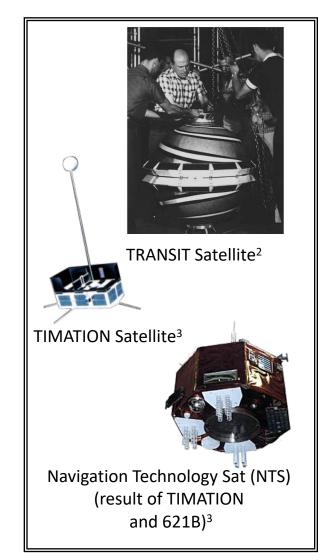


Introduction to GNSS

2022 Regional Workshop on GNSS and Space Weather

Dr. John F. Raquet
Director, IS4S-Dayton
Integrated Solutions for Systems


SECTION 1: GPS HISTORY

......

00000

GPS History

- Navigation technology has always been a military (and commercial) asset
 - Example: Seagoing clock¹
- Ability to determine position from satellites known since Sputnik
- Predecessors to GPS
 - Navy TRANSIT system
 - Measured Doppler shift of satellites in polar orbits
 - Required stationary (or slowly moving) vehicles
 - NRL TIMATION satellites
 - First to orbit precise clocks
 - Provided precise time transfer between points on the Earth
 - Provided side-tone ranging capability
 - Air Force Project 621B
 - Demonstrated ranging based on pseudorandom noise (PRN)
 - Allowed all satellites to transmit at same frequency
- GPS Joint Program Office (JPO) formed in 1973
 - Combining TIMATION with Project 621B created the Navigation Technology Satellite (NTS-1 & NTS-2) (Note: NTS-2 was designated the first GPS Phase I SV)

¹Info can be found at http://www.oldnewspublishing.com/harrison.htm

²Image from https://www.patrick.af.mil/heritage/6555th/6555ch4/images/wcgtsz.jpg

³Images from http://code8200.nrl.navy.mil/nts.html

SECTION 2: TIME-OF-ARRIVAL POSITIONING (TRILATERATION)

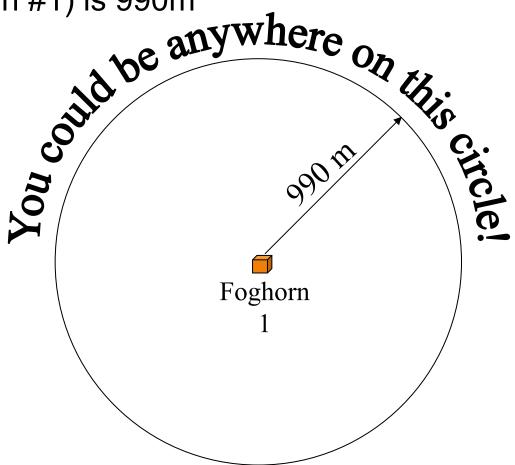
How can a receiver figure out where it is?

Ranging Using Time-Of-Arrival

Time-of-arrival (TOA) is one method that can be used to perform positioning

Basic concept

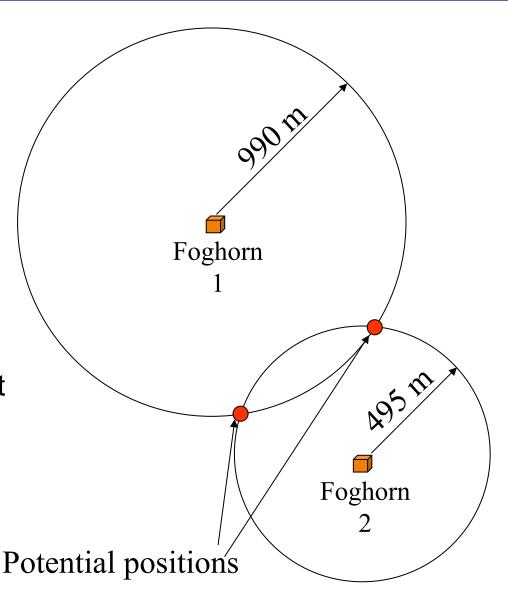
- You must know
 - When a signal was transmitted
 - How fast the signal travels
 - Time that the signal was received
- Then you can determine how far away you are from the signal emitter


