

NOTATION: UH→ unipormly hyperbolic NUH→ nonunipormly hyperbolic

- 3. f: M²→M² dippeo with htop(f)>0.
 Ruelle inequality → NUH dippeo
 4. Geodesic plow in nonpositive curvature.
 NUH plow
- 5. Billiords

Bunimovich stadium (NUH)

Dispersing (UA)

Dispersing in dim=3 (UH)

MAIN RESULTS: represent NUH models above by symbolic models Σ - Σ $\pi \int \int \int \pi$ $M \xrightarrow{f} M$ (I, T) = topological Markov shift I= I(g), where g = oriented grouph with countably many vartices σ: Σ→Σ left shift, σ[hvat]=hvatif.

• T: Σ → M coding map {Höbber continuov & 2 "finite-to-one" Important to preserve entropy

APPLICATIONS

- 1. Measures of maximal entropy (MME): (Sorig, Lima-Sorig, Ben Oradia, Buzzi-Crovisier-Sorig,...)
 - #MME at most countable
 - Transitive C^{oo} surpace dipper with htop(f) >0: unique MME
- 2. Ergodic properties of MME: (Sarig, Ledroppier-Lina-Sarig) The MME is either Bernaulli or Bernaulli × rotation.

- 3. Poriodic points: Ip 3 MME, then: (Sarig, Lima-Sorig, Buzzi,...)
 - Mops: Pern(f) ≥ const. ehn
 - · Flows: Perr(4) > const. eht T
- 4. Decay of correlations (Buzzi-Grovisier-Sorig)
- 5. Hyperbolic SPB measures (Ben Oradia)

UNIFORMLY HYPERBOLIC SYSTEMS Let $\int M^2 = closed \ C^{\circ\circ}$ surface $f: M \rightarrow M \ C^{1+\beta}$ Anosor diffeo $\cdot TM = E^{S} \bigoplus E^{L}, \ E^{\circ}_{X} = \langle e^{\circ}_{X} \rangle, \ \sigma = Su$ $\cdot \langle : \rangle$ inner product of M, $\|e^{S}_{X}\| = 1$.

- $\cdot \| e_{x}^{s} \|, \| e_{x}^{s} \| \in [\mathcal{I}, \mathcal{I}], \forall x \in \mathbb{N}.$
- $\| d \varphi v^{S} \| < \lambda \| v^{S} \|$ (Adopted) $\| d \varphi v^{S} \| < \lambda \| v^{S} \|$

Properties:

⋘v^s,v*⋙=0.

- $V_1^{u}, V_2^{u} \in E^{u}$: • $V_1^{u}, V_2^{u} \in E^{u}$: • $V_1^{u}, V_2^{u} \in E^{u}$: • $V_1^{v} \in E^{v}$:
- $v_1^s, v_2^s \in E^s$: $(v_1^s, v_2^s) = 2\sum \lambda^{2n} \langle de^n v_1^s, de^n v_2^s \rangle$
- We introduce a new chner product adapted to e:

Hyperbolicity parameters
$$s(x), u(x), u(x)$$
:
 $s(x) = ||| e^{x} ||| = \sqrt{2} \left(\sum_{n \geq 0} || de^{n} e^{x}_{x} ||^{2} \right)^{1/2}$
 $u(x) = ||| e^{u}_{x} ||| = \sqrt{2} \left(\sum_{n \geq 0} \lambda^{-2n} || de^{-n} e^{u}_{x} ||^{2} \right)^{1/2}$
 $u(x) = 4 \left(e^{x}_{x}, e^{u}_{x} \right)$
 $u(x) = e^{x}_{x}$
 $Diagonalizing de:$
 $c(x): ||e^{2} \rightarrow T_{x}M$ linear $s.t.$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \frac{e^{x}_{x}}{s(x)}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \frac{e^{u}_{x}}{u(x)}$
Properties:
 $c(e(x))^{-1} de^{u}_{x} c(x) = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}, |A| < \lambda$

THN.

$$f_{X} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} + \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}$$

whare:

 $|A| < \lambda, |B'| < \lambda$ as above.

•
$$h_i(0,0) = 0$$
, $\nabla h_i(0,0) = 0$, $i = 1,2$.

• $\| h_i \|_{C^{4+B/2}} < \varepsilon.$

PPOOF. Define hy, h. s.t. $f_X - \begin{bmatrix} A \\ O \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$ Now write (dex), - (dex), as: $(\mathcal{E}) = A_1 B_1 C_1 - A_2 B_2 C_2$ where $A_1 \approx A_2$, $B_1 \approx B_2$, $G \approx C_2$. Lipschitz $||B_1 - B_2|| \leq const \cdot ||W_1 - W_2||^B$ Then $\frac{\beta}{2}$ in the exponent Kills the constants so that $\bigotimes S \in \left| \| w_1 - w_2 \| \right|^{\frac{\beta}{2}}$. Graph transporms:

Look at the action of fx in vertical graphs:

$$\begin{cases} F_{x}^{u}: M_{x}^{u} \rightarrow M_{g(x)}^{u} \text{ action of } g_{x} + restric. \\ F_{x}^{s}: M_{g(x)}^{s} \rightarrow M_{x}^{s} \qquad u \quad g_{x}^{-1} \quad u \\ \hline THM. F_{x}^{s}, F_{x}^{u} \text{ ore contractions.} \\ \text{Ne thus depire the local invariant nanipolds in charts:} \\ V^{u} E_{x} J = \lim_{n \to -\infty} (F_{g^{-1}(k)}^{u} \circ \cdots \circ F_{g^{n}(x)}^{u}) [V_{n}] \\ \hline f_{n}^{u} f_{n}^{u$$

