
The OpenIPMC project
Development of a portable FOSS IPMC software and design of an HW platform for its operation

André Cascadan (UNESP - São Paulo)

21-Oct-2021

ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and
their Applications in Research and Industry

The ATCA

Advanced Telecommunication Computing Architecture (ATCA)

● Industrial computing standard
○ Standardized by PICMG

● Reliability
○ System monitoring & management via network
○ Power and management redundancy

● High power available to devices
○ Forced air cooling by the use of fans
○ More than 10 kW / cabinet possible

● High speed backplane connections
○ Precise clock synchronization (10s of ps jitter)
○ High-speed communication (16-20 Gbit)

● Modularity
○ Each ATCA board can still support Mezzanines

○ Advanced Mezzanine Cards - AMC
3

ATCA boards in High Energy Physics

4
Serenity board (Imperial College London) Apollo board (Boston University)

● HEP employes ATCA boards to build its custom processing electronics
○ Mainly intended to host powerful FPGAs and large amount of optical connections

ATCA and its management system
● ATCA shelf like a LEGO set

○ Mechanical frame + interconnection backplane
○ Replaceable components (FRUs)

○ Boards, power supplies, boards, shelf managers, ...

● Shelf Manager Controller (ShMC)
○ Orchestrates turning on/off the FRUs
○ Controls the power of the fans (cooling loop)
○ Polls to each FRU to monitor its conditions
○ Provides a shelf management interface via UDP/IP

● Intelligent Platform Management Controller (IPMC)
○ One for each FRU (including the boards)
○ Manage board startup and shutdown in graceful way
○ Reports the status of the board to the ShMC
○ Agrees with the ShMC changes in the power state

The ShMC is an orchestra director, doesn’t know how to play an instrument

The IPMC follows the ShMC and knows to play its own specific instrument5

IPMCs for the ATCA boards
● Now, consider ATCA boards designed by the user

○ e.g. the Serenity or the Apollo boards for the CMS tracker

● Standard communication protocol with ShMC
○ IPMI: Intelligent Platform Management Interface over IPMB
○ IPMB: Intelligent Platform Management Bus, based on I2C

● The IPMC is specific to that board design
○ Different boards have different components

○ CPUs, FPGAs, hard disks, radio transceivers, …
○ The IPMC needs to know how to read temp/voltage/…

● The board designer chooses an IPMC for the board
○ This can be an IPMC designed by him...
○ ...or an IPMC designed by someone else
○ What counts is the configuration of the IPMC for that board

● LHC expts adopted an IPMC DIMM standard by LAPP (Annecy, FR)
● A variety of IPMCs were already designed on this standard

○ LAPP IPMC
○ Fermilab IPMC
○ CERN IPMC

6

LAPP IPMC

FNAL IPMC

CERN IPMC

Characteristics of the project
● IPMC software (OpenIPMC)

○ Open Source SW → No license problems (e.g. students), flexibility
○ Multiplatform → Freedom to choose MCU and host hardware
○ PICMG-compliant → Implements IPMI to perform IPMC operations according to PICMG

● IPMC DIMM hardware module (OpenIPMC-HW)
○ Open Source HW → Any group can re-use the hardware design
○ LAPP pinning → Largely adopted by ATCA boards in LHC
○ Rather simple PCB → Can be fabricated by many PCB manufacturers and assemblers
○ Well-supported MCU

● Firmware for the DIMM module (OpenIPMC-FW)
○ Open Source SW → No license problems (e.g. students), flexibility
○ Eclipse-based SDK → Popular, easy to use and install, supports Linux
○ Support for different ATCA boards

7

Brief intro on the OpenIPMC software

● IPMC software implementing PICMG-compliant IPMI functions
○ Power negotiation and hot-swap (M-states, handle, etc.)
○ Instantiate board sensor records, declare them to ShM, read-out and publish data
○ Focus on simplicity: optional functions can be added to the project by the user

● Platform-independent design, written in C
○ Can quickly port the project to different architectures (e.g. ZynqMP, ESP32, STM32)

● Based on FreeRTOS operating system
○ Can run independent tasks in parallel (w/ prioritization)
○ Flexible software development, thanks to task decoupling
○ Supported by many SoC manufacturers (TI, NXP, ST, Xilinx, Microsemi…)

