
VHDL for FPGA
Synthesis

Rodrigo A. Melo

Joint ICTP, SAIFR and UNESP School on Systems-on-Chip,
Embedded Microcontrollers and their Applications in

Research and Industry | (smr 3557)

VHDL for FPGA
Simulation
Rodrigo A. Melo

Oct | 2021

Outline

Introduction1

VHDL for Simulation2

Simulators3

Conclusion4

Introduction

● Verification: to check if a design works as expected.

● In-Circuit Debug:

− Performed in a test bench, with a Scope (simple design with a few signals), Logic
Analyzer ($$$) or Embedded Logic Analyzer (modify your design).

● Functional verification:

− Stimulus are provided and the output compared with expected values, according to a
specification.

− It implies a testbench (generally an HDL) and a simulator

● Formal verification:

− Generally speaking, you need to specify formal properties and a tool checks your
design against formal methods (mathematical proof). Ex: SymbiYosys (FOSS).

Verification

https://github.com/YosysHQ/SymbiYosys

UUT

VHDL or
Verilog

Unit/Device
Under
Test

Testbench

Testbench

UUT

VHDL, Verilog or
Python (cocotb)

Testbench

Testbench

UUTStimulus

Testbench

Testbench

AssertionsUUTStimulus

Testbench

Testbench

UUT

A FILE or
STREAM
(STDIN)

A FILE or STREAM
(STDOUT/STDERR)

Testbench

Testbench

UUT Assertions

Golden
Model

Stimulus

Testbench

COMP5

COMP4COMP3

COMP2

COMP1

It needs a
testbench

It needs a
testbench

It needs a
testbench

It needs a
testbench

It needs a
testbench

To be clear

● UVM: Universal Verification Methodology

− Open Verification Methodology

− Functional verification using SystemVerilog

− Supported by a few very expensive simulators (and Vivado?)

● FOSS:

− OSVVM: Open Source VHDL Verification Methodology

− UVVM: Universal VHDL Verification Methodology

− VUnit: unit testing framework for VHDL/SystemVerilog

− SVUnit: unit testing framework for Verilog/SystemVerilog

− Cocotb: Python based testbenches

But we will learn how to
create a basic VHDL

testbench from scratch.

Frameworks and methodologies

VHDL for simulation

Libraries & Packages

Entity
(empty)

Architecture
Declarations

Begin
UUT instantiation

Generates stimulus
Checks results.

● The Entity is employed only to
define the name of the
testbench.

● Only one Architecture.

Structure of a VHDL testbench

architecture Simul of counter_tb is
 constant PERIOD : time := 20 ns; -- 50 MHz
 signal clk : std_logic:='1';
 signal rst : std_logic;
 ...
 signal stop : boolean := FALSE;
begin

 do_clock: process
 begin
 while not stop loop
 wait for PERIOD/2;
 clk <= not clk;
 end loop;
 wait; -- Event Starvation
 end process do_clock;

 rst <= '1', '0' after 3*PERIOD;

● time is a pre-defined
physical type. It allows you
to specify fs, ps, ns, us, ms,
sec, min and hr.

● You need to produce
Event Starvation (no
more events) to finish the
simulation. It is achieved
by a wait without options.

Clock and reset generation

wait [on signals] [until condition] [for time];

-- wait on signals;
wait on s1, s2; -- wait for an event
-- wait until condition;
wait until clk_i = '1'; -- wait for an event
-- wait for time;
wait for 10 ns;
-- wait;
wait; -- wait forever (event starvation)

● Is a sequential statement.

● Used by processes
without a sensitivity list.

Wait

report <message_string> [severity <severity_level>];
assert <condition> [severity <severity_level>];
assert <condition> report <message_string> [severity <severity_level>];

● Report is a sequential statement (only inside of a process).

● The <severity_level> can be note (default for report), warning, error (default for assert) or failure.

● Assert can be either, a sequential or a concurrent statement.

