What we saw today is enough to develop a small IP core from scratch.
● There are more things to know when you want to understand any VHDL 

description.
● There are even more to understand about FPGAs and the EDA tools for a 

complete system integration.
● Be synchronous and apply good practices! All will be easier and better.
● If you want to design for ASICs/FPGAs, you should know [System]Verilog 

and/or VHDL (recommendation)

Final remarks



rodrigomelo9@gmail.com

rodrigoalejandromelo

@rodrigomelo9ok

rodrigomelo9

rodrigomelo9

This work is licensed under CC BY 4.0

mailto:rmelo@inti.gob.ar
https://www.linkedin.com/in/rodrigoalejandromelo/
https://twitter.com/rodrigomelo9ok
https://github.com/rodrigomelo9
https://gitlab.com/rodrigomelo9
https://creativecommons.org/licenses/by/4.0

