
Automotive ECU Development
An insider’s look

Eugenio Grima22 October 2021

Greetings

● Who am I ?
● Why am I here ?
● My background
● My job

2

Automotive
- What is it ?
- Why so much hype?

ECU
- Development Process
- Engineering and ECU

Safety
- ISO 26262
- ASIL Assessment Process

ECU Software
- General Architecture
- Messages
- Development Process
- MISRA
- RTOS

Outline

3

Famous Fails
- Toyota unexpected acceleration
- Jeep remote hacking

Cybersecurity
- Basic concepts

Disclaimer

Due to NDAs I’ve signed with companies and car maker I’ve worked with, all
informations, block diagram and technical content present in this presentation
have been either found on the web or already published into magazines or
produced ad-hoc as academic example.

I cannot provide any details about technical solution adopted in commercial
design, nor “talk too much” about projects I’ve followed. I’m sorry.

Moreover, I don’t want to make any direct or indirect advertising to
software/hardware supplier, so I’ll try not to mention any of them voluntarily.

4

Automotive

● Electronic engineer’s paradise
● Lots of technology
● Wide area of study
● Entrustable safety devices
● Focus only on electronics and

software

5

Today’s cars have more than 20 embedded systems connected each other.

ECU: Electronic control unit. Embedded system that has input and outputs and achieve
some specific task (e.g. Engine Control, Infotainment, Safety functions, Telemetry,
Confort, etc.)

Automotive quality requirements are closer to military grade products than consumer.

Car are supposed last at least 10 years, so the design and manufacturing shall be good
enough to guarantee such durability (automotive grade design and component!)

Automotive

6

ECUs are target oriented embedded device that performs one (or few) specific task.

ECUs are connected using automotive bus:

➔ LIN : Single wire, Master-slave, low speed, low cost, non fault-tolerant
➔ CAN : Double wire, prioritized messages, medium/high speed, medium cost,

fault tolerant
➔ CAN-FD : Enhanced CAN, non fixed sized, higher speed, support for encryption
➔ Flexray : Multimedia oriented, higher speed
➔ Ethernet : Next generation

ECU (Electronic Control Unit)

7

ECUs connection can have a rather complex network topology, with gateways
interconnecting more networks.

ECU

8

ECU : Development Process

Mechanical decisions:

➔ Size
➔ Form factor
➔ External interfaces
➔ In-vehicle arrangement

Split of jobs:

➔ System engineering: defines the system requirements
➔ Hardware: designs hardware, based on system requirements
➔ Software engineering: defines software requirements, based on system requirements
➔ Software validation: defines the validation strategy, based on system requirements
➔ Safety system: defines safety requirements, based on system requirements
➔ System validation: defines electrical validation strategy

9

ECU : Inner view

Hereby you can see the block diagram of a very generic ECU.

According to its specific task, each block is implemented, but the general structure
is like this.

10

V-Model is the software oriented development process used in automotive,
given by the Automotive SPICE.

The left hand side is designers’ job.

The right hand side is testers’ job.

V-Model

Are we doing
the right
things?

Have we done
the things
rightly?

11

In chain, the following documents shall be
produced:

➔ SYRS, SRS, SHLD, SLLD
➔ SLLTP, SHLTP, SITP, SYTP

Requirements

Requirement is a singular documented physical or functional need that a particular
design, product or process aims to satisfy. (Wikipedia)

Atomic: One and only one complete feature per requirement

Verificable: The requirement can be verified

Example:

● LED1 shall blink (NOT OK: generic, not complete)
● LED1 shall be small (NOT OK: not verificable)
● If the user presses BTN1, LED1 shall blink at a frequency of 1Hz with PWM of 67%, else LED1 shall stay

OFF (NOT OK: more than one feature)
● If the user presses BTN1, LED1 shall blink at a frequency of 1Hz with PWM of 67% (OK!)

12

Safety related requirements

The Safety Engineer (or Safety Manager) is in charge to analyze all the
requirements and, if needed, add “safety” requirements to the design.

Such requirements might be added at any level of the design.

Example:

● System: The airbag shall not explode if a crash occurs at less than 30 km/h
● Hardware: The ECU shall contain two or more watchdogs
● Network: CAN message #123 shall contain redundant and opposite signals about

sensor X
● Software: State variable of FSM123 shall be represented with values with Hamming

distance greater than 3.

