
FOSS FOR FPGA
DEVELOPMENT

Rodrigo A. Melo, Unai Martinez-Corral

github.com/rodrigomelo9/FOSS-for-FPGAs
rodrigomelo9.github.io/FOSS-for-FPGAs

Creative Commons Attribution 4.0 International

https://github.com/rodrigomelo9/FOSS-for-FPGAs
https://rodrigomelo9.github.io/FOSS-for-FPGAs
https://creativecommons.org/licenses/by/4.0/

OUTLINE
Introduction
Simulation
Verification
Implementation
Development
Hardware
Final remarks

INTRODUCTION
⌂

WHAT IS FOSS?
Free/Libre and Open Source Software
Users have the freedom to run, copy, distribute,
study, change and improve the software

WHY USE FOSS?
Freedom matters!
Flexibility and Independence
Knowledge sharing
Innovation (*)
Privacy and security
And

(*) !

several others

Termux (Android) packages for EDA

https://www.softwarefreedomday.org/about/why-foss
https://github.com/hdl/Termux-packages

SOME PREVIOUS CONSIDERATIONS
Most projects are command-line based (common
on Linux/Unix, or you can use WSL2)
Git is the prefered Version Control System, and most
projects are in GitHub (some in GitLab)
Containers (Docker, Podman) are commonly
provided/employed (OS-level virtualization)
Continuous Integration is almost mandatory
Several projects employ and/or are based on
make/Makefiles (build system)
Python is frequently involved

COMMAND-LINE

Aka shell, terminal, console, bash...
Most projects provide a CLI.
Common on Linux/Unix distributions.
Or use Windows Subsytem for Linux (WSL).

GIT

A distributed version control system.
Created in 2005 by Linus Torvalds, for the
development of the Linux kernel.
De facto standard for FOSS projects.
Allows dealing with a software repository and
managing versions in multi-user workflows.

DOCKER

OS-level virtualization to deliver software in packages
called containers.

Containers are isolated one from another and bundle
their own software, libraries and configuration files.

CONTINUOUS INTEGRATION/DELIVERY/DEPLOYMENT (CI/CD)

Automatically executing actions based on repository
events (push, merge, cron, etc).

Integration: run linters, unit and/or integration
tests, Hardware-in-the loop simulation.
Delivery: build binaries, documentation, packages,
etc.
Deployment: build and install in production.

MAKE

A build automation tool: a Makefile contains a set
of directives (targets, dependencies and rules)
which are used by make for generating a
target/goal.
It works upon the principle that files only need to
be recreated if their dependencies are newer than
the file being re/created.
There are newer alternatives (such as CMake,
Scons, Ninja, etc.), but make is the most used
automation tool in the FPGA ecosystem.

PYTHON

An interpreted, high-level and general-purpose
programming language.
One of the most used and fastest growing
languages in all fields, especially in scientific
computing and Machine/Deep Learning.
Many of its libraries are written in C/C++
(performance).
Most FOSS FPGA tools are written in Python, or
C/C++ with a Python binding/wrapper.
There are several HDL languages based on Python.
It's also being used as a verification language.

SIMULATION
⌂

VHDL SIMULATOR

Analyzer, compiler, simulator and (experimental)
synthesizer for VHDL

Full support for IEEE 1076 standard 1987, 1993,
2002 and partial for 2008.
It can generate executable binary models of the
VHDL design, for (co-)simulation.
It can dump waveforms to multiple formats: VCD,
FST or GHW (recommended for VHDL).

VERILOG SIMULATORS

IEEE-1364 simulator

It generates an intermediate file format wich is
then interpreted

Verilog/SystemVerilog simulator

Compiles into multithreaded C++

Performs lint code-quality checks

WAVEFORM VIEWER

A fully featured wave viewer which reads

LXT, LXT2, VZT, FST, and GHW files as

well as standard Verilog VCD/EVCD

VERIFICATION
⌂

HDL BASED FRAMEWORKS/METHODOLOGIES
OSVVM: Open Source VHDL Verification
Methodology
UVVM: Universal VHDL Verification Methodology
SVUnit: unit testing framework for
Verilog/SystemVerilog

PYTHON AIDED FRAMEWORK

VUnit: unit testing framework for
VHDL/SystemVerilog.
A Python build and simulator manager together
with VHDL libraries.
Supported simulators: GHDL, Aldec Riviera-PRO,
Aldec Active-HDL, Mentor Questa, Mentor
ModelSim, Cadence Incisive, Cadence Xcelium.

PYTHON BASED TESTBENCHES

cocotb: Coroutine Co-simulation Test Bench.
A coroutine based cosimulation library for writing
VHDL and Verilog testbenches in Python, through
VPI/VHPI interfaces.
Supported simulators: GHDL, iverilog, verilator,
Synopsys VCS, Aldec Riviera-PRO, Aldec Active-
HDL, Mentor Questa, Mentor ModelSim, Cadence
Incisive, Cadence Xcelium, Tachyon DA CVC.

HOW DOES COCOTB WORK?

Source: https://docs.cocotb.org/en/stable

https://docs.cocotb.org/en/stable

MORE INFO

Source:

Read also:

GitHub Facts About the HDL Industry

Open Source Verification Bundle (OSVB)

https://larsasplund.github.io/github-facts
https://umarcor.github.io/osvb

FORMAL VERIFICATION
Using formal mathematic methods (assumptions and

assertions) for proving the correctness of a design.

SymbiYosys (sby): front-end driver program for
Yosys-based formal verification flows.
Supports Verilog (free), VHDL and SystemVerilog
(through verific with a license).