NONUNIFORMLY HYPERBOLIC SYSTEMS Notation:

• Lyapunov exponent $\chi(v) = \lim_{n \to \pm \infty} \frac{1}{n} \log \left\| df^n v \right\|$

· X-hyperbolic measure: 1x(v) > 2, 4v=+0. We do not work directly with measures but with a set of good NUH for a fixed parameter X >0. Noninjormly hyperbolic bas NUHZ: The set of XEM² s.t. J.e.x, e^xxeTxM unitary and transverse s.t. (NOH1) lin 1 logllder exll <- X (Contraction at host on n the puture lim 1 log || df "exl|>0. (Expansion in n>too "

(NUH2)
$$\lim_{n \to +\infty} \frac{1}{n} \log \|de^{-n}e_{x}^{n}\| \le -\chi$$

 $\lim_{n \to +\infty} \frac{1}{n} \log \|de^{-n}e_{x}^{n}\| > 0$
(NUH3) $s(x), u(x)$ are printe:
 $s(x) = \sqrt{2} \left(\sum_{n \ge 0} e^{2n} \chi \|de^{-n}e_{x}^{n}\|^{2} \right)^{1/2}$
 $u(x) = \sqrt{2} \left(\sum_{n \ge 0} e^{2n} \chi \|de^{-n}e_{x}^{n}\|^{2} \right)^{1/2}$

Basic properties:

- · NUH is invariant, usually not compact.
- · No continuity of s, y, x on NVHz.

$$\psi_{X} : [-Q,Q]^{2} \rightarrow M$$

$$\psi_{X} = \exp_{X} \circ C(X).$$

Pesin chart:

Same as in UH care

Diagonalizing de:

≪(v^s,γ^{*})) = 0.

- $\langle \langle \langle V_{l}^{u}, V_{L}^{u} \rangle \rangle = 2 \sum e^{2n\chi} \langle df^{n} V_{l}^{u}, df^{n} V_{L}^{u} \rangle$ $n \ge 0$ $n \ge 0$
- $v_1^{S}, v_2^{S} \in E^{S}$: $\langle \langle \langle v_1^{S}, v_2^{S} \rangle \rangle = 2 \sum e^{2nX} \langle dc^n v_1^{S} \rangle \langle dc^n v_2^{S} \rangle$
- "Inner product" on NUHZ:

Now,
$$f_{x} = \psi_{f(x)}^{-1} \circ f \circ \psi_{x}$$
 is hyperbolic-
like only if we diminish Q.
New possibility: $\|C(f(x))^{-1}\|$ may be large
We have $\|(df_{x})_{w_{1}} - (df_{x})_{w_{2}}\| \le ant \|C(f(x))^{-1}\|^{-1}$
Parameter Q(x):
Q(x) = const. $\|C(f(x))^{-1}\|^{-1}$
Q(x) = const. $\|C(f(x))^{-1}\|^{-1}$.
THM. (PESIN) On $[1-Q(x), Q(x)]^{2}$,
 $f_{x} = [A \circ] + [h_{1}]$
where A, B, h, h, ore os in the UH
Case.

Even better...
Parameters
$$q^{s}(x), q^{u}(x)$$
: for $x \in NUH^{*}_{\chi}$,
define
 $\int q^{s}(x) = inf\{e^{sn}Q(f^{n}(x)): n \ge 0\}$
 $q^{u}(x) = inf\{e^{sn}Q(f^{-n}(x)): n \ge 0\}$

Main property:

$$\begin{cases} q^{s}(x) = \min \{e^{\varepsilon} q^{s}(t(x)), Q(x)\} \\ q^{u}(t(x)) = \min \{e^{\varepsilon} q^{u}(x), Q(t(x))\} \end{cases}$$

$$M_{X}^{u}$$
 similarly for almost vertical
 $\int F_{X}^{s} : M_{g(X)}^{s} \to M_{X}^{s}$
 $F_{X}^{u} : M_{X}^{u} \to M_{g(X)}^{u}$
THM. F_{X}^{s}, F_{X}^{u} are contractions.

local invariant manipolds:

Same as before

these are the Pesin local invariant manipolds

Adaptations por higher dimension:

Noninipormly hyperbolic bas NUHZ: The set of XEM s.t. J TXM=EXOEX st.:

(NOH1)
$$\overline{\dim} \, \frac{1}{4} \log \|dq^n \vee \| \le -\chi$$

 $\lim_{n \to +\infty} \frac{1}{n} \log \|dq^n \vee \| > 0$.
(NUH2) $\overline{\lim} \, \frac{1}{n} \log \|dq^n \vee \| \le -\chi$
 $\lim_{n \to +\infty} \frac{1}{n} \log \|dq^n \vee \| > 0$.
(NUH3) $S(\chi) = \sup_{n \to +\infty} S(\chi, v), u(\chi) = \sup_{n \to +\infty} U(\chi, w)$
 $\lim_{\substack{v \in E_{\chi} \\ \|V\|=1}} \|w\|=1$
 $are \ pinite, where:$
 $S(\chi, v) = \sqrt{2} \left(\sum_{n \ge 0} e^{2n\chi} \|dq^n \vee \|^2\right)^{1/2}$
 $U(\chi, w) = \sqrt{2} \left(\sum_{n \ge 0} e^{2n\chi} \|dq^n \vee \|^2\right)^{1/2}$.
Then define $C(\chi)$ for $\chi \in \mathbb{N}UH\chi$

and continue as in dimension 2.

