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QFT in AdS - why?

» Anti-de Sitter space is a fundamental spacetime in study of
guantum gravity (strings/holography/SUGRA/...).

» |n full-fledged quantum gravity on AdSq+ there's
matter + dynamical gravity (fluctuating gﬂy) in the bulk.

Exactly equivalent to local (including T/w) CFT living on the
boundary of spacetime.

» Simple version: put matter in the bulk, but freeze g to be empty
AdS - no backreaction.
Still maps to a CFT on the boundary, but without TW

» This turns spacetime into a infinite box invariant under SO(d,2)
with a finite curvature radius Rags. Should be "large” compared to
whatever you want to study.



QFT in AdS (2)

» Keeping everything else fixed, R — oo is the flat-space limit of AdS

physics, curvature effects unimportant (but boundary is always
therel).

When R — 0 curvature dominates everything else
(correlation length of system >> size of the universe).

» |If QFT is controlled by relevant coupling A of mass dimension [A] =,
then physics depends on dim-less and tuneable coupling A = AR”.
Same for several couplings 4, 4,, ...

» Can think of boundary CFT as one/several-parameter family of
consistent theories parametrized by the {4 }.

» Natural observable: spectrum = set of scaling dimensions Ai of the
boundary CFT, A, = fi(4,). At large radius, they will scale as A, o R.



Current toolkit

» AdS perturbation theory is well-developed ("Witten diagrams”)

» Exact solutions: integrable theories, Lagrangian theories with
Nf — 00 flavors [Carmi-di Pietro-Komatsu 2018]

» Bootstrap methods: study boundary CFT via numerical bootstrap
and deduce information about bulk physics [Paulos et al 2016]

» Latticize bulk QFT. Very non-trivial compared to R4
So far mostly construction of massive scalar in AdS..
Work by Boston/Brown and Syracuse groups e.g. 1912.07606

» ...? Other nonperturbative methods undeveloped.



Quantizing AdS

Will work in Hamiltonian picture; most

convenient are global coordinates, where

AdS is a foliation of solid disks (or closed
intervals, in 1+1 dims):
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with boundary at r = *+ 7/2.

Energies are conserved. Hamiltonian

H = — d/0t is dilatation operator of the
boundary CFT.

Isometry group is SO(2,1) = SL(2,R).
Beyond H, other two symmetries P, K
mix 7 and r.




Truncation methodology: Rayleigh-Ritz for QFT

» |dea will be to split full Hamiltonian into a solvable (e.g. Gaussian) and a
non-solvable part, H = H, + AV . (Details to follow.)

» There's a by now well-tested recipe to compute QFT spectra:
1. Fix cutoff A and find all states |i) with free energy e, < A.

2. Diagonalize H(A) in finite subspace of these low-energy states,
yielding truncated energies E;(4, A\).
3. Take lim E{(4, A) to obtain the true energies E(A) of the interacting theory.

A= o0

» Known in general as Hamiltonian truncation. Early variant described by
Yurov & Al. Zamolodchikov in 1989, many developments since 2014.
Common scheme known as Truncated Conformal Space Approach = TCSA.

» Hard cutoff breaks SO(2,1). In the continuum limit A — oo the full
symmetry is supposed to be restored. Not obvious, needs to be checked.



Example: scalar field

» A massive particle in AdS corresponds to a boundary operator of

dimension A=—+4/—+mR".
2 -}
Field ¢b(z, r) admits a mode decomposition
Q)
Q(t,r) = Z a, e (AT f.(r)+ hc
n=0 o

and the free Hamiltonian is H, = Z (A +n)ala,.

n=0

» Fock space of states H.arz | Q2) .
l

r7t/2 d

r
Interactions are of the form AV = A 7 (t =0,r)
_.(cosr)?

witheg 7" = ¢4. Integral runs over ¢ = () timeslice. Compute using CCR.
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Expectations

» Regardless of what one puts in, the spectrum should fall into multiplets of
SO(2,1): a "primary” state with energy E.(1) and

"descendants” with energies
EA)+ 1, E(A) + 2, etc.

» The hard cutoff breaks spacetime

Perturbative regime Crossover Flat space limit

symmetries, so instead probably

. . R
Ej — E. ~ integer due to truncation error.

» Dim-less coupling 1 = ARY can't be taken to be arbitrarily big due to cutoff
effects.



A major issue involving UV divergences...

» Ground state energy E,5c(4, A) diverges (linearly) as A = oo.
Happens for any QFT in AdS (proof: representation theory or spacetime behavior).

» ... but confusingly, energy gaps don't seem to have a finite continuum limit
either: £(A, A) — Ey3c(4, A) oscillatesas A — 00.  cf. blue Tines

1
» Does this means that Hamiltonian truncation fails to construct \
a meaningful QFT in AdS? | | | | | |
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...which is perhaps not that hard to solve.

n covariant perturbation theory, we know very well
Now to compute energies: simply subtract vacuum
hubbles, just like in flat space.

-ree energy has to diverge, due to covariance +
infinite volume of AdS. camne kel
Meaning: free energy/Casimir energy part
just not a good observable. i

(If there are intrinsic UV divergences like in flat space,
need to treat those separately.)



Resolving the puzzle (2)

» Anomalous dimension from spacetime, e.g. at 2nd order in PT:
0

SE = — J 07 80~ gvac@)]. 8@ = (i VOVO) [ i)conr
0

where V(7) = eHo7V/(0)eHo

» Using Laplace transforms package matrix elements |(i|V|j>|2

/
g(7) = J dapla)e ~lae)r

, gvac(?) = J do pyac(a) e ™"
R R

this is instead nb!