Foghorn example

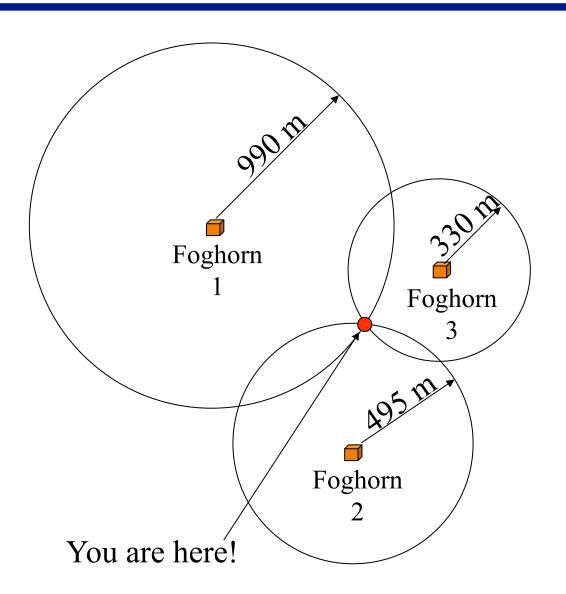
- Assume there is a foghorn that goes off at exactly 12:00:00 noon every day
- You know that the velocity of sound around the foghorn is 330 m/sec
- You have a device that measures the time when the foghorn blast is received, and it says it heard a foghorn blast at 12:00:03
- What is the distance between the foghorn and the foghorn "receiver"?
- Now that you know how far you are from the foghorn, the question is, "Where are you?"

By Drw25 at the English-language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4950551

Two-Dimensional Positioning Using Single Range Measurement


Range between you and the foghorn (we'll call it foghorn #1) is 990m

Unable to determine exact position in this case


Two-Dimensional Ranging Using Two Measurements

- Now, you take a measurement from foghorn #2 at 12:00:01.5 (for a range of 495 m)
- Yields two potential solutions
 - How would you determine the correct solution?

Resolving Position Ambiguity Using Three Measurements

- You get a third measurement from foghorn #3 at 12:00:01 (Range = 330 m)
 - Now there's a unique solution

Receiver Clock Errors (one way time transfer)

- The foghorn example assumed that the foghorn "receiver" had a perfectly synchronized clock, so the measurements were perfect
- What happens if there is an unknown receiver clock error?
- Effect on range measurement
 - Without clock error

$$R = \text{range}$$

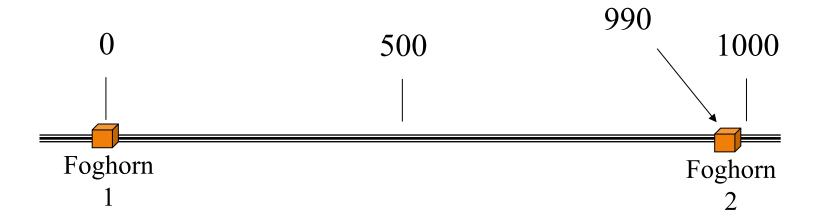
$$R = v_{sound} \Delta t \qquad v_{sound} = \text{velocity of sound}$$

$$\Delta t = \text{transmit/receive time difference}$$

With clock error δt

$$R' = v_{sound} (\Delta t + \delta t)$$
 where $R' = \text{range with error (pseudo-range)}$

Receiver Clock Errors One-Dimensional Example (1/3)


- Now, we'll look at the foghorn example, except in only one dimension
 - The foghorn(s) and receiver are constrained to be along a line
 - We want to determine the position of the receiver on that line

- If the receiver measured a signal at 12:00:10, where is it on the line?
- Now, assume an unknown clock bias δt in the clock used by the foghorn receiver
 - Your foghorn receiver measures a foghorn blast at 12:00:10
 - What can you say about where you are?