MAPS WITH DISCONTINUITIES AND BOUNDED DEPIVATIVE J=Singular set 7= disantimities setting: M2 = surpace, J cM closed, f: M\J→M C^{1+B} with bounded df. Problem: Orbits that approach & exponentially fast If so, then NUH might not prevail over the effect of discontinuities Example: y: N³→N³ flow with positive speed From plow to map

Construct M² = global Poincaré section and study f:M->M return map. f' is discontinuous f is discontinuous Redefining NUHZ: (NUH1)-(NUH3) and (NUH4) $\lim_{n} \log d(f^n(x), 3) = 0$ (Subexponential convergence to J) Redepining Pesin charts: $\psi_{\mathsf{X}}: \left[-S(\mathsf{X}), S(\mathsf{X})\right]^2 \to \mathsf{M},$ where $f(x) = \varepsilon^{3/\beta} \cdot d(x, s)$. added term

Redefining Q(x):

where
$$p(x) = d(\{f^{-1}(x), x, f(x)\}, g)$$
.

MAPS WITH DISCONTINUITIES AND UNBOUNDED DEPLYATIVE

Setting: $M^2 = surface, S \subset M$ closed, $f: M \setminus S \rightarrow M \subset H^{\beta}$ s.t. $\exists o > 1 s.t.$ $d(x,s)^{\alpha} \leq \|df_x^{\pm 1}\| \leq d(x,s)^{-\alpha}$.

GOAL: Construct Morkov partitions

Idea: use pseudo-orbits to understand f in neighborhood of (Xn)nez.

- |A| < λ, |B'| < λ as before.
 Note: we decreased
 ||hill_1+β/3 < ε. from β/2 to β/3.

Proof.

$$f \times y = (y_{y}^{-1} \circ Y_{f(x)} \circ (y_{f(x)}^{-1} \circ f \circ Y_{x}))$$

 $f \times y = (y_{y}^{-1} \circ Y_{f(x)} \circ (y_{f(x)}^{-1} \circ f \circ Y_{x}))$
 $f \times y = (y_{x}^{-1} \circ Y_{x}) \circ f \circ (y_{x}^{-1} \circ f \circ Y_{x})$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}^{-1} \circ f \circ (y_{x})))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ f \circ (y_{x}))$
 $f \times y = (y_{x}^{-1} \circ (y_{x}))$
 $f \to (y_{x}^{-1} \circ$

- To $\sigma = g \circ T$: uniqueness of shodow.
- TT usually as-to-one: if $\exists x_n, y_n \approx q^n(x)$, then any choice gives $\underline{v} \in \Pi^{-1}(x)$.

2 options 2 options 2 options

• Let $Z = \{Z_v : v \in V\}$, where $Z_v = \{T(v) : v_o = v\} = T([v_o]_o).$

· Repine Z, destroying intersections:

NONUNIFORMLY HYPERBOLIC SYSTEMS

ICTP, 2021 LECTURE 3

God: construct Markov partitions por NUH systems

Dippicutties:

· Objects do not vary continuously (only measurably)

• NUH behaviour of points varies a lot We know how to measure: s,u, a, a, a, q, qs, qu

Previous result (KATOK): Katok horsestoes

Horseshoes with finitely many symbols and entropy 2 topological entropy (Restrict attention to Pesin sets-where continuity holds - and apply a more precise study of pseudo-orbits, using Bowen's approach)

New result (SAPIG):

Horseshoe with countably many states and full topological entropy

Even newer nonuniformly hyperbolic locus:

$$NUH_{\chi}^{\sharp} = \begin{cases} \lim_{x \in NUH_{\chi}^{\sharp}} \lim_{x \in NUH_{\chi}^{\sharp}} |\lim_{x \to -\infty} q(f^{n}(x)) > 0 \text{ and } \\ \lim_{x \to +\infty} q(f^{n}(x)) > 0 \end{cases}$$
Recall: NUH_{χ} : E^{S}, E^{u} with pinite s(x), u(x)
 NUH_{χ}^{\sharp} : $q(x) > 0$ (subexponential Q)
 NUH_{χ}^{\sharp} : recurrence (Pliestines)

THM (SARIG) $f: M^2 \rightarrow M^2 C^{1+\beta}$ dippeo.

Given $\chi > 0, \exists (\Sigma, \sigma)$ and $\Pi: \Sigma \rightarrow M$ Hölder continuous s.t.

(1)
$$\Sigma \xrightarrow{\sigma} \Sigma$$

 $T \downarrow \square \square \square T$
 $M \xrightarrow{q} M$
(2) $T [\Sigma^{\#}] = NUH_{\chi}^{\#}$
(3) $T [_{\Sigma^{\#}} \text{ is pinite-to-one.}$
Above:
 $\Sigma^{\#} = \begin{cases} Y = [Y_n]_{n \in \mathbb{Z}} \in \Sigma : colly many n > 0 and V_n = W \text{ for colly many} n < 0 and V_n = W \text{ for colly many} n < 0 \end{cases}$

Compose it with $NUH_{\chi}^{\#}$.

Æ

Five main ingredients:

- · E-overlop
- · E-double charts
- · Coarse graining
- · Improvement lemma
- · Inverse theorem

E-overlap:
UH: X≈y ⇒ E[°]_x≈E[°]_y.
NUH: x≈y and II → ~> C(x), c(y)
ore very
different
Pesin chart
$$\psi_x^{\eta}$$
: restriction ψ_x : [-4, η]²→M

E-overlap:
$$\Psi_{X_1}^{A_1} \approx \Psi_{X_2}^{A_2}$$
 if
 $h_1 = e^{\pm \epsilon}$
 h_2
 $very strong!$

• $d(x_1, x_2) + || c(x_1) - c(x_2)|| < (\eta_1 \eta_2)^4$

- <u>THM</u> (SARIG) If $\psi_{q(x)}^{n} \approx \psi_{y}^{n'}$ then $f_{x,y} = \psi_{y}^{-1} \circ f \circ \psi_{x} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} + \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}$ s.t.:
 - IAI, IB⁻¹ I < λ. E-orgrlop allows hyperbolicity!
 - || hill c1+B/3 < E.

