# QFT in AdS from Hamiltonian Truncation

Matthijs Hogervorst Fields and Strings Laboratory, EPFL

High Energy, Cosmology and Astroparticle Physics seminar @ ICTP Trieste May 18, 2021

based on 2104.10689 with Marco Meineri (CERN), João Penedones & Kamran Salehi Vaziri (both EPFL)

## QFT in AdS - why?

- Anti-de Sitter space is a fundamental spacetime in study of quantum gravity (strings/holography/SUGRA/...).
- In full-fledged quantum gravity on AdS<sub>d+1</sub> there's matter + dynamical gravity (fluctuating g<sub>μν</sub>) in the bulk.
  Exactly equivalent to local (including T<sub>μν</sub>) CFT living on the boundary of spacetime.
- Simple version: put matter in the bulk, but freeze  $g_{\mu\nu}$  to be empty AdS – no backreaction. Still maps to a CFT on the boundary, but without  $T_{\mu\nu}$ .
- ➤ This turns spacetime into a infinite box invariant under SO(d,2) with a finite curvature radius R<sub>AdS</sub>. Should be "large" compared to whatever you want to study.

# QFT in AdS (2)

► Keeping everything else fixed,  $R \rightarrow \infty$  is the flat-space limit of AdS physics, curvature effects unimportant (but boundary is always there!).

When  $R \rightarrow 0$  curvature dominates everything else (correlation length of system  $\gg$  size of the universe).

- ► If QFT is controlled by relevant coupling  $\lambda$  of mass dimension  $[\lambda] = y$ , then physics depends on dim-less and tuneable coupling  $\overline{\lambda} = \lambda R^{y}$ . Same for several couplings  $\overline{\lambda}_{1}, \overline{\lambda}_{2}, ...$
- ► Can think of boundary CFT as one/several-parameter family of consistent theories parametrized by the  $\{\bar{\lambda}_{\alpha}\}$ .
- > Natural observable: spectrum = set of scaling dimensions  $\Delta_i$  of the boundary CFT,  $\Delta_i = f_i(\bar{\lambda}_{\alpha})$ . At large radius, they will scale as  $\Delta_i \propto R$ .

### Current toolkit

- ► AdS perturbation theory is well-developed ("Witten diagrams")
- > Exact solutions: integrable theories, Lagrangian theories with  $N_f \rightarrow \infty$  flavors [Carmi-di Pietro-Komatsu 2018]
- Bootstrap methods: study boundary CFT via numerical bootstrap and deduce information about bulk physics [Paulos et al 2016]
- Latticize bulk QFT. Very non-trivial compared to R<sup>4</sup>!
  So far mostly construction of massive scalar in AdS<sub>2</sub>.
  Work by Boston/Brown and Syracuse groups e.g. 1912.07606
- > ...? Other nonperturbative methods undeveloped.

# Quantizing AdS

Will work in Hamiltonian picture; most convenient are global coordinates, where AdS is a foliation of solid disks (or closed intervals, in 1+1 dims):

$$ds^{2} = \left(\frac{R}{\cos r}\right)^{2} \left[d\tau^{2} + dr^{2}\right]$$

with boundary at  $r = \pm \pi/2$ .

Energies are conserved. Hamiltonian  $H = -\partial/\partial \tau$  is dilatation operator of the boundary CFT.

Isometry group is  $SO(2,1) = SL(2,\mathbb{R})$ . Beyond H, other two symmetries P, Kmix  $\tau$  and r.



# Truncation methodology: Rayleigh-Ritz for QFT

- ► Idea will be to split full Hamiltonian into a solvable (e.g. Gaussian) and a non-solvable part,  $H = H_0 + \lambda V$ . (Details to follow.)
- ► There's a by now well-tested recipe to compute QFT spectra:
  - 1. Fix cutoff  $\Lambda$  and find all states  $|i\rangle$  with free energy  $e_i \leq \Lambda$ .
  - 2. Diagonalize  $H(\lambda)$  in finite subspace of these low-energy states, yielding truncated energies  $E_i(\lambda, \Lambda)$ .
  - 3. Take  $\lim_{\Lambda \to \infty} E_i(\lambda, \Lambda)$  to obtain the true energies  $E_i(\lambda)$  of the interacting theory.
- Known in general as Hamiltonian truncation. Early variant described by Yurov & Al. Zamolodchikov in 1989, many developments since 2014. Common scheme known as Truncated Conformal Space Approach = TCSA.
- ► Hard cutoff breaks SO(2,1). In the continuum limit  $\Lambda \to \infty$  the full symmetry is supposed to be restored. Not obvious, needs to be checked.

### Example: scalar field

► A massive particle in AdS corresponds to a boundary operator of

dimension 
$$\Delta = \frac{1}{2} + \sqrt{\frac{1}{4} + m^2 R^2}$$

Field  $\phi(\tau, r)$  admits a mode decomposition

$$\phi(\tau, r) = \sum_{n=0}^{\infty} a_n e^{-(\Delta + n)\tau} f_n(r) + \text{h.c.}$$
  
ee Hamiltonian is  $H_0 = \sum_{n=0}^{\infty} (\Delta + n) a^{\dagger} a$ 

and the free Hamiltonian is  $H_0 = \sum_{n=0}^{\infty} (\Delta + n) a_n^{\dagger} a_n$ .