● <condition> is a boolean value which must be TRUE to avoid the report.

● You can only report a string. The value of a signal or variable is not a string. You need to
know the data type and use the image attribute:

report "unexpected value. i = " & integer'image(i);

Assert and report

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity counter is
 port (
 clk_i : in std_logic;
 rst_i : in std_logic;
 cnt_o : out std_logic_vector(3 downto 0)
);
end entity counter;

architecture RTL of counter is
 constant MODULE : positive := 12;
 signal cnt : unsigned(3 downto 0);
begin
 do_counter : process (clk_i)
 begin
 if rising_edge(clk_i) then
 if rst_i = '1' then
 cnt <= (others => '0');
 else
 if cnt < MODULE-1 then
 cnt <= cnt + 1;
 else
 cnt <= (others => '0');
 end if;
 end if;
 end if;
 end process do_counter;

 cnt_o <= std_logic_vector(cnt);
end architecture RTL;

Example - Component

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library std; -- Standard library of VHDL
use std.textio.all; -- we will write to STDOUT
library COUNTER_LIB; -- Our LIBRARY
use COUNTER_LIB.COUNTER_PKG.all; -- Our PACKAGE

entity counter_tb is
end entity counter_tb;

architecture Simul of counter_tb is
 constant PERIOD : time := 20 ns; -- 50 MHz
 signal clk : std_logic:='1';
 signal rst : std_logic;
 signal cnt : std_logic_vector(3 downto 0);
 signal stop : boolean := FALSE;
begin

 do_clock: process
 begin
 while not stop loop
 wait for PERIOD/2;
 clk <= not clk;
 end loop;
 wait; -- Event Starvation
 end process do_clock;

 rst <= '1', '0' after 3*PERIOD;

 -- UUT instantiation
 uut : counter
 port map(
 clk_i => clk,
 rst_i => rst,
 cnt_o => cnt
);

Example - Testbench (part 1)

 testing: process
 variable L : LINE; -- buffer
 begin
 -- Print to STDOUT
 write(L,NOW); -- Current simulation time
 write(L,STRING'(" --> Start of test"));
 writeline(output,L); -- Write to STDOUT
 -- Test of the initial value
 wait until rising_edge(clk);
 wait until rst='0';
 assert unsigned(cnt)=0
 report "Error! not 0"
 severity failure;
 -- Test of the intermediate values
 for I in 0 to 11 loop
 wait until rising_edge(clk);
 assert unsigned(cnt)=I
 report "Error! cnt = ("&integer'image(to_integer(unsigned(cnt)))&")"
 severity failure;
 end loop;
 wait until rising_edge(clk);

Example - Testbench (part 2)

 -- Test cicle restart
 assert unsigned(cnt)=0
 report "Error! Mod-12 ("&integer'image(to_integer(unsigned(cnt)))&")"
 severity failure;
 -- Print to STDOUT
 write(L,NOW); -- Current simulation time
 write(l,string'("-> End of test"));
 writeline(output,L); -- Write to STDOUT
 -- Clock stop
 stop <= true;
 wait;
 end process testing;

end architecture Simul;

Example - Testbench (part 3)

● Defines read and write procedures to work with FILES.

● The procedures supports the types bit, bit_vector, boolean, character (ex: ‘A’), string
(ex: “ICTP”, defined from 1 to 4), integer, real and time.

procedure READLINE(file F: TEXT; L: out LINE);
procedure READ(L:inout LINE; VALUE: out <type>);
procedure READ(L:inout LINE; VALUE: out <type>; GOOD : out BOOLEAN);

procedure WRITE(
 L :inout LINE; VALUE : in <type>;
 JUSTIFIED: in SIDE := right;
 FIELD: in WIDTH := 0
);
procedure WRITELINE(file F : TEXT; L : inout LINE);