E-double chorts:

$$\begin{cases}
UH: \alpha(x) > 0 \text{ unifformly} \\
NUH: \alpha(x) \approx 0 \Rightarrow hard to measure hyperbolicity along Es and Eu at same scales.
\end{cases}$$
Recall: for $x \in NUH_{X,s}^{*}$

$$\begin{cases}
q^{s}(x) = ine \{e^{sn} Q(q^{n}(x)): n \geq 0\} \\
q^{u}(x) = ine \{e^{sn} Q(q^{-n}(x)): n \geq 0\} \\
U Two different scales for s, u directions.
\end{cases}$$
E-double chort: $\psi_{X,s}^{p^{s},p^{u}} = (\psi_{X,s}^{p^{s}}, \psi_{X}^{p^{u}}) \\
\psi_{X,s}^{p^{s}}: behaviour of E^{s} analysed at scale p^{s} \\
\psi_{X,s}^{p^{u}}: behaviour of E^{u} analysed at scale p^{u}
\end{cases}$

Write
$$v = \Psi_{X}^{p^{s}, p^{u}}$$
 and $w = \Psi_{Y}^{q^{s}, q^{u}}$.
Edge $v \stackrel{\varepsilon}{\rightarrow} w$:
(GPO1) $\Psi_{qtx}^{qs, q^{u}} \stackrel{\varepsilon}{\approx} \Psi_{Y}^{qs, q^{u}}$ and
 $\Psi_{qtx}^{p^{s}, p^{u}} \stackrel{\varepsilon}{\approx} \Psi_{Y}^{p^{s}, q^{u}}$ and
 $\Psi_{qty}^{p^{s}, p^{u}} \stackrel{\varepsilon}{\approx} \Psi_{X}^{p^{s}, q^{u}}$
(GPO2) $p^{s} = \min\{e^{\varepsilon}q^{s}, Q(x)\}$ (Exactly what
 $q^{u} = \min\{e^{\varepsilon}p^{u}, Q(y)\}$

$$\begin{split} & \mathcal{E} - \text{generalized pseudo-orbit ($E-$gpo):} \\ & \mathcal{V} = \{ \Psi_{X_n}^{p_n^s, p_n^u} \}_{n \in \mathbb{Z}} \text{ s.t. } \Psi_{X_n}^{p_n^s, p_n^u} \xrightarrow{\mathcal{E}} \Psi_{X_n^{s, p_n^{s, p_n^{$$

FACT: Every
$$x \in \text{NUH}_{x}^{*}$$
 generates on \mathcal{E} -gpo
 $\mathcal{L} = \{ \Psi_{q^{n}(x)}^{q^{s}(q^{n}(x))}, q^{u}(q^{n}(x)) \}_{n \in \mathbb{Z}}$

Edges
$$v \stackrel{E}{\rightarrow} w$$
 induce graph transporms $F_{v,w}^{S/u}$:
• $M_v^S = \{ \text{almost horizontal graphs} \}$
= $\begin{cases} graphs of F: [-p^S, p^S] \rightarrow \mathbb{R} \text{ s.t.} \\ |F(o)| < \frac{1}{1000} (p^S \wedge p^u), |F^1(o)| < \frac{4}{2} (p^S \wedge p^u)^{B/3}, \\ |IF^1|_{C^0} + H\ddot{o}|_{B'3}(F) \leq 1h. \end{cases}$

•
$$\mathcal{M}_{v}^{u}$$
 similarly
• $\mathcal{F}_{v,w}^{s}: \mathcal{M}_{w}^{s} \to \mathcal{M}_{v}^{s}$ and $\mathcal{F}_{v,w}^{u}: \mathcal{M}_{v}^{u} \to \mathcal{M}_{w}^{u}$
Stable/unstable manipolds of E-gpo:
 $V^{s}[\underline{v}] = \lim_{n \to +\infty} (\mathcal{F}_{v_{0}v_{1}}^{s} \circ \cdots \circ \mathcal{F}_{v_{n-1,v_{n}}}^{s})[v_{n}]$
and

$$V^{u}[Y] = \lim_{n \to -\infty} (\mathcal{F}^{u}_{V_{-1}, V_{0}} \circ \cdots \circ \mathcal{F}^{u}_{V_{n}, V_{n+1}})[V_{n}].$$

These ore genuine Pesin invoriant manipolds

Idea: Consider

$$\Gamma(x) = (\underline{x}, \underline{\subseteq}, \underline{\heartsuit}), \text{ where}$$

$$\begin{cases} \underline{x} = (\underline{e}^{-1}(x), x, \underline{e}(x)) \\ \underline{\subseteq}(x) = (C(\underline{e}^{-1}(x)), C(x), C(\underline{e}(x))) \\ \underline{\heartsuit} = \bigcirc(x), \qquad \text{Recall: their enverses} \\ \text{Can be huge!} \end{cases}$$
For $\underline{\mathscr{L}} = (\underline{\mathscr{L}}_{-1}, \underline{\mathscr{L}}_{\circ}, \underline{\mathscr{L}}_{1}), \text{let}$

$$Y_{\underline{\mathscr{L}}} = \{\Gamma(x) : \underline{\mathscr{L}}^{\varepsilon} \leq \|C(\underline{e}^{\varepsilon}(x))^{-1}\| < \underline{\mathscr{L}}^{\varepsilon}(\underline{\mathscr{L}}_{1}), |\underline{\mathscr{L}}| \leq \underline{\mathscr{L}} \}$$
Then $\{\Gamma(x) : x \in \operatorname{NUH}_{\mathcal{X}}^{\#}\} = \bigcup Y_{\underline{\mathscr{L}}}, \text{ with } Y_{\underline{\mathscr{L}}}$

$$\underbrace{\operatorname{Pre-compact.}}_{\underline{\mathscr{L}}}$$

$$\exists \text{ dense countable subset.}$$
We obtain:

<u>THM</u> (SARIG) ∀ ε > 0, ∃ Δ = countable family of ε-double charts s.t.: (1) Discreteness: ∀t>0, {Ψ_x^{ps},p^u ∈ Δ: p^s∧p^u>t} is finite. p^s∧p^u>t: Pesin set (2) Sufficiency: ∀ x ∈ NUH[#]_x, ∃ε-gpo x ∈ Δ² that shadows x.

Hence: $\Sigma, \sigma, \pi: \Sigma \rightarrow M$ as in UH case.

Improvement lemma:

Goal: If
$$Y = \{Y_{X_n}^{p_n^*, p_n^*}\}_{n \in \mathbb{Z}}$$
 shadows X,
relate hyperbolicity parameters of X with
those of $Y_{X_n}^{p_n^*, p_n^*}$.

Problem: how to compare s(x) and $s(x_0)$. <u>LEMMA</u> (IMPROVEMENT LEMMA) If $\underline{s(e(x))}_{s(x_1)}$ is big, then $\underline{s(x)}_{s(x_0)}$ is smaller. More specifically: for $\Xi \ge \sqrt{\epsilon}$, if $\underline{s(e(x))}_{s(x_1)} = e^{\pm \epsilon}$, then $\underline{s(x)}_{s(x_0)} = e^{\pm (\epsilon - Q(x_0)^{\beta/4})}$.

COROLLARY. $\pi[\Sigma^{\#}] \subset \operatorname{NUH}_{\chi}^{\#}$.

Proof of improvement lemma.

Applying q⁻¹ along stable direction improves regularity:

Indeed:

$$\int s(x)^{2} = 2 + C \cdot s(f(x))^{2}$$
$$\int s(x_{0})^{2} = 2 + C \cdot s(x_{0})^{2}$$

$$J_{\xi} \frac{s(\xi|\chi)^{2}}{s(\chi_{1})^{2}} = K \gg 1, \text{ then}$$

$$\frac{s(\chi)^{2}}{s(\chi_{1})^{2}} \approx \frac{2+K \cdot C s(\chi_{1})^{2}}{2+C s(\chi_{1})^{2}} < K.$$
Inverse theorem:
$$T_{HM}. (SARIG) I_{\xi} T(\chi) = x \text{ with } \chi = \{\psi_{\chi_{h}}^{p_{\chi}^{\xi}}, p_{h}^{\chi}\} \in \Sigma^{\sharp},$$

then:

(1)
$$X_n \approx e^n(x)$$
.

(3)
$$\frac{s(x_n)}{s(f^n(x))} \approx 1$$
, $\frac{u(x_n)}{u(f^n(x))} \approx 1$.

(4)
$$\frac{p_n^s}{q^s(r(x))} \approx 1$$
, $\frac{p_n^u}{q^u(r(x))} \approx 1$.

These estimates play a crucial role for the Bowen-Sinai repinement.

Recall:

Step 1 (Coorse graining):

- · A = countable family of E-double charts
- G = (V, E), where V = A and $E = (\Psi_{x}^{ps, pu} \xrightarrow{E} \Psi_{y}^{qs, qu})$
- $\Sigma = \Sigma(q)$: $\nabla \in \Sigma$ is ε -gpo

Step 2 (Inpinite-to-one extension):

• Define $T: \Sigma \rightarrow M$,

 $\Pi(\underline{\Lambda}) = \Lambda_{\mathbf{z}}[\overline{\Lambda}] \cup \Lambda_{\mathbf{n}}[\overline{\Lambda}]$

• π is surjective onto $\text{NUH}_{\Sigma}^{\#}: \pi[\Sigma^{\#}] = \text{NUH}_{\Sigma}^{\#}$.

- · TO = fo T: same
- π is usually ∞-to-one: same Step 3 (Bowen-Sirai repinement): · let Z = { Z_v: ve v}, where $\mathbb{Z}_{V} = \{ \mathsf{T}(\underline{\vee}) : \underline{\vee} \in \mathsf{NUH}_{\mathcal{X}}^{\#} \text{ and } v_0 = v \}$ $= \pi([\sqrt{3}^{*}]).$ Z is a countable cover of NUH*. How to repine and still obtain countable? Main property: Z is locally finite YX∈NUH[#],∃ finitely many ZEZ containing X. •X

Indeed:

$$X \in Z = \Psi_X^{p^s, p^u} \Rightarrow \begin{cases} p^s \approx q^s(x) \\ p^u \approx q^u(x) \end{cases}$$

 $\Rightarrow p^s \wedge p^u \approx q^s(x) \wedge q^u(x) = q(x)$
 $\Rightarrow \Psi_X^{p^s, p^u} \in \{\Psi_Y^{q^s, q^u}: q^s \wedge q^u > q(x)\}$
finite, by coarse graining.