● OpenIPMC is free and open source software
○ Can be easily customized to fit a new board, and modified to be debugged
○ No need to sign NDAs for contributors, curious newcomers and students

9

OpenIPMC software

Evolution of OpenIPMC support on different devices

● First platform: Cortex-R5 cores on Zynq US+
○ IPMC (R5) and Linux (A53) running in the same device
○ Targeting the ATCA-ZynqMP management module by KIT (proposed for Serenity-A2577)

● Portability exercise: ESP32 microcontroller
○ Not a “serious” device, but very different arch from Zynq, cheap and very flexible

● First mainstream MCU: STM32 microcontroller
○ Successful porting opened the way to design of the DIMM module (Cortex M7)

10

11

Interface to PICMG-required hardware.

(e.g. I2C IPMB-0, Blue LED, Handle, …)

Needs always to be defined in code.

Drivers supplied by the
MCU manufacturer (or

written by the user)

Interface to resources specific to the
ATCA board being targeted (e.g. Zynq

module boot, FPGA configuration,
main power enable, ...)

How OpenIPMC interfaces to the hardware
● Two interfaces between OpenIPMC hardware-agnostic code and hardware drivers

○ Hardware Abstraction Layer→ interface to hardware driver used for IPMI functions (IPMB, blue led..)

○ Board-specific controls → customize board-specific behavior (how to turn on power, read sensors..)

● Note that other FreeRTOS tasks (not shown in pic) can run aside of the OpenIPMC stack

● PICMG states that all ATCA board must have a Blue LED in its faceplate
● Tells user about the activation state

○ OFF: board is active
○ Short blink: board is shutting down (“Please, do not pull the board out!”)
○ ON: board is inactive (“Board can be removed safetly”)
○ Long blink: board is activating

● Blue LED is controlled by OpenIPMC software
○ Its presence does not depend on any board design choice (ARM, ATMEL, ...)
○ So, how to control this led?

12

HAL example: Blue LED

13

HAL example: Blue LED

Blue LED task in OpenIPMC-SW

OpenIPMC-SW port for STM32

● OpenIPMC-SW has a task to control the Blue LED
○ ipmc_ios_blue_led() must make the led ON or OFF

○ ipmc_ios_blue_led() is left undefined in the SW project

● Adding OpenIPMC-SW into to STM32 project
○ The developer includes OpenIPMC-SW into the FW project

○ ipmc_ios_blue_led() is then defined using the specific API

○ No need to modify any line OpenIPMC-SW project

Multitask IPMI message processing

14

Physical link layer
● Multi-master I2C
● Use 2 PS I2C ctrlers

Buffers the messages
● Collects incoming IPMI messages

(Requests and Responses)
● Manage the transmission over

the IPMB channels (arbitration)

Abstracts away the IPMI transport layer
● Manages sequence #, destination and checksums
● Associates responses to requests
● Retries and timeouts
● Accepts multiple internal requests (from different tasks)
● Call the specific functions to solve external requests

● Hot Swap operation
● Power Negotiation
● Sensor Records
● Sensor Readings
● Other IPMI functions

○ user-implemented

OpenIPMC-HW

16

Choice of the microcontroller
 The OpenIPMC software runs on top of FreeRTOS

● Software shown to be easily portable on new MCUs (~3 wks)
● Plenty of MCU manufacturers to choose from

 We chose STM32H745XIH6 by STMicroelectronics
● Number of I2C/SPI hardware peripherals → 4 / 6
● Number of GPIOs/UART/USART → up to 168 / 4 / 4
● Availability of an free toolchain → STM32CubeIDE
● Availability of an evaluation board → NUCLEO-H745ZI-Q (cost: 23 CHF)
● Our experience with other STM32 MCUs → STM32F103C8T6 (e.g. “Blue pill” board)
● Performance margin for future upgrades → 480 MHz Cortex-M7+240 MHz Cortex-M4
● Large SRAM/Flash memories → 1024 kiB / 2048 kiB
● Expected reliability of the manufacturer → STMicroelectronics is a leader in MCUs
● Cost → 17.45 $ per piece