Fock space of states  $\prod_{i} a_{n_i}^{\dagger} | \Omega \rangle$ .

Interactions are of the form  $\lambda V = \lambda \int_{-\pi/2}^{\pi/2} \frac{dr}{(\cos r)^2} \mathcal{V}(\tau = 0, r)$ 

with e.g.  $\mathscr{V} = \phi^4$ . Integral runs over  $\tau = 0$  timeslice. Compute using CCR.

#### Expectations

► Regardless of what one puts in, the spectrum should fall into multiplets of SO(2,1): a "primary" state with energy  $E_i(\lambda)$  and "descendants" with energies  $E_i(\lambda) + 1$ ,  $E_i(\lambda) + 2$ , etc.

- > The hard cutoff breaks spacetime symmetries, so instead probably  $E_i E_i \approx$  integer due to truncation error.
- ► Dim-less coupling  $\overline{\lambda} = \lambda R^{y}$  can't be taken to be arbitrarily big due to cutoff effects.



### A major issue involving UV divergences...

- ► Ground state energy  $E_{Vac}(\lambda, \Lambda)$  diverges (linearly) as  $\Lambda \to \infty$ . Happens for any QFT in AdS (proof: representation theory or spacetime behavior).
- ► ... but confusingly, energy gaps don't seem to have a finite continuum limit either:  $E_i(\lambda, \Lambda) E_{Vac}(\lambda, \Lambda)$  oscillates as  $\Lambda \to \infty$ . cf. blue lines
- Does this means that Hamiltonian truncation fails to construct a meaningful QFT in AdS?





# ...which is perhaps not that hard to solve.

Vacuum bubbles

In covariant perturbation theory, we know very well how to compute energies: simply subtract vacuum bubbles, just like in flat space.

Free energy has to diverge, due to covariance + infinite volume of AdS. Meaning: free energy/Casimir energy just not a good observable.

(If there are intrinsic UV divergences like in flat space, need to treat those separately.)

# Resolving the puzzle (2)

Anomalous dimension from spacetime, e.g. at 2nd order in PT:  $c^{\infty}$ 

$$\delta E_i^{(2)} = -\int_0^{} d\tau \left[ g_i(\tau) - g_{\text{Vac}}(\tau) \right], \quad g_i(\tau) = \langle i | V(\tau) V(0) | i \rangle_{\text{conn}}$$
  
where  $V(\tau) = e^{H_0 \tau} V(0) e^{-H_0 \tau}$ .

- ► Using Laplace transforms  $g_{i}(\tau) = \int_{\mathbb{R}} d\alpha \, \rho_{i}(\alpha) e^{-(\alpha - e_{i})\tau}, \quad g_{\text{Vac}}(\tau) = \int_{\mathbb{R}} d\alpha \, \rho_{\text{Vac}}(\alpha) e^{-\alpha\tau}$ this is instead  $\delta E_{i}^{(2)} = -\int_{\mathbb{R}} \frac{d\alpha}{\alpha - e_{i}} \left[ \rho_{i}(\alpha) - \rho_{\text{Vac}}(\alpha - e_{i}) \right].$
- Suggest that correct energies are obtained from following rule:

$$E_i^{\mathsf{phys}}(\lambda) \equiv \lim_{\Lambda \to \infty} E_i(\lambda, \Lambda) - E_{\mathsf{vac}}(\lambda, \Lambda - e_i)$$

Need to put this prescription to the test.

# **Resolving the puzzle (3)**

- Had to extend previous argument to all orders in perturbation theory. Logic always the same, and uses relation perturbed energies = integrated spectral densities of connected correlators in AdS.
- ► Why did this shift  $E_{Vac}(\Lambda) \rightarrow E_{Vac}(\Lambda e_i)$  never show up before? Simply because here  $E_{Vac}(\Lambda) \sim \Lambda$  so very UV-sensitive. In UV-finite theories spectral densities  $\rho_i(\alpha_1, \alpha_2, ...)$  decrease such that shift is immaterial:  $E_{Vac}(\Lambda) - E_{Vac}(\Lambda - e_i) \approx e_i \frac{\partial}{\partial \Lambda} E_{Vac}(\Lambda) \longrightarrow 0$
- ► Can also derive prescription without appealing to covariant "wisdom". Introduce IR regulator  $|r| \le \pi/2 - \epsilon$  which makes theory manifestly finite. Then find unique way that yields good limit  $\epsilon \to 0$ .
- ► Recently [Elias-Miró & Hardy 2003.08405] found similar issue for specific model,  $\phi^4$  theory on  $\mathbb{R} \times \mathbb{T}^2$ . There resolved by adding specific counterterm to H. Is this the same prescription, in a very different-looking form?