Files - std.textio

stimulus: process
 file F : TEXT open READ_MODE is "input.dat";
 variable L : LINE;
 variable tag : string(1 to 3);
 variable int : integer;
 variable ok : boolean;
begin
 while not endfile(F) loop
 readline(F, L); -- F can be replaced by input (read from STDIN)
 read(L, tag, ok);
 assert ok report "Read ERROR!" severity failure;
 -- Do something with tag (the read value)
 read(L, int, ok);
 assert ok report "Read ERROR!" severity failure;
 -- Do something with int (the read value)
 end loop;
 wait; -- event starvation
end process stimulus;

Files - read

checks: process
 file F: TEXT open WRITE_MODE is "output.dat";
 variable L: LINE;
begin
 ...
 WRITE(L, NOW);
 WRITE(L, STRING'("Your string")); -- This cast is needed for strings
 WRITELINE(F,L); -- F can be replaced by output (print to STDOUT)
 ...
 wait; -- event starvation
end process checks;

Files - write

You can read from STDIN with a file called input and to write to STDOUT with a file
called output (these files are automatically opened when you include textio).

Simulators

B

D
12ns 13ns

C

B

A
D

int2
int1

11ns

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

A

How a simulator works?

B

A

D
12ns 13ns11ns

int1

 d

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

How a simulator works?

C

B

A
D

int2
int1

B

A

D
12ns 13ns11ns

int1

d

int2

2d

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

How a simulator works?

C

B

A
D

int2
int1

B

D
12ns 13ns11ns

d 2d 3d

12ns

architecture rtl of example is
 signal int1, int2 : std_logic;
begin
 int1 <= not A;
 int2 <= int1 and B;
 D <= int2 or C;
end architecture rtl;

A

int1

int2

How a simulator works?

C

B

A
D

int2
int1

if rising_edge(clk_i) then
 flag_o <= '0';
 if ena_i = '1' then
 flag_o <= '1';
 end if;
end if;

Waveforms interpretation

● counter.vhdl: entity/component

● counter_pkg.vhdl: package which contains the component

− The package name is COUNTER_PKG (name defined into the VHDL file)

● counter_tb.vhdl: testbench of the component

− The library name is COUNTER_LIB (name defined by the tool)

Example

$ mkdir -p build
$ ghdl -a --workdir=build --work=COUNTER_LIB counter.vhdl counter_pkg.vhdl
$ ghdl -a --workdir=build -Pbuild counter_tb.vhdl
$ ghdl -e --workdir=build -Pbuild counter_tb
$ ghdl -r --workdir=build -Pbuild counter_tb --vcd=build/counter.vcd

● GHDL analyze (-a), elaborate (-e) and run (-r) our simulation.

● Use --workdir to specify where to put generated files (build directory).

● Use --work to specify the LIBRARY NAME (COUNTER_LIB).

● Use -P to specify where to find libraries (no space between P and the directory).

● Use --vcd or --wave (.ghw), which are runtime options, to specify where to dump
waveforms.

GHDL simulation

$ gtkwave build/counter.vcd

GTKwave waveform viewer

Vivado simulation - create project

Vivado simulation - add sources

Vivado simulation - launch simulation

Vivado simulation - see waveforms

Conclusion

● Do not perform a testbench can be only allowed for very basic descriptions (a
counter, a ROM) included in another simulated description. Professional
advice.

● What we saw today is enough to develop a small testbench with stimulus and
assertions.

● Also, you should be capable of read/write files.

Final remarks

rodrigomelo9@gmail.com

rodrigoalejandromelo

@rodrigomelo9ok

rodrigomelo9

rodrigomelo9

This work is licensed under CC BY 4.0

mailto:rmelo@inti.gob.ar
https://www.linkedin.com/in/rodrigoalejandromelo/
https://twitter.com/rodrigomelo9ok
https://github.com/rodrigomelo9
https://gitlab.com/rodrigomelo9
https://creativecommons.org/licenses/by/4.0

