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QFT in AdS - why?

➤ Anti-de Sitter space is a fundamental spacetime in study of 
quantum gravity (strings/holography/SUGRA/...). 

➤ In full-fledged quantum gravity on AdSd+1 there's  
matter + dynamical gravity (fluctuating ) in the bulk. 
Exactly equivalent to local (including ) CFT living on the 
boundary of spacetime. 

➤ Simple version: put matter in the bulk, but freeze  to be empty 
AdS - no backreaction. 
Still maps to a CFT on the boundary, but without . 

➤ This turns spacetime into a infinite box invariant under  
with a finite curvature radius RAdS. Should be "large" compared to 
whatever you want to study.
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QFT in AdS (2)

➤ Keeping everything else fixed,  is the flat-space limit of AdS 
physics, curvature effects unimportant (but boundary is always 
there!).  
When  curvature dominates everything else 
(correlation length of system  size of the universe). 

➤ If QFT is controlled by relevant coupling  of mass dimension , 
then physics depends on dim-less and tuneable coupling . 
Same for several couplings  

➤ Can think of boundary CFT as one/several-parameter family of 
consistent theories parametrized by the . 

➤ Natural observable: spectrum = set of scaling dimensions  of the 
boundary CFT, . At large radius, they will scale as .

R → ∞

R → 0
≫

λ [λ] = y
λ̄ = λRy

λ̄1, λ̄2, …

{λ̄α}

Δi
Δi = fi(λ̄α) Δi ∝ R
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Current toolkit

➤ AdS perturbation theory is well-developed ("Witten diagrams") 

➤ Exact solutions: integrable theories, Lagrangian theories with 
 flavors [Carmi-di Pietro-Komatsu 2018] 

➤ Bootstrap methods: study boundary CFT via numerical bootstrap 
and deduce information about bulk physics [Paulos et al 2016] 

➤ Latticize bulk QFT. Very non-trivial compared to ! 
So far mostly construction of massive scalar in AdS2. 
Work by Boston/Brown and Syracuse groups e.g. 1912.07606 

➤ ...? Other nonperturbative methods undeveloped. 

Nf → ∞

ℝ4
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Quantizing AdS

Will work in Hamiltonian picture; most 
convenient are global coordinates, where 
AdS is a foliation of solid disks (or closed 
intervals, in 1+1 dims): 

        

with boundary at  

Energies are conserved. Hamiltonian 
 is dilatation operator of the 

boundary CFT. 

Isometry group is . 
Beyond , other two symmetries  
mix  and .

ds2 = ( R
cos r )

2

[dτ2 + dr2]
r = ± π/2.

H = − ∂/∂τ

SO(2,1) = SL(2,ℝ)
H P, K

τ r



Truncation methodology: Rayleigh-Ritz for QFT

➤ Idea will be to split full Hamiltonian into a solvable (e.g. Gaussian) and a 
non-solvable part, (Details to follow.) 

➤ There's a by now well-tested recipe to compute QFT spectra: 

1. Fix cutoff  and find all states  with free energy . 

2. Diagonalize  in finite subspace of these low-energy states,  
yielding truncated energies . 

3. Take  to obtain the true energies  of the interacting theory. 

➤ Known in general as Hamiltonian truncation. Early variant described by 
Yurov & Al. Zamolodchikov in 1989, many developments since 2014. 
Common scheme known as Truncated Conformal Space Approach = TCSA. 

➤ Hard cutoff breaks . In the continuum limit  the full 
symmetry is supposed to be restored. Not obvious, needs to be checked.

H = H0 + λV .

Λ | i⟩ ei ≤ Λ

H(λ)
Ei(λ, Λ)

lim
Λ→∞

Ei(λ, Λ) Ei(λ)

SO(2,1) Λ → ∞
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Example: scalar field

➤ A massive particle in AdS corresponds to a boundary operator of  

dimension                 . 

Field  admits a mode decomposition 

                       

and the free Hamiltonian is  

➤ Fock space of states  

➤
Interactions are of the form  

with e.g. . Integral runs over  timeslice. Compute using CCR.

Δ =
1
2

+
1
4

+ m2R2

ϕ(τ, r)

ϕ(τ, r) =
∞

∑
n=0

an e−(Δ+n)τ fn(r) + h.c.