Now regine as before.

Conclusion:

<u>THM</u> (SARIG) f:M² → M² C^{1+B} diffeo.

Given $X > 0, \exists (\Sigma, \sigma)$ and $\Pi: \Sigma \rightarrow M$ Hölder continuous s.t.

(1)
$$\Sigma \xrightarrow{\bullet} \Sigma$$

 $\pi \downarrow \qquad \Pi \qquad \Pi \qquad \Pi \qquad \Pi$
 $M \xrightarrow{\bullet} M$
(2) $\pi[\Sigma^{\#}] = NUH_{\chi}^{\#}$
(3) $\pi[_{\Sigma}^{\#}] = is pinte-to-one.$

Many new technical difficulties

SURFACE MAPS WITH DISCONTINUITIES AND BOUNDED DERIVATIVE (lima - Sarig) Setting: M² = surface, JCM closed, $f:M\setminus S \to M C^{1+\beta}$ with bounded df. Already understood: invariant manipolds Coarse graining: need to consider J (NUH1)-(NUH4) loses compactness Recall: for XE NUH*, let $\Gamma(x) = (x, \zeta, Q)$, where $\begin{cases} \underline{x} = (t^{-1}(x), x, t(x)) \\ \underline{c}(x) = (c(t^{-1}(x)), c(x), c(t(x))) \\ \underline{Q} = Q(x). \end{cases}$

For
$$\underline{\mathcal{L}} = (\underline{\mathcal{L}}_{-1}, \underline{\mathcal{L}}_{0}, \underline{\mathcal{L}}_{1})$$
 and $\underline{\mathbb{K}} = (\underline{\mathbb{K}}_{-1}, \underline{\mathbb{K}}_{0}, \underline{\mathbb{K}}_{1}), \underline{\mathbb{L}}_{1}$

$$Y_{\underline{\mathcal{L}}, \underline{\mathbb{K}}} = \begin{cases} u_{\underline{\mathcal{L}}} & u_{\underline{\mathcal{L}}} \\ u_{\underline{\mathcal{L}}} \\ u_{\underline{\mathcal{L}}} \\ u_{\underline{\mathcal{L}}} & u_{\underline{\mathcal{L}}} \\ u$$

SURFACE MAPS WITH DISCONTINUITIES AND UNBOUNDED DERIVATIVE (Lima-Matheus) Setting: M² = surface, J ⊂ M closed, f:M\S→M C^{1+B} s.t. J a>1 with d(x,J)^a ≤ II dg^{±1}II ≤ d(x,J)^{-a}. Already understood: invariant manifolds

On
$$B(x, r|x)$$
 for $r(x) = d(x, 3)^{\binom{LARGE}{POWER}}$,
f is well-behaved.
Coarse graining: $f(x, P) = \{D_i\}$ countable
open cover of M\-S s.t.:
 $D_i = B(x_i, r(x_i))$

Discreteness: ∀t>0, {D ∈ P: d(D,3)≥t}
 is finite.

For
$$\underline{l} = (l_{-1}, l_{0}, l_{1}), \underline{K} = (K_{-1}, K_{0}, K_{1}), \underline{a} = (a_{-1}, a_{0}, a_{1}), \text{let}$$

$$e^{\underline{l}i} \leq \|C(\underline{e}^{i}(\underline{x}))^{-1}\| < e^{\underline{l}i+1}$$

$$Y_{\underline{K}, \underline{Q}, \underline{a}} = \begin{cases} \Gamma(\underline{x}) : e^{-\underline{k}i-1} \leq d(\underline{e}^{i}(\underline{x}), \underline{s}) < e^{\underline{k}i} : |i| \leq 1 \\ \underline{e}^{i}(\underline{x}) \in D_{a_{i}} \end{cases}$$

and repeat the preceding argument.

NON-INVERTIBLE MAPS IN HIGH

DIMENSION WITH SINGULAPITIES

(Araujo-lima-Poletti)

- M = Riemannian manipold with finite diameter possibly disconnected and/or with boundary
- D < M closed : discontinuity set
- Exponential map at x: ∃ a>1 s.t. ∀ x ∈ M\D
 ∃ ∂(x) > d(x,D)^a s.t. exp_x: B(0,∂(x))→M is
 well-defined and regular
 Idexp^{±1} || ≤ 2

- · $f: M\backslash D \rightarrow M$ map.
- C = { x ∈ M\D: dfx is not invertible} :
 critical set
- Singular set: f = CUD.
- Regularity of f: for every $x \in M$ s.t. $x, f(x) \notin J$, $\exists r(x) > \min \{ d(x, J)^{a}, d(f(x), J)^{a} \}$ s.t. $f|_{B(x, r(x))} , \exists |_{B(f(x), r(x))} \text{ are diffeos with}$

 $d(x, g)^{\alpha} \leq ||df_{Y}||, ||dg_{z}|| \leq d(x, g)^{-\alpha}$

Problem: & not invertible no symmetry between enture and past Idea: Code the natural extension of flet (\hat{M}, \hat{F}) be the natural extension we will soon define

THM (Araujo-Lima-Poletti) let M, f as obove. For X > 0, $\exists NUH_{\mathcal{X}}^{\#} \subset \widehat{M}$, (Σ, σ) with countable states and $T: \Sigma \rightarrow \widehat{M}$ Hölder continuous s.t.:

- (4) $\Sigma \xrightarrow{\sigma} \Sigma$ $\pi | \Omega | \pi$ $\hat{H} \xrightarrow{\gamma} \hat{H}$ \hat{f} (2) $\pi [\Sigma^{\#}] = NUH_{\chi}^{\#}$
- (3) $\pi|_{\Sigma}$ # is pinite-to-one.

