

FPGA for the Acceleration of Machine Learning Algorithms

Romina Molina

Multidisciplinary Laboratory

Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry- smr3557 -

Outline

Outline

- Introduction
- Machine Learning (ML)
- SoC-based FPGA
- Acceleration of ML Inference
- High-Level Synthesis for ML (hls4ml)
- Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Introduction

Introduction

Machine Learning and System On Chip

"Learning can be defined as the process of estimating associations between inputs, outputs, and parameters of a system using a limited number of observations"

(Cherkassky et al. 2007)

Classification ML-based

Basic Classification

Supervised learning

Unsupervised learning

Unsupervised learning

Artificial Neural Network

An Artificial Neural Network (ANN) is composed of neuron (or node) interconnections arranged in different layers.

Multi-Layer Perceptron (MLP) architecture

Convolutional Neural Networks (CNN) architecture

- In a classifier, an input is mapped into a specific class.
- Supervised training step to recognize patterns: the network compares its actual output with the desired output. The difference between these two values is adjusted with backpropagation.

K-Fold Cross-Validation

SoC-based FPGA

SoC-based FPGA

High level comparison of Zynq-7000 SoC and Zynq UltraScale+ MPSoC

SoC-based FPGA

Multidisciplinary Laboratory

Acceleration of ML Inference

Considerations to map inference into FPGAs

Considerations to map inference into FPGAs

- Low-precision arithmetic to reduce power consumption and increase throughput.
- Reduce memory footprint
 - NN model can be deployed into on-chip memory, avoiding DDR access and bottlenecks.
- Model compression techniques [1]

Considerations to map inference into FPGAs

- Model Compression
 - Quantization (Q) and pruning (P) (train from scratch and pre-trained model)
 - Q: Reduce number of bits to represent weights and bias
 - P: Remove connections and/or neurons
 - Low-rank factorization (train from scratch and pre-trained model)
 - Compact convolutional filters (train from scratch)
 - Knowledge distillation (train from scratch)

Considerations to map inference into FPGAs

- Model Compression: Pruning

Considerations to map inference into FPGAs

- Model Compression: Knowledge Distillation

High-Level Synthesis (Vivado HLS / Vitis HLS)

Hardware design

- Vivado HLS / Vitis HLS:
 - It provides the facility to create RTL from a high level of abstraction.
 - It allows the optimization of the input code using directives to:
 - Reduce latency
 - Improve performance and throughput
 - Reduce resource utilization

Without directives, Vivado HLS /Vitis HLS will look minimize latency and improve concurrency

Hardware design - Directives

- **Minimize latency:** UNROLL, LOOP_FLATTEN, LOOP_MERGE.
- **Minimize throughput:** DATAFLOW, PIPELINE.
- Improve bottleneck: RESOURCE, ARRAY_PARTITION, ARRAY_RESHAPE.

#pragma HLS UNROLL
#pragma HLS PIPELINE
#pragma HLS ARRAY_PARTITION variable=layer3_out complete dim=0

Hardware design - Directives

Loop Example

Hardware design - Directives

Loop + Pipeline

Hardware design - Directives

Loop + Unroll

OP_RD	OP_CMP	OP_WR			

OP WR

Initiation interval =1 clock cycle

Latency = 3 clock cycles

Loop latency =3 clock cycles

Hardware design - Directives

Loop + Dataflow

High-Level Synthesis IP Core

- Package for ML inference on SoC-FPGAs using HLS. (Duarte et. al)
- "Fast inference of deep neural networks (DNN) in FPGAs for particle physics" Duarte et al.
 [2]
- GitHub: https://github.com/fastmachinelearning/hls4ml-tutorial
- https://fastmachinelearning.org/hls4ml/

High-Level Synthesis for ML (hls4ml) Design flow

Features:

- HLS to create IP Core.
- Keras, TensorFlow, Pytorch.
- On-chip data structures.
- Quantization through ap_fixed data type in HLS.
 - typedef ap_ufixed<10,8> din (A 10-bit input: 8-bit integer value with 2 decimal places)
- Trade-off between resource utilization and latency/throughput.

Features:

- Pipelining to speed up the process by accepting new inputs after an initiation interval.
- Size/Compression
- Precision
- Dataflow/Resource Reuse
- Quantization Aware Training: Qkeras [3]

Features - Profiling

- Profiling to adjust precision
- Method: hls4ml.model.profiling.numerical

How we start with the tool?