13

ISO 26262
ISO 26262 is an international standard for functional safety of electrical and/or electronic systems that are installed in serial
production road vehicles. It is composed by 12 parts and conceptually similar to DO-178 used in avionics.

Item
Specific system (or combination of systems) to which the ISO 26262 Safety Life Cycle is applied, that implements a function (or
part of a function) at the vehicle level.

Element
Either a system, a component (consisting of hardware parts and/or software units), a single hardware part or a single software
unit — effectively, anything in a system that can be distinctly identified and manipulated.

Fault
Abnormal condition that can cause an element or an item to fail.

Error
Discrepancy between a computed, observed or measured value or condition, and the true, specified or theoretically correct
value or condition.

Failure
Termination of an intended behaviour of an element or an item due to a fault manifestation.

Fault Tolerance
Ability to deliver a specified functionality in the presence of one or more specified faults.

Malfunctioning Behaviour
Failure or unintended behaviour of an item with respect to its design intent.

Hazard
Potential source of harm (physical injury or health damage) caused by malfunctioning behaviour of the item.

Functional Safety
Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of Electrical/Electronic systems.

w
ik

ip
ed

ia
.o

rg

14

ASIL Level Assessment Process

It is a process aimed to give a “score” (classify) to hazards:

➔ ASIL A: Lowest hazardous (few to none injuries).
➔ ASIL D: Highest hazard (serious injuries to death for driver, passenger,

external people)

The ASIL classification is the result of combination of different factors:

Severity (S):
S0 No Injuries
S1 Light to moderate injuries
S2 Severe to life-threatening (survival
probable) injuries
S3 Life-threatening (survival uncertain) to
fatal injuries

Exposure Classifications (E):
E0 Incredibly unlikely
E1 Very low probability (injury could happen
only in rare operating conditions)
E2 Low probability
E3 Medium probability
E4 High probability (injury could happen
under most operating conditions)

Controllability Classifications (C):
C0 Controllable in general
C1 Simply controllable
C2 Normally controllable (most drivers could
act to prevent injury)
C3 Difficult to control or uncontrollable

15

ASIL Level Assessment Process
Severity (S):

S0 No Injuries
S1 Light to moderate injuries
S2 Severe to life-threatening (survival
probable) injuries
S3 Life-threatening (survival uncertain) to
fatal injuries

Exposure Classifications (E):
E0 Incredibly unlikely
E1 Very low probability (injury could happen
only in rare operating conditions)
E2 Low probability
E3 Medium probability
E4 High probability (injury could happen
under most operating conditions)

Controllability Classifications (C):
C0 Controllable in general
C1 Simply controllable
C2 Normally controllable (most drivers could
act to prevent injury)
C3 Difficult to control or uncontrollable

QM: Quality Managed
16

ECU : General Software Architecture

In ECUs, it is very common that one or more microcontrollers/CPUs are present.

Automotive uC are slightly different from consumer models:

- Certified silicon for wider temperature range
- Deeper production tests
- Cybersecurity features (often given under NDA)

uC suppliers often provide (or suggest) certified low level driver and certified
development toolchain.

Certification is often the keyword for uC/toolchain/drivers adoption.

17

Software architecture is very important into automotive (and in general) software
development.

Good architecture, modularly designed, must be used as much as possible.

It helps into:

➔ Requirement traceability (often more important that good unit
implementation!)

➔ Software recycling (often more important that good unit implementation!)
➔ Software porting to different architectures
➔ Good Powerpoint slides (always more important that good unit

implementation!)

ECU : General Software Architecture

18

Each Tier 1 is somehow free to choose its own software architecture, unless strictly
required to use Autosar architecture.

Autosar is an “open and standardized software architecture for automotive ECU”
(Wikipedia).

It is a layered and modular software architecture that any developer - with the
right skill - can implement.

But in real cases, it is convenient (and sometimes imposed by car maker) to buy a
“ready to use” Autosar stack:

- Developed by authoritative software house
- Documentation and requirement tracking already performed by third part
- “Free” debug (free in terms of development time)

The price for an Autosar stack can be couple of hundreds of k€ (150-350 k€)

ECU : General Software Architecture

19

Autosar Architecture

20

In Vehicle Messaging

We’ve seen that there are several buses type and networks in a vehicle.

In-vehicle messages are always predetermined messages, in terms of size and
content.