Receiver Clock Errors One-Dimensional Example (2/3)

- Clearly, more information is needed
- Assume that there is a second foghorn located 990 m away from the first

- You receive a signal from the second foghorn at 12:00:09
- What can you tell about where you are at this point?

Receiver Clock Errors One-Dimensional Example (3/3)

Here are the measurements we have:

Pseudorange
$$1 = 330 \times 10 = 3300 = R'_1$$

Pseudorange $2 = 330 \times 9 = 2970 = R'_2$

From the pseudorange equation:

$$R'_{1} = v_{sound} (\Delta t_{1} + \delta t) = x + v_{sound} \delta t = 3300$$

 $R'_{2} = v_{sound} (\Delta t_{2} + \delta t) = 990 - x + v_{sound} \delta t = 2970$

Rearranging terms we get

$$x + v_{sound} \delta t = 3300$$
$$x - v_{sound} \delta t = -1980$$

We can then solve for the two unknowns

$$\delta t = 8 \text{ seconds}$$
 Does this work?
 $x = 660 \text{ m}$

Receiver Clock Errors Extending to Three Dimensions

In the single-dimensional case

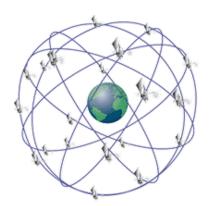
- We needed two measurements to solve for the two unknowns, x and δt .
- The quantities x and (990 x) were the "distances" between the position of the receiver and the two foghorns.

In three-dimensional case

- We need four measurements to solve for the four unknowns, x, y, z, and δt .
- The distances between receiver and satellite are not linear equations (as was case in single-dimensional case).
- The four equations to be solved simultaneously, for pseudorange measurements R_1 '... R_4 ' and transmitter positions $(x_1,y_1,z_1)...(x_4,y_4,z_4)$:

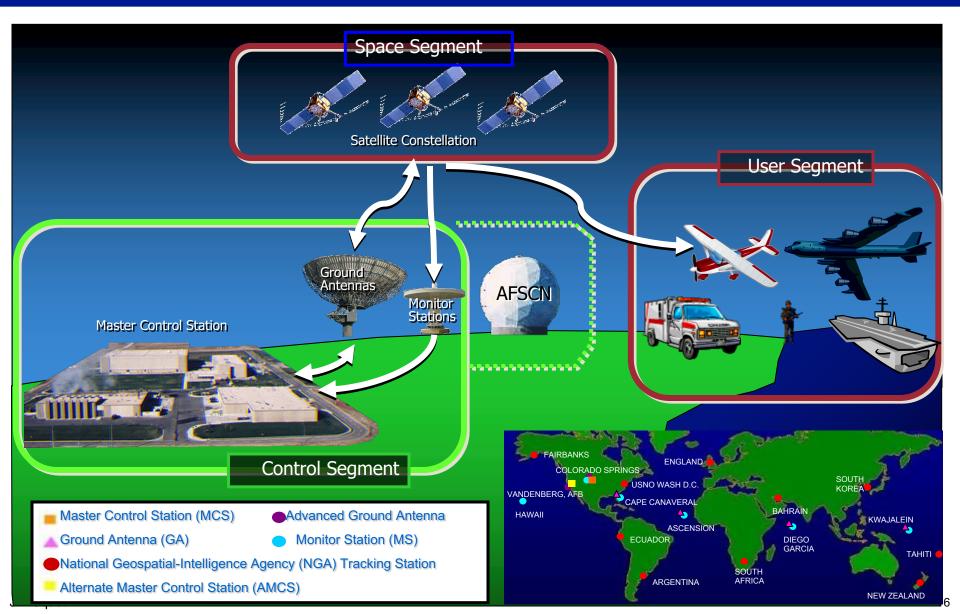
$$R'_{1} = \sqrt{(x - x_{1})^{2} + (y - y_{1})^{2} + (z - z_{1})^{2}} + c\delta t$$

$$R'_{2} = \sqrt{(x - x_{2})^{2} + (y - y_{2})^{2} + (z - z_{2})^{2}} + c\delta t$$


$$R'_{3} = \sqrt{(x - x_{3})^{2} + (y - y_{3})^{2} + (z - z_{3})^{2}} + c\delta t$$

$$R'_{4} = \sqrt{(x - x_{4})^{2} + (y - y_{4})^{2} + (z - z_{4})^{2}} + c\delta t$$