 What we get in addition
● High speed USB device/host/OTG → USB programming & terminal
● Efficient SMPS to power the core → better thermals
● External memory support → store config/firmwares/etc
● Lots of other features we will not use (e.g. HDMI driver)

STM32 NUCLEO-H745ZI-Q

Full documentation on ST site

https://www.st.com/en/microcontrollers-microproce
ssors/stm32h745-755.html#documentation

https://www.st.com/en/microcontrollers-microprocessors/stm32h745-755.html#documentation
https://www.st.com/en/microcontrollers-microprocessors/stm32h745-755.html#documentation

17

OpenIPMC-HW layout: schematic

18

OpenIPMC-HW layout: picture

SPI IO expanders
(Microchip MCP23S17)

PHY 25 MHz
crystal

PHY led

Ethernet PHY
(Microchip KSZ8091MNX)

MCU decoupling
and thermal vias

USB ESD TVS

IPMB I2C
isolation buffer

(Linear LTC4300-1)

Micro-USB B

MCU LSE
32 kHz crystal

MCU

MCU HSE
25 MHz crystal

3.3V rail ORing
power switch

(TI TPS2115ADRBR)

SPI IO expanders
(Microchip MCP23S17)

Vusb to 3.3 V LDO
SWD and UART0

lead holesMCU reset NOR Flash
(W25Q01JVZEIM)

JEDEC MO-244 connector

IPMB I2C
isolation buffer

(Linear LTC4300-1)

18.3 mm height allows
to fit in ATCA crate

using a vertical DIMM slot

Standard FR-4
8-layers PCB
hard gold fingers
edge 45 chamfer

AMC IO expanders
● A set of 10 control signals for each AMC mezzanine

○ Up to 9 mezzanines are supported → 90 GPIOs needed!!!

● We use six Microchip MCP23S17 16-bit I/O expanders, controlled via a single SPI bus at 10 MHz

○ Only one SPI bus + shared Chip Select (CS) to control all the expanders

○ Expander address in SPI protocol header, address is set via package pull-ups /downs

○ One GPIO from MCU used to catch the interrupt signals from the expanders (open collector mode)

● Dedicated driver was developed to control all Expanders in a transparent way

19

MCP MCP MCP

SPI (MISO, MOSI, SCK)

CS

INT

90x IOs

28-pin QFN
6x6 mm

Writing a driver for the IO expanders
● The driver allows to control all the 90 pins as it was a typical MCU GPIO

● Internally, the driver uses the SPI HAL provided by STM32CubeIDE to control all devices

○ Each device is selected by its address, sent into SPI stream (in 1st byte)
○ Each device has a set of registers to be written/read via SPI (address in 2nd, and data in 3rd byte)

20

How the IO expander wants it...How the driver interface looks like...

IO expanders driver code

21

IO expanders driver code

22

...and finally,
the STM32
SPI HAL interface!

External flash

● The MCU supports external QSPI flash
○ QSPI → uses four pins for data → FASTER!

● We added one to the DIMM to
○ Store configuration, file system
○ Aid in firmware upgrade binary gymnastics
○ Store a failsafe “golden image” or backup

● Our chosen part is Winbond W74M01GVZEIG
○ NAND Flash

○ WSON-8 package

○ 1 Gbit = 128 MiB with 128kiB erasable blocks

○ Cheap (7.33 USD or equivalent W25N01GVZEIG for 3.27 USD)

23

● All the read/write operations are commands over QSPI bus
● Example: read operation

○ Memory is divided in pages of 2048 bytes each
○ In a page, data are addressed by their column address
○ Read sequence:

i. Send Page Data Read with the page address: the page content is fetched to the flash internal buffer
ii. Send Read with the column address to transfer the data from flash chip to the MCU

○ Transfer starts from the byte in the referred column address

External flash: read example

24
...Master clocks until

transfer finish

Writing a driver for the External flash

25

Load the internal flash buffer with the requested page

Receive the page content into data array

Using driver for the External flash

26

Reads any amount of data
from any address

Ethernet
● LwIP over FreeRTOS

○ Flexibility for custom management
○ IPMI is slow and may not cover all the desired remote operations

○ NTP, FTP, TFTP, Telnet, XVC...