H0 =
∞

∑
n=0

(Δ + n)a†
nan .

∏i
a†

ni
|Ω⟩ .

λV = λ∫
π/2

−π/2

dr
(cos r)2

𝒱(τ = 0,r)

𝒱 = ϕ4 τ = 0
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Expectations

➤ Regardless of what one puts in, the spectrum should fall into multiplets of 
: a "primary" state with energy  and  

"descendants" with energies 
 , , etc. 

➤ The hard cutoff breaks spacetime 
 symmetries, so instead probably  

 due to truncation error. 

➤ Dim-less coupling  can't be taken to be arbitrarily big due to cutoff 
effects.

SO(2,1) Ei(λ)

Ei(λ) + 1 Ei(λ) + 2

Ej − Ei ≈ integer

λ̄ = λRy
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A major issue involving UV divergences...

➤ Ground state energy  diverges (linearly) as .  
Happens for any QFT in AdS (proof: representation theory or spacetime behavior). 

➤ ... but confusingly, energy gaps don't seem to have a finite continuum limit 
either:  oscillates as .   

➤ Does this means that Hamiltonian truncation fails to construct 
a meaningful QFT in AdS?

Evac(λ, Λ) Λ → ∞

Ei(λ, Λ) − Evac(λ, Λ) Λ → ∞
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...which is perhaps not that hard to solve.

In covariant perturbation theory, we know very well 
how to compute energies: simply subtract vacuum 
bubbles, just like in flat space. 

Free energy has to diverge, due to covariance + 
infinite volume of AdS. 
Meaning: free energy/Casimir energy  
just not a good observable. 

(If there are intrinsic UV divergences like in flat space,  
need to treat those separately.)



Resolving the puzzle (2)

➤ Anomalous dimension from spacetime, e.g. at 2nd order in PT: 

 

where .  

➤ Using Laplace transforms

 

this is instead 

                        . 

➤ Suggest that correct energies are obtained from following rule: 
 

                    

➤ Need to put this prescription to the test.

δE(2)
i = − ∫

∞

0
dτ [gi(τ) − gvac(τ)], gi(τ) = ⟨i |V(τ)V(0) | i⟩conn

V(τ) = eH0τV(0)e−H0τ

gi(τ) = ∫ℝ
dα ρi(α) e−(α−ei)τ, gvac(τ) = ∫ℝ

dα ρvac(α) e−ατ

δE(2)
i = − ∫ℝ

dα
α − ei

[ρi(α) − ρvac(α − ei)]

Ephys
i (λ) ≡ lim

Λ→∞
Ei(λ, Λ) − Evac(λ, Λ − ei)
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Resolving the puzzle (3)

➤ Had to extend previous argument to all orders in perturbation theory.  
Logic always the same, and uses relation perturbed energies = integrated 
spectral densities of connected correlators in AdS. 

➤ Why did this shift  never show up before? Simply 
because here  so very UV-sensitive. In UV-finite theories 
spectral densities  decrease such that shift is immaterial: 

 

➤ Can also derive prescription without appealing to covariant "wisdom". 
Introduce IR regulator  which makes theory manifestly finite. 
Then find unique way that yields good limit  

➤ Recently [Elias-Miró & Hardy 2003.08405] found similar issue for specific model, 
 theory on . There resolved by adding specific counterterm to .  

Is this the same prescription, in a very different-looking form?

Evac(Λ) → Evac(Λ − ei)
Evac(Λ) ∼ Λ

ρi(α1, α2, …)

Evac(Λ) − Evac(Λ − ei) ≈ ei
∂

∂Λ
Evac(Λ) ⟶ 0

|r | ≤ π/2 − ϵ
ϵ → 0.

ϕ4 ℝ × T2 H
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First check: boson +  perturbationm2ϕ2

13

single-particle states

coupling m2R2

two-particle states



First check: boson +  perturbation (2)m2ϕ2

➤ Numerical diagonalization in Mathematica. 
➤ Truncation errors can be understood analytically,  

by looking at spacetime diagrams: 

 

where  is a (computable) coefficient and  the dimension of the first 
boundary state turned on by perturbation . 

➤ Use this to extrapolate to  albeit with error bars. 