SED = _ | 9% ) — _ ﬂ/
; [,01(0‘) Pvac(a — e])].

RG — €

» Suggest that correct energies are obtained from following rule:

| EPYS() = 1im E(4, A) — E,
{ ! A= 00

ac, A —e) |

> Need to pUR T prescrption 1o The test :



Resolving the puzzle (3)

» Had to extend previous argument to all orders in perturbation theory.
Logic always the same, and uses relation perturbed energies = integrated
spectral densities of connected correlators in AdS.

» Why did this shift £y5c(A) = Eyac(A — ¢;) never show up before? Simply
because here E,;c(A) ~ A so very UV-sensitive. In UV-finite theories
spectral densities p.(a;, &, ...) decrease such that shift is immaterial:

0
Evyac(A) — Eyac(A —¢) =~ ¢ a_AEvac(A) —> 0

» (Can also derive prescription without appealing to covariant “wisdom”.
Introduce IR regulator | r| < z/2 — € which makes theory manifestly finite.

Then find unique way that yields good limit ¢ — 0.

» Recently [Elias-Mir6 & Hardy 2003.08405] found similar issue for specific model,

gb4 theory on R X T2 There resolved by adding specific counterterm to H.
Is this the same prescription, in a very different-looking form?
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First check: boson + m?¢? perturbation

two-particle states
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First check: boson + m?¢?* perturbation (2)

» Numerical diagonalization in Mathemat1i ca.

» Truncation errors can be understood analytically,
by looking at spacetime diagrams:

C;

AA—1

where ¢; is a (computable) coefficient and A, the dimension of the first
boundary state turned on by perturbation V.

truncation error of Ei ~

» Use this to extrapolate to A — oo albeit with error bars.

A=1.62, R~ 141 (A=2)

» SO(2,1) seems to be recovered: Lod
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¢* theory: what to expect?

> m’p? + Ag* theory in flat space in d = 2,3 has two phases,

depending on the ratio of couplings ﬂ/(mz)%@_d):

Z ,-preserving with (¢p) = 0 vs. Z,-broken with (¢) # 0.

2nd order transition = Ising CFT in the middle.
Studied both nonperturbatively and by resumming PT.

» Pheno of spontaneous symmetry breaking different in AdS,,; vs flat space.
Semiclassics:

» Flat space: end up in global minimum of potential V(¢), hence 2nd order.

» AdS: can stay stuck in false vacuum due to curvature/boundary effects.

Only certain to decay when V”(0) < —%dz (cf. BF bound). A

Favors 1st-order phase transitions.
» Interesting limit is AR? — oo and m?R? — oo with A/m? fixed.

Strong coupling limit! Can try to attack using HT...
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¢* interaction - results

increasing radius from R to L

A
— 1.62
— 3.24
— 4.86
— 6.52

— 8.1
— 9.72

mass gap
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Playing with Virasoro CFTs

» Can play the same game by deforming a CFT in AdS»:

S =Scpt + 4 \/8d%x O(x)
JAdS
so[A] =2 —Ap

Source of many well-studied RG flows in flat space or on cylinder
(Ising field theory, Lee-Yang flow, ...).

» Related to boundary TCSA, but AdS is not the upper half plane/strip
(different Weyl factor).

» Technologically different: BCFT Hilbert space with Virasoro generators

{L,} instead of Fock space with {a'}.
Yet no fundamental differences with previous discussion.
Same recipe needed to regulate UV divergences!
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2d Ising model: thermal deformation
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2d Ising model: magnetic deformation

Now § = Ising model + /IJG. Integrable on flat background:

8 massive particles with universal ratios m,_ ,/m; . HT data in the right "ballpark™:

T
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A speculation/conjecture (1)

» Finally, let's state a provocative conjecture inspired by old results and our new
work:

This is a falsifiable conjecture, especially for CFTs with known set of BCs.

» Most basic example: massless scalar has two BCs (Dirichlet & Neumann). Can be
extended in AdS to roots of A(A — d) = m?R? (deforming by gbz in bulk).
2

They meet when A = % that is to say m*R? = —dT < 0.

» When they meet the first singlet boundary operator has A = d.
This is natural: a singlet with A < d destabilizes one of the BCs.
In our setup: expect two BCs to meet when spectrum contains A = 1.

» Another generic feature: need to go to negative coupling to see this
phenomenon.

Remember: slightly negative coupling not necessarily a problem in AdS.
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A speculation (2): Lee-Yang flow

Lee-Yang BCFT has two BCs: 1 and 7.

In HT computations, we used 1.
Impossible to go more negative:
hallmark of instabilities

(harmonic oscillator w/ negative mass)
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A speculation (3): Ising CFT + magnetic

Ising BCFT has 3 BCs: 1, ¢ and €.
In HT computations, we used 1.

conformal point
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Summary/outlook

» Possible to study QFT in AdS directly using Hamiltonian methods.
Good resolution with laptop/simple cluster runs.

» Explored for both deformations of massive boson and simple
minimal model CFTs in AdS,.

» Renormalization needed to extract finite physics from divergent
raw data. Qualitatively different from same setup on cylinder

R x S! or strip R X [0,1]. Prescription appears justified.

» Not yet in precision era. One has to add study large-energy
asymptotics in more detail to reduce cutoff dependence.

» Formulated a speculation that should be easy to falsify! @
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