

The use of synoptic cloud band event analysis to identify biases in climate simulations

Authors:

Marcia Zilli, Neil Hart School of Geography and the Environment, University of Oxford, UK

Kate Halladay, Ron Kahana, Robin Chadwick Met Office, UK

Caio Coelho, Dayana Castilho, Paulo Kubota, Iracema Cavalcanti, Silvio Nilo Figueroa National Institute of Space Research, Brazil

Advancing Subtropical Climate Dynamics: Diagonal Convergence Zones, Droughts, and Floods in Past, Present and Future Climates, August 2022 05/08/2022 Marcia Zilli

What are Cloud Bands?

- Continuous areas of low OLR connecting convective areas from the tropics to the extratropics.
- Responsible for large fractions of the rainy season precipitation
- Intense events: floods and landslides Absence/late onset: dry spells and drought

Identification of Cloud Bands Events

Algorithm developed by Hart et al. (2012, 2013) and adapted to South America [Zilli and Hart 2021]

	OLR	PRECIPITATION	WIND (200hPa)	
NOAA CDR V1.2 [1°lat/lon; 1979-2018]		ERA5 [0.25°lat/lon; 1979-2018]	ERA5 [0.25°lat/lon; 1979-2018]	
ld	entification of events	Intensity of the events	Circulation features	
GCM	BAM v1.2 (TQ0126L042) 0.9735° lat/lon 1981-2010	HadGEM3 n96 1.25° lat/lon 1979-2014 (AMIP and CMIP)	HadGEM3 n216 ~0.55° lat/lon 1979-2014 (AMIP and CMIP)	
Mot Office (UK) CDM				

Met Office (UK) CPM

UM-N512 \rightarrow CPM control @ 4.5km ERA-I \rightarrow RCM @ 25km \rightarrow CPM hindcast @ 4.5km

Identification of Cloud Bands Events

https://the-iea.github.io/vp-cloud-band-explorer/

05/08/2022

Climatology – Location and Intensity

5

(b)

Climatology – Circulation

(a)

05/08/2022

30°W

2021]

Zilli and Hart

GCM Simulations – Location and Intensity

- Delayed onset of the cloud band season (larger in UKMO models)
- Events last longer in BAM-1.2 [fewer transitent but more persistent events]
- Wet bias over Eastern Brazil and Southeastern South America

Soge | School of Geography and the Environment

UNIVERSITY OF OXFORD

Accum PP (mm. month

50

50-100 -50

100

-50

50-100

-150-100 -50 0 50 100 Δ Accum PP (*mm. month*

[Zilli et al 2022]

Accum PP (mm. month

GCM – Bias in the duration of Events

GCM – Wet Bias over Southeastern SAm

CPM First Results – Cloud Band Events

Comparison to the number of days with events considering NOAA OLR (blue contour)

NOAA OLR thrs = 225 W/m² [1998-2007]

CPM control run (N512 forcing)

Soge School of Geography and the Environment UNIVERSITY OF

CPM First Results – Cloud Band Events

Comparison to the number of days with events considering NOAA OLR (blue contour)

Cloud Bands in a Hemispheric Perspective Sofe School of Geography Sofe School of Geography Sofe School of Geography

05/08/2022

UNIVERSITY OF

Cloud Bands in a Hemispheric Perspective ENSO Anomalies

Soge School of Geography and the Environment

Cloud Bands in a Hemispheric Perspective SoGE School of Geography and the Environment

05/08/2022

UNIVERSITY OF

Discussion Topics

- Synoptic weather systems to classify different "flavours" of cloud bands (considering a PV and isentropic thinking).
- Connection with precipitation events over Southern Africa (TTT in the summer, cold fronts and AR in late summer and early fall) and Australia (??).
- Connections with other diagonal convergence zones over the SH (maybe even NH?)
- Sources of moisture into the cloudbands
- Improvements of the identification of cloudbands over Australia (why not over NH?)

Thank you!!

Contacts:

marcia.zilli@ouce.ox.ac.uk neil.hart@ouce.ox.ac.uk

Webpages:

- https://the-iea.github.io/vp-cloud-band-explorer/
- https://hart-ncg.github.io/real-time/about.html

A References:

G		
		λ
		1
	6	

- Hart N et al (2012) Mon Wea Rev 140, 4005-4016, doi: 10.1175/MWR-D-12-00127.1.
- Hart N et al (2018) J Climate 31, 2797-2817, doi: 10.1175/JCLI-D-17-0221.1.
- Zilli MT and Hart N (2021) J Climate 34, 8125-8144, doi: 10.1175/JCLI-D-21-0020.1

VIEWPoint Cloud Band Explorer

Near real-time monitoring webpage