#### First check: boson + $m^2 \phi^2$ perturbation

 $\Delta = 1.62$ 



### First check: boson + $m^2\phi^2$ perturbation (2)

- ► Numerical diagonalization in Mathematica.
- Truncation errors can be understood analytically, by looking at spacetime diagrams:

where  $c_i$  is a (computable) coefficient and  $\Delta_*$  the dimension of the first boundary state turned on by perturbation V.

truncation error of  $E_i \approx \frac{c_i}{\Lambda \Delta_* - 1}$ 

- $\blacktriangleright$  Use this to extrapolate to  $\Lambda \rightarrow \infty$  albeit with error bars.
- ► SO(2,1) seems to be recovered:



# $\phi^4$ theory: what to expect?

>  $m^2 \phi^2 + \lambda \phi^4$  theory in flat space in d = 2,3 has two phases, depending on the ratio of couplings  $\lambda/(m^2)^{\frac{1}{2}(4-d)}$ :

 $\mathbb{Z}_2$ -preserving with  $\langle \phi \rangle = 0$  vs.  $\mathbb{Z}_2$ -broken with  $\langle \phi \rangle \neq 0$ . 2<sup>nd</sup> order transition = Ising CFT in the middle. Studied both nonperturbatively and by resumming PT.

- Pheno of spontaneous symmetry breaking different in AdS<sub>d+1</sub> vs flat space. Semiclassics:
  - > Flat space: end up in global minimum of potential  $V(\phi)$ , hence 2<sup>nd</sup> order.
  - AdS: can stay stuck in false vacuum due to curvature/boundary effects. Only certain to decay when  $V''(0) < -\frac{1}{4}d^2$  (cf. BF bound). Favors 1<sup>st</sup>-order phase transitions.
- ► Interesting limit is  $\lambda R^2 \to \infty$  and  $m^2 R^2 \to \infty$  with  $\lambda/m^2$  fixed. Strong coupling limit! Can try to attack using HT...



 $\phi^4$  interaction - results



### **Playing with Virasoro CFTs**

► Can play the same game by deforming a CFT in AdS<sub>2</sub>:

$$S = S_{\rm CFT} + \lambda \int_{\rm AdS} \sqrt{g} d^2 x \, \mathcal{O}(x)$$

so  $[\lambda] = 2 - \Delta_{0}$ . Source of many well-studied RG flows in flat space or on cylinder (Ising field theory, Lee-Yang flow, ...).

 Related to boundary TCSA, but AdS is not the upper half plane/strip (different Weyl factor).

Technologically different: BCFT Hilbert space with Virasoro generators {L<sub>n</sub>} instead of Fock space with {a<sup>†</sup><sub>n</sub>}. Yet no fundamental differences with previous discussion. Same recipe needed to regulate UV divergences!

#### 2d Ising model: thermal deformation

Here  $S = \text{Ising model} + \lambda | \epsilon$ . Should be equal to free Majorana with  $m = 2\pi\lambda$ :



### 2d Ising model: magnetic deformation

Now S =Ising model  $+ \lambda \int \sigma$ . Integrable on flat background:

8 massive particles with universal ratios  $m_{i+1}/m_i$ . HT data in the right "ballpark":



# A speculation/conjecture (1)

Finally, let's state a provocative conjecture inspired by old results and our new work:

All CFT boundary conditions are connected by relevant deformations in AdS.

This is a falsifiable conjecture, especially for CFTs with known set of BCs.

- ► Most basic example: massless scalar has two BCs (Dirichlet & Neumann). Can be extended in AdS to roots of  $\Delta(\Delta d) = m^2 R^2$  (deforming by  $\phi^2$  in bulk). They meet when  $\Delta = \frac{d}{2}$  that is to say  $m^2 R^2 = -\frac{d^2}{4} < 0$ .
- > When they meet the first singlet boundary operator has  $\Delta = d$ . This is natural: a singlet with  $\Delta \leq d$  destabilizes one of the BCs. In our setup: expect two BCs to meet when spectrum contains  $\Delta = 1$ .
- Another generic feature: need to go to negative coupling to see this phenomenon.
   Remember: slightly negative coupling not necessarily a problem in AdS.

#### A speculation (2): Lee-Yang flow



#### A speculation (3): Ising CFT + magnetic



### Summary/outlook

- Possible to study QFT in AdS directly using Hamiltonian methods.
  Good resolution with laptop/simple cluster runs.
- Explored for both deformations of massive boson and simple minimal model CFTs in AdS<sub>2</sub>.
- ► Renormalization needed to extract finite physics from divergent raw data. Qualitatively different from same setup on cylinder  $\mathbb{R} \times S^1$  or strip  $\mathbb{R} \times [0,1]$ . Prescription appears justified.
- Not yet in precision era. One has to add study large-energy asymptotics in more detail to reduce cutoff dependence.
- ► Formulated a speculation that should be easy to falsify!