V. Pinheiro

Let \mathbb{X} be a separable metric space and \mathcal{C} a closed subset of \mathbb{X} with empty interior. Let $f: \mathbb{X} \setminus \mathcal{C} \to \mathbb{X}$ be a locally bi-Lipchitz map. Given $p \in \mathbb{X}$ and $n \in \mathbb{N}$, we say that n is a (α, δ) -expanding time for p with respect to f if there exists an open neighborhood $V_n(p)$ of p such that $f^n: V_n(p) \to B(f^n(p), \delta)$ is a homeomorphism that extends continuously to the boundary, and

$$d(f^j(x), f^j(y)) \le \alpha^{n-j} d(f^n(x), f^n(y)),$$

 $\forall 0 \leq j \leq n-1 \text{ and } x, y \in V_n(p).$

Letting $\mathbb{N}_p(\alpha, \delta, f)$ be the set of all (α, δ) -expanding times to p with respect to f, a set $\Lambda \subset \mathbb{X}$ is called an **expanding set for** f if there is $0 < \alpha < 1$ and $\delta > 0$ such $\limsup_{n \to +\infty} \frac{1}{n} \# \{1 \le j \le n \; ; \; j \in \mathbb{N}_p(\alpha, \delta, f)\} > 0$ for every $p \in \Lambda$. A f-invariant probability μ is called an **expanding measure for** f if there exists $\ell \in \mathbb{N}$ and an expanding set Λ for f^{ℓ} such that $\mu(\Lambda) = 1$. Let $\mathcal{E}(f)$ be **the set of all expanding measure for** f.

Given a continuous potential $\varphi : \mathbb{X} \to \mathbb{R}$, we say that an f-invariant probability μ is an **expanding equilibrium state for** f if $\mu \in \mathcal{E}(f)$ and

$$h_{\mu}(f) + \int \varphi d\mu = \sup \left\{ h_{\nu}(f) + \int \varphi d\nu \, ; \, \nu \in \mathcal{E}(f) \right\}.$$

We say that f is **strongly transitive** if $\alpha_f(x) = \mathbb{X} \ \forall x \in \mathbb{X} \setminus \mathcal{C}$ and f is called **weak topologically mixing** if $f \times f$ is transitive, where $\alpha_f(x)$ is the α -limit set of x.

Theorem A. Suppose that f is strongly transitive and weak topologically mixing.

- (1) Then f has at most one expanding equilibrium state for $\varphi \equiv 0$.
- (2) If f has an expanding equilibrium state for $\varphi \equiv 0$ then f has one and only one expanding equilibrium state μ_{ψ} for any given Hlder potential ψ close enough to φ .

Corollary B. A Viana map has one and one equilibrium state for every Hlder potential with small variation.

This talk is based on a joint work with Paulo Varandas.