Messages should me as much deterministic as possible. No usage of dynamic
objects!

Each message has its own unique ID, whose number is not random: in CAN lower
ID has higher priority (e.g. airbag messages are more important than CD player).

Messages are internally split into signals, which are groups of bits with a semantic
meaning.

Messages are described with standard format:

➔ LDF (Lin Descriptor File)
➔ DBC (DataBase CAN)

21

Messages running in vehicle can be divided into three semantic categories:

➔ Application messages:
● Messages that are used to archive the “usage” of the car.
● ECUs communicate each other to notify about signals value (e.g. sensors values, driving events, etc.).
● Usually, these kind of message are periodic (10ms - 5 seconds) and are used to replace “old fashion cable”

➔ Network messages:
● Messages that are used to drive the power status of the network(s) and the related ECUs.
● ECUs shall consume as less electric power as possible, specially when the car has the engine turned off.
● ECUs are supposed to drain <100uA in sleep (engine off).
● Network messages are designed to drive the ECUs in different power state.

➔ Diagnostic messages:
● Diagnostic messages are (should be) only present at service.
● Today’s main protocol is UDS (ISO 14229): several services are standardized and the technician can

perform diagnosis and tune the car via UDS.

In Vehicle Messaging

22

In Vehicle Messaging

23

In Vehicle Messaging

24

Software Development

ECU software development starts with the
decomposition of System Requirement into (several)
SHLD (Software High Level Design) requirements.

SHLD describes the architecture of the SW, in terms of
modules, hierarchy and interactions.

SHLD is exploded into SLLD (Software Low Level Design)
requirements.

25

SLLD requirements describe the behaviour of the modules, by giving also details
of implementations.

At the end - and only at the end - , coding starts :-)

Software Coding

Automotive software coding shall follow a (huge) set of rules: MISRA-C/C++.

Apart from automotive, MISRA rules are anyway best practices for programming.

MISRA-C have evolved during years with different releases.

Rules are divided between “Advisory”, “Required” and “Mandatory”, organized in
chapters and each rule is given with its own rationale and examples.

Code compliance to MISRA is performed by (expensively paid) tools.

Each rule could be occasionally violated with the right justification, if strictly
needed.

26

Software: RTOS
ECUs’ software is often based on RTOS, where RT stands REALLY for Real Time.

Real time means time determinism (NOT fast response!).

● Soft RT: Missing a deadline does not cause mission failure, but only a temporary degradation of performances.

E.g. in CD player, changing the track might occur - let’s say - 100 ms later.

● Hard RT: Missing a deadline causes mission failure, which might also be dangerous situation.

E.g. If the airbag explodes 100ms later than required, it is useless (or even harmful!)

Preemption is avoided if possible and task uses cooperative scheduling.

Time slots are designed according to time-requirements: I/O response time, messages timing.

Tasks’ time is pre-computed at design time to fit the assigned time slot, by choosing the longest computation path.

If the computation time does not fit the provided slot, algorithm is split into more time slots.

Determinism is in any case a must for the system. 27

Is safety and good design overrated?

In 2009-11 Toyota Prius suffered of “unattended acceleration” and some tens of people died
(brakes were not strong enough to stop the movement!)

NASA has analyzed the design and issues on
software and hardware have been found!

Software: several MISRA rules violation
including usage of recursion.

Hardware: only the “Monitor ASIC” receives the
Accelerator Pedal input, and, although the
pedal signal is redounded on two different
input, the ADC is unique for both inputs.
The Main CPU receives the VPA signal ONLY
from Monitor ASIC.

Our previous examples overcomes these flaws ;-)
28

Cybersecurity in Automotive
In 2015, a flaw in Jeep infotainment allowed remote attackers to move the steering
wheel, play with cluster and even disable breaks (while driving!).

Full Video at : https://www.youtube.com/watch?v=MK0SrxBC1xs
29

This episode led most of car makers to give higher importance to cybersecurity,
giving some specific requirements.

Secure Boot: Bootloader shall start only signed firmware

Secure Download: Bootloader shall not allow to install unsigned firmware

Signed Diagnostic Services: Car services shall have their own software keys

Message Signing: In vehicle messages shall be signed

Encrypted Messages: In vehicle messages shall be encrypted

Cybersecurity in Automotive

30

Thanks for your attention

Eugenio Grima
eugeniogrima@gmail.com

31