● PHY: Micrel/Microchip KSZ8091MNX
○ 10/100 Mbit with auto MDI/MDI-X

○ Media Independent Interface (MII) @ 25 MHz

○ Management Data Input/Output (MDIO)

27

STM32 PHY
TX

RX

MII

MDIO

USB interface

● Most STM32 MCUs support USB 2.0 natively!

● We intend for use in two functions
○ Easy access to the IPMC Command Line Interface
○ DFU firmware update via a simple USB cable

● Very helpful for pre-configuration

28

Command line interface

help: List of commands Update sequence and new telnet connection
to the OpenIPMC-FW running

Available via
UART, USB and Telnet

Firmware upgrade

● Many ATCA crates...
○ ...with many ATCA boards...

● … running in inaccessible sites (eg: CMS cavern)
○ Firmware need to replace itself by its own reliably!

● FW Image upload
○ Network: FTP, TFTP ...
○ IPMI: PICMG specifies dedicated commands (HPM.1)

● Backup
○ The current version need be kept in the device
○ Manual rollback: if user note some misbehaviour
○ Auto rollback: if new FW is severely fails

30

FW Upgrade steps

1. OpenIPMC-FW make a copy of
itself into the external Flash

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

(STM32 default boot ADDR, non volatile)

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

OpenIPMC-FW
(Backup area)

TEMP_ADDR

Ex
t

Fl
as

h

(Empty)

FW Upgrade steps

2. OpenIPMC-FW loads the new version into the TEMP area in External
Flash (uploaded via IPMI or Network)

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

LOAD-BIN

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

OpenIPMC-FW
(Backup area)

TEMP_ADDR

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

(STM32 default boot ADDR, non volatile)

New FW image
uploading

FW Upgrade steps

3. OpenIPMC-FW writes the position of the new firmware for Bootloader
4. Change boot address to Bootloader region and reboot.

Bootloade
r

0x0800 0000

OpenIPMC-FW
(Current, running) Bootloader

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

(STM32 modified boot ADDR, non volatile)

TEMP_ADDR

TEMP_ADDR

OpenIPMC-FW
(Backup area)

Backup RAM

FW Upgrade steps

5. Bootloader reads the address
6. Bootloader starts and copies the new FW from TEMP to the RUN area
7. Bootloader jumps to new FW

Bootloade
r

OpenIPMC-FW
(New FW)

Bootloader
(Running)

0x081E 0000

ST
M

32
 F

la
sh

Bootloade
r

0x0000 0000

Ex
t

Fl
as

h

OpenIPMC-FW
(New FW, Temp area)

OpenIPMC-FW
(Backup area)

0x0800 0000

(STM32 modified boot ADDR, non volatile)
Backup RAM

TEMP_ADDR

TEMP_ADDR

● Boot address is not the address where the program starts
○ It is actually the address of the Vector table

● Vector table
○ Initial stack pointer - The address where stack starts

○ Reset address - The address where the program actually starts (first instruction)

○ Addresses for all exceptions (faults and interrupts)

Considerations about ARM boot

35

A FW can “call” another FW as it was a function

This process usually require all the MCU resource previously reset to its default state

Test and dev platforms

37

Breakout Board used for development & programming

37

JEDEC
MO-244
socket

3D model for the breakout board

STLink-V3MINI JTAG/SWD debugger
Cost: around 10 USD

The breakout board exposes (almost) all the pins of the DIMM
connector on 100-mil headers for test/development purposes.

We plan to make a small update adding the breakout for 12V_EN

AMC
[1 to 6]

IOs

AMC
[7 to 9]

IOs

USER
IOs

IPM
IOs

IPMB-0 channels Current measurement jumper Power cord and LDO

Ethernet

IPMC USB

STDC14
JTAG/SWD

slave

Blue LED
Front LEDs

JTAG Master

Simulated
handle switch

The breakout board is very inexpensive:

● 10 PCB + shipping = 26 USD
● Dimm connector = 17 USD
● The other components are cheaper

Test in ATCA boards

● OpenIPMC-HW is currently being tested in 3 ATCA boards
○ Pulsar-IIb, at SPRACE (São Paulo) - main development environment

○ Serenity, at KIT (Germany) and CERN

○ Apollo, at Boston University

38 Pulsar-IIb @ SPRACE Apollo @ BU Serenity @ KIT

39

Sensor readings

Sensor reading test: Shelf Manager CLI is printing the sensor readings of Serenity @ KIT.