Obs.: As before, the oriented graph has finite degree (but usually not uniformly bounded).

Natural extension:
•
$$\hat{M} = \{\hat{x} = (x_n)_{n \in \mathbb{Z}} : f(x_n) = x_{n+1}, \forall n \in \mathbb{Z}\}, \\ \hat{x} = (\dots, x_{-1}, x_0; x_1, \dots)$$

• Define $\hat{f} : \hat{M} \rightarrow \hat{M}$ by "left shift":
 $\hat{f}(\dots, x_{-1}, x_0; x_1, \dots) = (\dots, x_0, x_1; x_2, \dots)$
• Cononical projection $0 : \hat{M} \rightarrow M$.
 $\hat{x} \mapsto x_0$
• Lift f to $\hat{M} : f \mapsto \bigcup \hat{f}^n(\bigcup^{-1}[f]).$
 $n \in \mathbb{Z}$

· On the complement
$$\hat{H} \setminus U\hat{f}^n(v^{-1}[-f]),$$

define bundle

$$\widehat{TM} = \bigcup \widehat{TM}_{\hat{X}}$$

where $\widehat{TM}_{\hat{X}} = TM_{X_0}$

- and lift de to invertible cocycle $(\hat{d}\hat{e}_{\hat{x}}^n)_{n\in\mathbb{Z}}$.
- · Inverse branch taking f(x) to x:

Nonunipormly hyperbolic locus NUH_{χ} : The set of $\hat{\chi} \in \hat{M} \setminus U\hat{\ell}^n(U^{-1}[-\vartheta])$ s.t. $\exists T\hat{M}_{\hat{\chi}} = E_{\chi}^{\hat{\chi}} \oplus E_{\chi}^{\hat{\chi}}$ s.t. (NUH1)-(NUH3) with respect to $\hat{d}\hat{\ell}$.

Then introduce:

- "Inner product" on NUHZ.
- · C(x), diagonalization ar de.

- · Pesin chart $\psi_{\hat{X}}$.
- Parameters $Q(\hat{x}), q(\hat{x}), q^{s}(\hat{x}), q^{u}(\hat{x}).$
- f and inverse branches $g = f_{\hat{X}}^{-1}$ in Resin charts: $\int F_{\hat{X}} := \psi_{\hat{Y}}^{-1} \circ f \circ \psi_{\hat{X}}$ $\int F_{\hat{X}}^{-1} := \psi_{\hat{X}}^{-1} \circ f_{\hat{X}}^{-1} \circ \psi_{\hat{Y}}(\hat{x})$

They are small perturbations of hyp. matrices.

• Maps $F_{\hat{x},\hat{y}}$ and $F_{\hat{x},\hat{y}}^{-1}$: $\psi = \psi_{\hat{x}}^{1} \approx \psi_{\hat{y}}^{1}$, let $F_{\hat{x},\hat{y}} := \psi_{\hat{y}}^{-1} \circ f \circ \psi_{\hat{x}}$. If $\psi_{\hat{x}}^{n} \approx \psi_{\hat{x}}^{n}(\hat{y})$, let $F_{\hat{x},\hat{y}}^{-1} := \psi_{\hat{x}}^{-1} \circ f_{\hat{x}}^{-1} \circ \psi_{\hat{y}}$.

Again, they are small perturbations of hyp. matrices.

Some depinition as before

Stable/unstable sets of \mathcal{E} -gpo: From O^{th} position determined by $V^{S/u}[\underline{v}]$, recover other positions:

- · Positive positions: just opply f
- Negative positions: each edge $\psi_{X_n}^{p_n^x, p_n^x} \xrightarrow{\varepsilon} \psi_{X_{n+1}}^{p_{n+1}^x, p_{n+1}^x}$ is associated with a single inverse branch $e_{X_n}^{-4}$. Then negative positions are uniquely defined.

This depines invortant sets $\hat{V}^{s}[\underline{v}]$ and $\hat{V}^{u}[\underline{v}]$, which are subsets of \hat{M} .

Next :

- $\pi: \Sigma \rightarrow \hat{M}$ inpirite-to-one extension:

set-theoreticalno smoothness needed

SYMBOLIC DYNAMICS FOR NONUNIFORMLY HYPERBOLIC SYSTEMS ICTP, 2021 LECTURE 5 Goal: present applications of existence of Markov partitions for NUH systems Idea: understand properties that live in NUH# and easier to study at a symbolic level inside $\Sigma \sim \Sigma^{\#}$ APPLICATIONS 1. Measures of maximal entropy (MME)

- # MME
- Uniqueness of MME

- · Exponential decay of correlations
- 2. Ergodic properties of MME: the Bernoulli property
- 3. Counting periodic trajectories
- 4. Hyperbolic SRB measures

- · π|_{L#}: Σ# → NUHZ finte-to-one → v MME
- Gurevich 1969,1970: (Σ,σ) has at most countably
 many MME¹s.

THM (Sarig) In the above context, 3 at most countably many MME's.

QUESTION: How to go beyond and prove piniteness and/or uniqueness?

un diegeos (Bowen): if f is transitive, then (Σσ) is transitive

- NVH dippear (Buzzi-Grovisier-Sarig):
- Rodrigues Hertz-Rodrigues Hertz-Tahzibi-Ures: relate
 homoclinic classes and SRB measures.

Step 1: Every SRB is supported in a single hom. class. Step 2: Every hom. class supports at most one SRB. Hence, if f. is topologically transitive then I at most one SRB.