- First, we have to download packages and dependencies. Then, we need to decide between:
 - Using command line
 - Using Jupyter Notebook

How we start with the tool? - Command line

- Configuration file (.yml).
- In this example, the file has the name model-config.yml
 - Files required: .json y .h5

particles_keras_config.yml

File json
KerasJson: ../model/model_architecture.json

File h5
KerasH5: ../model/model_weights.h5

#InputData: ../model/modelInput.dat
#OutputPredictions: ../modelPredictions.dat

OutputDir: particleHW ProjectName: particlesIdentification XilinxPart: xc7z020-clg484-1 ClockPeriod: 10 Backend: Vivado

IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,8>
 ReuseFactor: 1

How we start with the tool? - Command line

- Commands for terminal execution
 - hls4ml convert -c model-config.yml
 - hls4ml build -p ProjectName -a
 - vivado_hls -f ProjectName.tcl "csim=1 synth=1 cosim=0 export=0"
- Following the information in the previous image, **ProjectName** was replaced by **particlesIdentification**:
 - hls4ml convert -c model-config.yml
 - hls4ml build -p particlesIdentification -a
 - vivado_hls -f particlesIdentification.tcl "csim=1 synth=1 cosim=0 export=0"

How we start with the tool? - Jupyter Notebook

<pre>1 from tensorflow.kera 2 from sklearn.metrics 3 model = load_model(4 model.summary()</pre>	as.models im s import acco 'model_keras	port load_mod uracy_score _MLP.h5')	el
Model: "sequential"			
Layer (type)	Output	Shape	Param #
fc1 (Dense)	(None,	60)	3900
relu1 (Activation)	(None,	60)	0
fc0 (Dense)	(None,	40)	2440
relu0 (Activation)	(None,	40)	0
fc2 (Dense)	(None,	30)	1230
relu2 (Activation)	(None,	30)	Θ
fol (Dence)	(Nana	10)	310

How we start with the tool? - Jupyter Notebook

How we start with the tool? - Jupyter Notebook

Network description generated inside HLS project

3	
4	layer3 t layer3 out[N LAYER 3];
5	<pre>#pragma HLS ARRAY PARTITION variable=layer3 out complete dim=0</pre>
6	<pre>nnet::dense latency<input2 config3="" layer3="" t,="">(input1, layer3 out, w3, b3);</input2></pre>
7	
8	layer5 t layer5 out[N LAYER 3];
9	<pre>#pragma HLS ARRAY PARTITION variable=layer5 out complete dim=0</pre>
0	<pre>nnet::relu<layer3 config5="" layer5="" relu="" t,="">(layer3 out, layer5 out);</layer3></pre>
1	
2	layer6_t layer6_out[N_LAYER_6];
3	<pre>#pragma HLS ARRAY_PARTITION variable=layer6_out complete dim=0</pre>
4	<pre>nnet::dense_latency<layer5_t, config6="" layer6_t,="">(layer5_out, layer6_out, w6, b6);</layer5_t,></pre>
6	layer8 t layer8 out[N LAYER 6];
7	<pre>#pragma HLS ARRAY PARTITION variable=layer8 out complete dim=0</pre>
8	<pre>nnet::relu<layer6 config8="" layer8="" relu="" t,="">(layer6 out, layer8 out);</layer6></pre>
9	
0	layer9 t layer9 out[N LAYER 9];
1	<pre>#pragma HLS ARRAY PARTITION variable=layer9_out complete dim=0</pre>
2	nnet::dense_latency <layer8_t, config9="" layer9_t,="">(layer8_out, layer9_out, w9, b9);</layer8_t,>
3	
4	layer11_t layer11_out[N_LAYER_9];
5	<pre>#pragma HLS ARRAY_PARTITION variable=layer11_out complete dim=0</pre>
6	<pre>nnet::relu<layer9_t, layer11_t,="" relu_config11="">(layer9_out, layer11_out);</layer9_t,></pre>
7	
8	layer12_t layer12_out[N_LAYER_12];
9	<pre>#pragma HLS ARRAY_PARTITION variable=layer12_out complete dim=0</pre>
Θ	<pre>nnet::dense_latency<layer11_t, contig12="" layer12_t,="">(layer11_out, layer12_out, w12, b12);</layer11_t,></pre>
1	
2	layer14_t layer14_out[N_LAYER_12];
3	#pragma HLS ARRAY PARITION variable=layer14 out complete dim=0
4	nnet::relu <layer12_t, layer14_t,="" relu_contig14="">(layer12_out, layer14_out);</layer12_t,>
5	
0	tayeris t tayeris out (N LAYER IS);
/	#pragma HLS ARRAY PARTITION Variable=Layeris out complete dim=0
ŏ	<pre>nmet::dense_tatency<tayer14_t, config15="" tayer15_t,="">(tayer14_out, tayer15_out, W15, D15);</tayer14_t,></pre>
9	mature from a pueris + result + refrance configing (loweris out loweris out)
1	<pre>nmet::soltmax<tayeris_t, result_t,="" soltmax_coniig1=""></tayeris_t,>(tayeris_out, tayeri/_out);</pre>
1	