➤  seems to be recovered:

truncation error of Ei ≈
ci

ΛΔ*−1
ci Δ*

V

Λ → ∞

SO(2,1)
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 theory: what to expect?ϕ4

➤  theory in flat space in  has two phases,  
depending on the ratio of couplings : 
    -preserving with   vs. -broken with .  
2nd order transition = Ising CFT in the middle. 
Studied both nonperturbatively and by resumming PT. 

➤ Pheno of spontaneous symmetry breaking different in  vs flat space. 
Semiclassics: 

➤ Flat space: end up in global minimum of potential , hence 2nd order. 

➤ AdS: can stay stuck in false vacuum due to curvature/boundary effects.  
Only certain to decay when  (cf. BF bound).  
Favors 1st-order phase transitions. 

➤ Interesting limit is  and  with  fixed. 
Strong coupling limit! Can try to attack using HT...

m2ϕ2 + λϕ4 d = 2,3
λ/(m2) 1

2 (4−d)

ℤ2 ⟨ϕ⟩ = 0 ℤ2 ⟨ϕ⟩ ≠ 0

AdSd+1

V(ϕ)

V′ ′ (0) < − 1
4 d2

λR2 → ∞ m2R2 → ∞ λ/m2
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 interaction - resultsϕ4

16

proxy for λ /m2

mass gap

critical coupling?

increasing radius from R to L



Playing with Virasoro CFTs

➤ Can play the same game by deforming a CFT in : 

 

so .  
Source of many well-studied RG flows in flat space or on cylinder  
(Ising field theory, Lee-Yang flow, ...).  

➤ Related to boundary TCSA, but AdS is not the upper half plane/strip 
(different Weyl factor). 

➤ Technologically different: BCFT Hilbert space with Virasoro generators 
 instead of Fock space with . 

Yet no fundamental differences with previous discussion. 
Same recipe needed to regulate UV divergences!

AdS2

S = SCFT + λ∫AdS gd2x 𝒪(x)

[λ] = 2 − Δ𝒪

{Ln} {a†
n}
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2d Ising model: thermal deformation 

Here . Should be equal to free Majorana with :S = Ising model + λ∫ ϵ m = 2πλ



2d Ising model: magnetic deformation 

Now . Integrable on flat background:  

8 massive particles with universal ratios  . HT data in the right "ballpark":

S = Ising model + λ∫ σ

mi+1/mi



A speculation/conjecture (1)

➤ Finally, let's state a provocative conjecture inspired by old results and our new 
work: 
All	CFT	boundary	conditions	are	connected		
by	relevant	deformations	in	 .	
	
This is a falsifiable conjecture, especially for CFTs with known set of BCs. 

➤ Most basic example: massless scalar has two BCs (Dirichlet & Neumann). Can be 
extended in AdS to roots of  (deforming by  in bulk). 

They meet when  that is to say . 

➤ When they meet the first singlet boundary operator has .  
This is natural: a singlet with  destabilizes one of the BCs. 
In our setup: expect two BCs to meet when spectrum contains . 

➤ Another generic feature: need to go to negative coupling to see this 
phenomenon. 
Remember: slightly negative coupling not necessarily a problem in AdS. 

AdS

Δ(Δ − d) = m2R2 ϕ2

Δ = d
2 m2R2 = − d2

4 < 0

Δ = d
Δ ≤ d

Δ = 1
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A speculation (2): Lee-Yang flow

21

Lee-Yang BCFT has two BCs:  and . 
In HT computations, we used . 
Impossible to go more negative: 
hallmark of instabilities  
(harmonic oscillator w/ negative mass)

1 𝒱
1

conformal point



A speculation (3): Ising CFT + magnetic
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Ising BCFT has 3 BCs: ,  and . 
In HT computations, we used . 

1 σ ϵ
1

conformal point



Summary/outlook

➤ Possible to study QFT in AdS directly using Hamiltonian methods. 
Good resolution with laptop/simple cluster runs. 

➤ Explored for both deformations of massive boson and simple 
minimal model CFTs in . 

➤ Renormalization needed to extract finite physics from divergent 
raw data. Qualitatively different from same setup on cylinder 

 or strip . Prescription appears justified. 

➤ Not yet in precision era. One has to add study large-energy 
asymptotics in more detail to reduce cutoff dependence.  

➤ Formulated a speculation that should be easy to falsify!

AdS2

ℝ × S1 ℝ × [0,1]
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