(or try VHDL support trough ghdl-yosys-plugin)

IMPLEMENTATION
⌂

OVERVIEW

Source: hdl/awesome#98

https://github.com/hdl/awesome/issues/98

LANGUAGES

(n)Migen, MyHDL

SpinalHDL, Chisel

Clash, Bluespec

Others Silice, Synthesijer, and more

SYNTHESIS: YOSYS
A FOSS framework for RTL synthesis tools.
It currently has extensive Verilog-2005 support
and provides a basic set of synthesis algorithms for
various application domains.
It was the first usable FOSS synthesizer targeting
commercially available devices.
Supports devices from Lattice (iCE40 and ECP5),
Xilinx (Series 7, Ultrascale, and others), Gowin,
Achronix, Intel, Microsemi, etc.

SYNTHESIS: GHDL

Analyzer, compiler, simulator and (experimental)
synthesizer for VHDL

Generates a generic (technology independent)
synthesized VHDL (and recently, also Verilog)

ghdl-yosys-plugin: VHDL synthesis, based on
GHDL and Yosys.

PLACE & ROUTE

NextPnR (Arachne-pnr)
VPR, part of Verilog-to-Routing (VTR)

BITSTREAM GENERATION

PROGRAMMING
OpenOCD: Open On-Chip Debugging, In-System
Programming and Boundary-Scan Testing
UrJTAG: universal JTAG library, server and tools
iceprog: programmer of the IceStorm project
(FTDI-based programmers)
ecpprog: programmer for the Lattice ECP5 series
(FTDI-based programmers)
openFPGALoader: universal utility for
programming FPGA
dfu-util: Device Firmware Upgrade Utilities (USB)

DEVELOPMENT
⌂

PROJECT MANAGERS
edalize: a Python Library for interacting with EDA
tools (was part of FuseSoC, now its build backend).
HDLmake: tool for generating multi-purpose
Makefiles for FPGA projects (CERN)
PyFPGA: A Python package to use FPGA
development tools programmatically

Synthesis

Implementation

Bitstream

Programming

ISE, Vivado

Quartus

Libero-SoC

FOSS

Helpers

hdl2bit

prj2bit

bitprog

LIBRARIES, COLLECTIONS, IP CORES
PoC (Pile of Cores Library): a library of free, open-
source and platform independent IP cores.
FuseSoC: package manager and build abstraction
tool (edalize) for FPGA/ASIC development.
Litex: a Migen/MiSoC based SoC builder to easily
create Cores/SoCs
OpenCores and LibreCores: collections of IPs.
Several FOSS projects at GitHub and GitLab.

SOFTCORES: LEGACY
Leon 3 (Gaisler)

32-bit VHDL processor compliant with the SPARC
V8 architecture
GNU GPL license for research and education
Part of the GRLIB

OpenRISC

Specification OpenRISC 1000 (32/64 bits)
The flagship implementation, the OR1200, is
written in Verilog
Part of OpenRISC Reference Platform SoC

SOFTCORES: RISC V

TEROSHDL (VSCODE PLUGIN)

Suports GHDL, Yosys, VUnit, GTKwave, Verilator,
cocotb, edalize, icestorm, Trellis, Symbiflow...

ICESTUDIO

 (builds)

FPGAwars/icestudio

juanmard/icestudio nightly

https://github.com/FPGAwars/icestudio
https://github.com/juanmard/icestudio
https://github.com/juanmard/icestudio/releases/tag/nightly

SYSTEM VERILOG SUPPORT
UHDM: Universal Hardware Data Model
Surelog: SystemVerilog 2017 Pre-processor,
Parser, Elaborator, UHDM Compiler (work in
progress to integrate with Yosys and Verilator)
Verible: SystemVerilog 2017 parser for developer
tools (linter, formatter, indexer, lexical diff, others)

HARDWARE
⌂

KICAD

SOME ICE40 BASED BOARDS

Fomu
 iCEBreaker
 iCESugar

TinyFPGA BX
 EDU CIAA FPGA

SOME ECP5 BASED BOARDS

ULX3S
 OrangeCrab
 TinyFPGA EX

SOME EOS S3 BASED BOARDS

Qomu
 Quickfeather

HDL/CONSTRAINTS
: constraint files for Hardware

Description Language (HDL) designs targeting
FPGA boards.

: list of FPGA
developments boards.

hdl/constraints

hdl.github.io/awesome/boards

https://github.com/hdl/constraints
https://hdl.github.io/awesome/boards/

FINAL REMARKS
⌂

HOW TO GET THE TOOLS
From the system package manager (not always an
option and generally outdated)
From the project repository (some times could be
complex or tedious)
Get a ready to use container from

(install)
Use a package manager for Windows () and
install from

hdl.github.io/containers Docker
MSYS2

hdl.github.io/MINGW-packages

https://hdl.github.io/containers/
https://github.com/rodrigomelo9/FOSS-for-FPGAs#docker-installation
https://www.msys2.org/
https://hdl.github.io/MINGW-packages/

HOW TO BE UPDATED: PROJECTS - ORGANIZATIONS

HOW TO BE UPDATED: PEOPLE

Tim 'mithro' Ansell

Unai Martinez-Corral

mithro

mithro

umarcor

unaimarcor

https://github.com/mithro
https://twitter.com/mithro
https://github.com/umarcor
https://twitter.com/unaimarcor

HOW TO BE UPDATED: HDL/AWESOME

hdl.github.io/awesome

https://hdl.github.io/awesome

WHY TO PRODUCE FOSS?
Your reasons here.

QUESTIONS?
rodrigomelo9

rodrigomelo9ok

rodrigoalejandromelo

https://github.com/rodrigomelo9
https://twitter.com/rodrigomelo9ok
https://www.linkedin.com/in/rodrigoalejandromelo/