HotSwap Sensor

IPMB Sensor

Temperature
form PIM400

Current on PIM400

Voltage on -48 line
(Channels A and B)

Summary

40

● OpenIPMC: the importance of abstraction
○ Resolves IPMI communication and board management according to PICMG
○ standard C, FreeRTOS and no other special dependency
○ Access hardware IOs without knowing how they work

● OpenIPMC in STM32H745 chip
○ IO expander MCP23S17 via SPI (driver exemplified)
○ 128MB W74M01GVZEIG Flash memory via QSPI (driver exemplified)
○ Ethernet PHY KSZ8091MNX via MII
○ Device Firmware Update (DFU) and Virtual COM port (VCP) via USB
○ LwIP: TCP, UDP, TFTP, Telnet …
○ Command Line Interpreter via UART
○ Firmware Upgrade and Bootloader

Questions?

OpenIPMC-HW on ATCA boards

Sensor readout test at CMS TIF

43

credits: Giacomo Fedi

An OpenIPMC-HW was left reading out sensors on the PIM400 of its hosting Serenity board at TIF.
The values were fed into the TIF Carbon server and plotted with Grafana. Data readout was stable.

Polaris PICMG standards compliance tests

44

○ Verification of compliance with PICMG standard requires many tests
○ Needs an automated system allowing to perform tests in batches

○ We are using an ATCA compliance testing sw by Polaris Networks
○ Kindly provided by the CERN EP-ESE group at bldg 14. Thanks!

○ OpenIPMC-HW was put to test with the CERN Polaris setup
○ The results (below) have been fundamental in orienting our improvements
○ We will keep to use this tool to orient our improvements

PASSED FAILED SKIPPED TOTAL

56 (56%) 17 26 99

45

Repositories on Gitlab

 OpenIPMC (IPMC software)
● gitlab.com/openipmc/openipmc

 OpenIPMC-FW (DIMM firmware)
● gitlab.com/openipmc/openipmc-fw

 OpenIPMC-HW (DIMM board design)
● gitlab.com/openipmc/openipmc-hw

 Breakout baseboard
● gitlab.com/openipmc/openipmc-hw_debug-base

https://gitlab.com/openipmc/openipmc
https://gitlab.com/openipmc/openipmc-fw
http://gitlab.com/openipmc/openipmc-hw
http://gitlab.com/openipmc/openipmc-hw_debug-base

Backup Slides

46

STM32H745XI peripherals

● Feature-rich microcontroller
○ Plenty of peripherals to play with

● Total 1MiB of RAM, most of it still free
○ Leaves space for future software upgrades

● The Cortex-M4 core is still not used
○ It can be used to run bare metal code

■ Bit-banging as 5th I2C channel (sensor master)
■ Bit-banging as JTAG master on the AMC GPIOs

● This MCU seems decently future-proof

47

3.3V power OR-ing switch

● We want to make possible to program the module in-hand via USB
○ Two Possible Power Sources and risk of reverse powering

● Source hierarchy
○ DIMM Edge connector (3.3V) → primary source

○ On-board USB (5V) + 3.3V LDO → secondary source

○ Source conflict resolution → use a COTS ORing switch for USB applications

● Texas Instruments TPS2115A
○ Automatic power ORing with 2 inputs

○ 3x3mm SON-8 package

● Analog Devices ADM7172
○ 3.3V LDO, max 2A

○ 8-LFCSP package

48

TPS
ADM

USB Vbus (5V)

3.3V from ATCA board

local 3.3V

49

Command Line Interface: Telnet & UART
○ CLI: allows extra control and debug capabilities beyond IPMI protocol (via Telnet or UART)
○ Telnet: allows remote connection to IPMC or to any device on board if associated to a UART port

Telnet DIMM-UART0
(via Minicom)