10

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors Experimental Setup

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors Experimental Setup

- Water Cherenkov detector (WCD) at the Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala (ECFM-USAC).
- Feature extraction in the incoming signal to perform signal classification.
- Signal: 30 samples

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors Different types of signals - Class 0 and 1

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors Different types of signals - Class 2 and 3

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

MLP architecture through an ensemble of compression techniques: Distillation, Quantization and Pruning

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Confusion Matrix before (left) and after (right) compression Total params reduction: From 31,514 to 984 Overall accuracy: From 99.4% to 97%

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Define the SoC architecture

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

HLS reports - Clock @5ns

	Latency [clk]*	LUT	FF	BRAM	DSP					
PYNQ										
Sol_1_rf1	39	69%	75%	0%	369%					
Sol_2_rf8	55	72%	24%	0%	50%					
KRIA										
Sol_3_rf1	20	49%	12%	0%	69%					
ZCU102										
Sol_4_rf1	20	20%	5%	0%	34%					

*Latency only for inference

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Hardware created with Vivado IP Integrator

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Final resource usage reported by Vivado

	LUT	FF	BRAM	DSP
PYNQ	44.6%	23%	34%	50%
KRIA	30%	7.8%	33%	69%
ZCU102	7.8%	2.8%	9.9%	27%

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors

Family / Part: Zynq-7000 / xc7z020clg400-1

Clock cycles for inference: 79 (Estimated by HLS: 55)

Case of study: Pulse Shape Discrimination for Water Cherenkov Detectors Family / Part: zynquplus / xczu9eg-ffvb1156-2-e

Clock cycles for inference: 21 (Estimated by HLS: 20)

ILA Status: Waiting For Trigger (100 out of 327)	68 samples)						129		150					
Name	Value	⁷⁰	l ⁸⁰	 100	. 110	120	130	. ¹⁴⁰	150	¹⁶⁰	¹⁷⁰	. ¹⁸⁰	. ¹⁹⁰	200
✓	2				Active									
∨ 🛋 slot_0 : axi_dma_0S_MM2S : T Channe	<u>v.</u>				Stream Beat									
🖁 slot_0 : axi_dmaIS_MM2S : TVALID	0													
谒 slot_0 : axi_dmaIS_MM2S : TREAD	0													
🔓 slot_0 : axi_dmaAXIS_MM2S : TLAS	0													
					V									
					N									
> 😽 slot_0 : axi_dmaXIS_MM2S : TDATA	00000d6				(†		1							
							1							
	2		0											
SIDLO : axi_dmaxis_MM25 : TREEP			0	 										
slot_1 : Inference_Hwputvalue : Interrace	Active							AC.						
slot_1 : inferencetvalue : i Channel	Last Stream							5						
6 slot_1 : inferencputvalue : IVALID	1													
Slot_1 : InferencputValue : TREAD	1													
Slot_1 : InferencetputValue : TLAS	1			 _		34				242				
Islot_1 : inferenceoutputValue : Tl	00						00		0.0					
slot_1 : inferencetputValue : TDA1	4			0					XX		Ŭ			
> 😼 slot_1 : inferencetputValue : TKEE	f						f.							
> 😽 slot_1 : inferencetputValue : TUSE	0						G							
							1							

References

[1] Duarte, J.; Han, S.; Harris, P.; Jindariani, S.; Kreinar, E.; Kreis, B.; Ngadiuba, J.; Pierini, M.; Rivera, R.; Tran, N.; et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 2018, 13, P07027, doi:10.1088/1748-0221/13/07/p07027.

[2] Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A Survey of Model Compression and Acceleration for Deep Neural Networks. arXiv 2017, arXiv:1710.09282

[3] Coelho, J.; Kuusela, A.; Zhuang, H.; Aarrestad, T.; Loncar, V.; Ngadiuba, J.; Pierini, M.; Summers, S. Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep Quantization with QKeras and hls4ml. arXiv 2020, arXiv:2006.10159.

[4] Garcia, L.G.; Molina, R.S.; Crespo, M.L.; Carrato, S.; Ramponi, G.; Cicuttin, A.; Morales, I.R.; Perez, H. Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC. Electronics 2021, 10, 224. https://doi.org/10.3390/electronics10030224

[5] Vivado Design Suite User Guide - High-Level Synthesis - UG902 (v2019.1) July 12, 2019

Joint ICTP, SAIFR and UNESP School on Systems-on-Chip, Embedded Microcontrollers and their Applications in Research and Industry- smr3557 -