Here, a <u>dynamical Sard's lemma</u> is used: "metric" transversality and lebesgue measure on $W^{u} \rightarrow actual$ transversality somewhere. Here, <u>low dimension</u> is essential. su-rectangles

- BCS: In NUH context, homoclinic classes might not be disjoint but their intersection carries no entropy
 BCS: each homoclinic class is coded by a <u>transitive</u> (Σ,σ).
 This is port of Step 2
- BCS : every measure with entropy >0 is supported in a homoclinic class. Here, a <u>new</u> dynamical sord's lemma is used. Regularity on f and <u>low dimension</u> are essential.
- · BCS: there are finitely many hom. classes with "large" entropy.
- <u>THM</u> (Buzzi Crovisier Sarig) If $f: M^2 \rightarrow M^2$ is C^{oo}, transitive with $h_{top}(f) > 0$, then $\exists !$ MME.

· Limo-Sorig: fixing p on M, JN st. NUH " carries" µ.

1-parameter pamily Nt + double counting + Borel-Cantelli lemma.

THM (Lima-Sarig) In the above context, y has at most countably many MME. Setup: $f:M^2 \setminus S \rightarrow M^2 \subset H^\beta$ with singularities and htop(e)>0, e.g. billiard maps Adopted measure: µ is <u>adopted</u> if log d(x, T) ∈ L¹(µ). The adapted and hyperbolic measures are supported in NUH*. Problem: are measures with large entropy adapted? In general : wide open THM (Bolodi-Demers) For many 2-dim dispersing billiards, 3! MME and it is adapted. Anisotropic spacer

Setup: $f: M^n \rightarrow M^n \subset \mathcal{C}^{H\beta}$ differ with $h_{top}(f) > 0$. THM (Ben Oradia) In the above context, & has at most countably many hyperbolic MME. Setup: f:M→M as in Arayjo-lima-Poletti. Problem: relate large entropy with {hyperbolicity adaptedness THM (Arayo-lima-Poletti) In the above context, f has at most countably many hyperbolic and adapted MME.

Ergodic properties of equilibrium states:

• In (Σ, σ) , if $\mu = erg.$ equilibrium state of Hölder

continuous potential, then $\mu = Bernoulli$ or Bernoulli x rotation.

- <u>THM</u> (Sarig) If f: M²→ M² C^{1+β} diffeo and μ as above with hµ(f)>0 is either Bernoulli or Bernoulli x rotation. In particular, it applies to MHE <u>THM</u> (Lima-Sarig) If q: M²→ M² st. X = dq e C^{1+β} and X ≠ 0 everywhere, then μ as above with hµ(q)>0 is either Bernoulli or Bernoulli x rotation. If q is additionally <u>contact</u>, then μ is Bernoulli.
- <u>THM</u> (Ben Ovodia) If f:Mⁿ→Mⁿ C^{1+B} differo, then µ os above + <u>hyperbolic</u> is either Bernoulli or Bernoulli x rotation.

THM (Arayjo-lima-Poletti) In the context of ALP, then p as above + hyperbolic + adapted u either Bernoulli or Bernoulli x rotation. Open: If y is contact, is µ Bernoulli? For ronkone, µ is k by Call-Thompson, hence Bernoulli. Counting periodic trajectories: Notation: $f: M \rightarrow M$, $Par_n(f) = \#$ periodic points of period n. $\varphi: M \rightarrow M$, $Per_T(\varphi) = \#$ " ≤T. 0 · Gurevich 1969, 1970: In (Σ,σ) with htop(σ)=h>0, if ∃ MME then Pern(e) ≥ const x e^{hn} for n>>1. THM (Sorig) If f: M²→M² C^{4+B} with h_{top}(f)=h>0 and if 3 MME, then 3 p>1 s.t. Pernp(f)>constx ehop for n>>1. → e.g. when f ∈ C[∞], by Newhouse.

<u>THM</u> (Buzzi) If additionally p is transitive, then Pern(p) > const × e^{hn} for n >> 1. <u>THM</u> (Ben-Ovadia) If $p: M^n \to M^n C^{4+p}$ with $h_{top}(p) = h > 0$ has hyperbolic MME, then $\exists p \ge 1$ s.t. $Per_{np}(p) \ge const \times e^{hnp}$ for n >> 1. <u>THM</u> (Buzzi) If additionally p is transitive, then $Per_n(p) \ge const \times e^{hn}$ for $n \gg 1$.

THM (Lima-Matheus, Baladi-Demers, Buzzi) For many 2-dim

dispersing billiards, Pern(q) > const × e^{hn} for n >> 1.

THM (Lima-Sarig) If
$$\varphi: M^3 \rightarrow M^3$$
 st. $X = d\varphi \in C^{4+\beta}$ and
 $X \neq 0$ everywhere, $h_{top}(\varphi) = h > 0$ and if $\exists MME$, then
 $Per_T(\varphi) \ge const \times \frac{e^{hT}}{T}$ for $T >> 1$.
 T
 e_g . when $\xi \in C^{\infty}$, by Newhouse.

<u>THM</u> (ALP) If $\varphi: M^n \rightarrow M^n$ st. $X = d\varphi \in C^{1+\beta}$ and $X \neq 0$ everywhere, $h_{top}(\varphi) = h > 0$ and if \exists hyperbolic MME, then $Per_T(\varphi) \ge const \times \frac{e^{hT}}{T}$ for $T \gg 1$.

THM (ALP) For Viona mops, Pern(f) > const × e^{hn} for n >> 1.

THM (ALP) For the following billiords

we have Pern(q) > const × e^{hn} for n >> 1, where h=hpspg(f)>0.