The CLI can r/w
simultaneously over two

separate channels

50

OpenIPMC-HW DIMM connections

Note: among the GPIOs some pins can be configured as UARTs, following the SoC Interest group layout

● Cores
○ 1x ARM Cortex-M7 (480 MHz max)
○ 1x ARM Cortex-M4 (240 MHz max)

● Package
○ 265-TFBGA
○ 14x14mm
○ 0.8mm pitch

● Memory
○ 2x 1 Mbyte Flash
○ 64 I + 128 D Kbytes TCM (M7 only)
○ 864 Kbytes SRAM

● Power
○ Input 1.62 to 3.6 V
○ Integrated SMPS+LDO

● IOs
○ 168x GPIOs
○ 4x I2C
○ 6x SPI
○ 8x UART
○ Ethernet MAC
○ USB host/device/OTG
○ Quad-SPI

● Others
○ LCD-TFT
○ JPEG Codec
○ ADCs
○ DACs
○ OpAmps
○ Graphical Accelerator

STM32H745XI Microcontroller: specs

51

TFBGA 240+25

Changes compared to previous presentations
○ Platform is now called OpenIPMC-HW

○ Switched MCU from STM32H745II (176 balls 0.65mm pitch) to STM32H745XI (240 balls 0.8mm pitch)

● It’s an elephant, but it seems to still fit on available board space, and is easier to solder

○ Removed iCE40 FPGA from the design (as suggested by Peter Wittich)
● Makes the hardware design and signal routing easier
● Removes the necessity of programming a second device in the board

52

STM32H745XI Microcontroller: SMPS x LDO

● Vcore power sources
○ Integrated step-down SMPS and LDO to be chosen or combined
○ Each power scheme requires a different off-chip extra circuitry

● Options available in OpenIPMC-HW (by add/remove components)
○ LDO only: low efficiency
○ SMPS only: high efficiency
○ SMPS supplying LDO: good efficiency & maximum CPU speeds

53 LDO only SMPS only SMPS supplying LDO

TESTED SUCCESSFULLY
AND CURRENTLY IN USE

1.2V
 for 400MHz
CPU speed

Polaris test @ CERN 06/05/2021 page 1/6

54

Polaris test @ CERN 06/05/2021 page 2/6

55

Polaris test @ CERN 06/05/2021 page 3/6

56

Polaris test @ CERN 06/05/2021 page 4/6

57

Polaris test @ CERN 06/05/2021 page 5/6

58

Polaris test @ CERN 06/05/2021 page 6/6

59

OpenIPMC on ESP32 (Espressif Systems, CN)
● Quite powerful & flexible uC

○ 240 MHz Xtensa LX6 dual core

○ FPU, Big INTs & Crypto

○ WiFi, BT, SPI, I2C, UART…
○ FreeRTOS support

● Cheap Linux-supported boards
○ CP2102 USBtoUART converter

○ Boards sell for 5$

● 3.3 V device (same as IPMB)

● Development software
○ Arduino IDE, PlatformIO or esp-idf

● Very different arch w.r.t a Zynq US+
○ Good exercise on portability/

60

IPMC firmware & board for Pulsar-2b
● SPRACE collab with Fermilab (2014-2016)

○ AM+FPGA L1 Track Finder
○ One contribution was the IPMC for the Pulsar-2b
○ MCU: NXP LPC1700 (ARM Cortex-M3)
○ RTOS: ARM Keil RTX (proprietary compiler)
○ IPMC worked well and reliably, but….

● Non-generic implementation
○ Minimum set of required IPMI commands

○ Hot Swap and sensor readings
○ Other Features (not IPMI/PICMG)

○ TCP/IP & Xilinx Virtual Cable (XVC) for FPGA debug

● Rather rigid code base
○ Hard coded variables
○ Difficult to customize and port
○ Single task for all IPMI functions

● Redesign from scratch for ZynqMP
○ Pulsar-2b IPMC was the inspiration
○ Led to OpenIPMC

61

Track Finder Demonstrator
ATCA crate @ FermilabPulsar2b

SPRACE/Fermilab IPMC

First target platform for ZynqMP development

Trenz + Serenity setup (KIT)

● Serenity ATCA card (Imperial College)

● Trenz Elektronik TE0803 module

○ Zynq US+ ZU4EG SoC

● Trenz Adapter board (KIT)

○ Interface TE0803 to COM Express slot

○ Additional IPMC features

○ (I2C buffers, Eth Phy, EEPROM, SDCard…)

○ Interface to DIMM adapter

● DDR3 Mini-DIMM Adapter (KIT)
○ Fits into CERN IPMC-compatible slot

○ Access to IPMC backplane signals

62

63

● I2C multi-master with variable size I2C msgs is required for IPMB bus communication
○ End of message is signalled by a stop bit

● The official esp-idf I2C driver was not supporting variable size msgs correctly
○ The driver expected a message size to be specified in advance

● We modified the driver* and now the slave read function correctly returns if receiving a stop bit

ESP32 w/ OpenIPMC DIMM adapter
giving access to
the backplane

Shelf Manager

‘Blue LED’

*The github esp-idf repository
was forked. A merge request is
still in progress

Fixes to ESP32 Integrated Development Framework

64

This layer allows OpenIPMC to run on the platform,
and is (ideally) the only part that needs to be adapted

The ipmc_ios interface can use the i2c
functions in the driver to run the IPMB

User can
implement

its own
interface to

manage
specific

peripherals
in the

platform

Xilinx ZynqMP SoC as unified mgmt module
● Needs of ATCA boards for LHC experiments

○ IPMC → board management & monitoring

○ Linux → higher-level functions (e.g. calibration)

○ Xilinx ZynqMP SoCs can satisfy both roles using one unit

● Zynq Ultrascale+ MPSoC
○ Two processor domains: Application PU and Real-time PU

○ Xilinx FPGA programmable logic (good 4 sys integration)

○ Plethora of peripherals (PCIe, ETH, I2C, UART, USB, …)

● Power domain partitioning
○ Low PD (ARM-R5 RPU) → IPMC (standalone/RTOS)

○ Full PD (ARM-A53 APU) → Slow Control (Linux)

○ PL PD (FPGA) → partitioned between IPMC and Linux uses

● Pros and cons of tighter IPMC/Linux integration
○ Simple IPMC/Linux communication through mem registers

○ Very flexible implementation

○ Can be optimized for reduced board area occupation

○ Complex gymnastics between the two systems

● We began OpenIPMC on AVNET Ultra96
○ https://www.96boards.org/product/ultra96/

○ Plenty of tutorials & Vivado support

○ Excellent price (249$) allows buying more boards

● More boards can be used by developers

● Ultra96 uses Zynq Ultrascale+ ZU3EG
○ Same family as ZynqMP Mgmt. Module

○ APU → 4 x Cortex A-53

○ RPU → 2 x Cortex R-5

○ PL → Kintex US+ - like FPGA fabric

66

Development platform for ZynqMP: Ultra96

AVNET Ultra96 (Xilinx Zynq UltraScale+ ZU3EG)

https://www.96boards.org/product/ultra96/

67

Ultra96 mated to the Pulsar-II through Mini-DIMM adapter

Using generic development boards in the ATCA shelf
● Dev board (e.g. Ultra96)

● Pulsar-2b board exposes signals to DIMM slot
○ IPMB-A and -B buses

○ Pulsar-2b LEDs

○ Pulsar-2b main power enable (not used so far)

○ Pulsar-2b local I2C for sensors (not used so far)

● Mini-DIMM adapter
○ Connects Pulsar-2b DIMM slot to Ultra96

○ Translates 1.8 V (Ultra96)↔3.3V (ATCA)

○ Design and manufacture by Luis Ardila (KIT)

● Comtel CO6 ATCA chassis
○ Full-mesh, 6 slots horizontal

○ 2 PigeonPoint ShelfManagers (redundant)
Mini-DIMM adapter

68 Digilent Analog Discovery USB o’scope as I2C logic analyzer
Monitoring IPMB-A with TeK o’scope

Ultra96 + Pulsar-2b in the shelf

OpenIPMC tests on Trenz + Serenity setup @ KIT

● From Ultra96, OpenIPMC code was successfully
ported to Trenz+Serenity setup at KIT
○ Adapting HAL and Board-specific ctrls
○ All changes in one file

● All changes relays into the ipmc_ios.c file

● Hot-Swap operation successfully tested on Serenity
board

● Since no real sensor are currently being read in this
hardware

69

Trenz-Serenity setup at KIT

70

Activation Status

FRU Information

(testing data from example code)Sensor Reading

(testing data from example code)

OpenIPMC tests on Trenz + Serenity setup @ KIT

● ESP32 microcontroller (see backup slides)

○ Very different from a Zynq US+

● Questions answered by this exercise

○ Architecture independency

○ Trivial, thanks to C and FreeROTS

○ Ease of integration on a different SoC

○ OpenIPMC needs I2C peripheral

○ Many SoCs have 2 or more

○ Effort needed to port OpenIPMC

○ Mainly IO/HAL interface bindings

○ Fixes needed in ESP32 IDF (see backup)

○ Porting took just 3 person-weeks :-)

● Overall the exercise was a success

● Repo: gitlab.com/openipmc/ipmc-esp32

71

Porting OpenIPMC to ESP32

https://gitlab.com/openipmc/ipmc-esp32

● IPMBus communication works

● ShM happily accepts the FRU

● Activation/deactivation are triggered

using an ‘improvised’ Handle Switch

● Activation time significantly longer

than in Ultra96

○ Likely due to ESP32 drivers

72
‘Handle Switch’ for tests I2C lines connected to DIMM

OpenIPMC tests on ESP32

4) STM32 H745 + Pulsar-2B

ST Microelectronics STM32H745
● Powerful industrial control-oriented MCU

○ 480 MHz ARM Cortex-M7 main CPU
○ 240 MHz ARM Cortex-M4 aux CPU

● Plenty of peripherals
○ 4 x hardware I2C, 6 x hardware SPI
○ 4 USART + 4 UART + 1 LPUART
○ Up to 168 GPIO

● Moderate current consumption
○ 600 mA absolute max / 80-200 mA typ current

● Free development environment & compiler
○ STM32CubeIDE (gcc in the back-end)
○ Compatible with Linux, OpenOCD and GDB
○ ST provides a FreeRTOS distribution for STM32

74

● For development we use the ST NUCLEO-H745ZI-Q devboard
○ STM32H745 in LQFP-144 package (same silicon, less pins than the TFBGA-240+25)
○ Easy to get from distributors and CERN stores, cheap (around 23 CHF)

75

ST Microelectronics NUCLEO

https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-h745zi-q.html

● Porting was similar to ZYNQ and ESP32, thanks to FreeRTOS being supported on STM32
○ We wrote a new OpenIPMC HAL to interface with the STM32 drivers

● Porting OpenIPMC core functions (IPMB-0) took just 4 person-weeks
○ Usual show-stopper was the I2C driver implementation of I2C multi-master mode

○ Relatively painless fix, similar to the Zynq case

● Testing: IPMI communication works properly on STM32

76

Porting OpenIPMC to STM32

STM32 responding to shelf manager with 200 μs latency (timeout 300 ms) NUCLEO board mounted onto the Pulsar-2b

5) Serenity-A2577 + ZynqMP
Mezzanine

OpenIPMC Ported to the ZynqMP R5 Cores

78

● FMC+ management module with ZynqUS+
device

● OpenIPMC ported to the R5 cores
● CentOS 7 based root filesystem + petalinux

kernel runs on the A53 cores
● Upstream OpenIPMC software in use via

submodule in the Zynq R5 firmware
framework.

● new PIM400 sensors working

Virtex
Ultrascale+

VU9P / VU13P
A2577

120 / 128 GTY4
RX/T

X

DAQ
4 @ 25 Gb/s

8/12
RX

8/12
TX

12
RX

12
TX

12
RX

12
TX

12
RX

12
TX

12
RX

12
TX

DET
36 LpGBT

TFP
20/24 @ 25 Gb/s

8/12
RX

8/12
TX

12
RX

12
TX

12
RX

12
TX

12
RX

12
TX

12
RX

12
TX

DET
36 LpGBT

TFP
20/24 @ 25 Gb/s

2 RX/TX

2 RX/TX
TCDS
C2C to ZynqMP

SAMTEC Firefly Optics

Board Management
Mezzanine