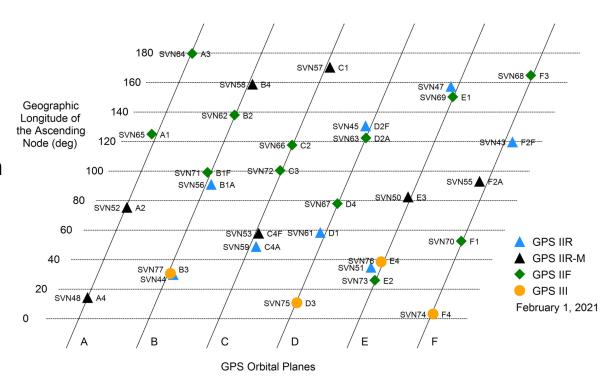
Things You Need to Know/Assumptions


- Positions of the transmitters
- Speed of the signal
- All signals received at the same time (so is a single receiver clock error)
- Transmit time of the signal (including accounting for transmitter clock errors)

SECTION 3: GPS SYSTEM OVERVIEW

- Three segments of GPS system
- Differential GPS
- GPS performance

GPS Overview: Three Interactive Segments


GPS - Space Segment

Nominally, there are 24 active satellites

- Originally "21
 operational and 3
 active spares" (but
 distinction not really
 made any more)
- Current Constellation described as the "24+3"
- Have been 30+ satellites recently

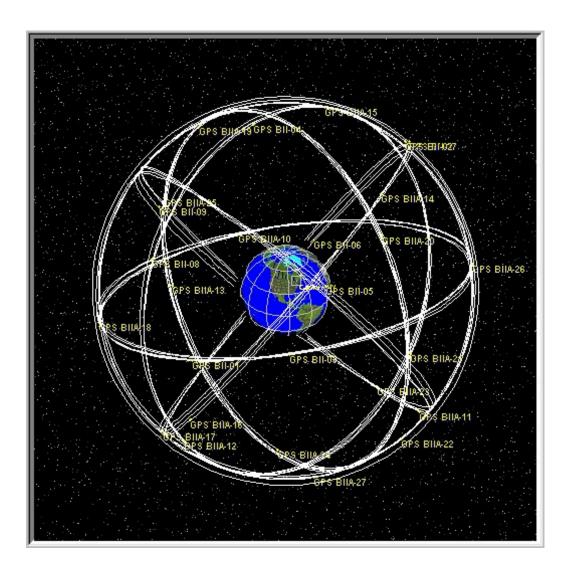
Orbit characteristics

- Six orbital planes
- Four SVs per plane nominally
- 55° inclination angle

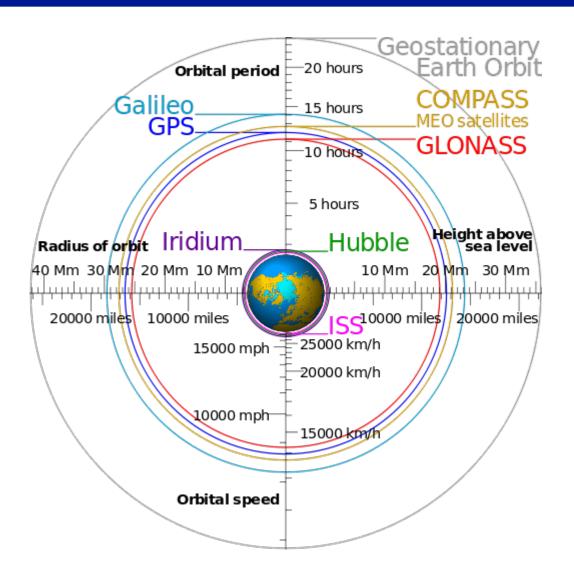
https://www.navcen.uscg.gov/pdf/gps/current.pdf

Space Segment – Satellite Characteristics

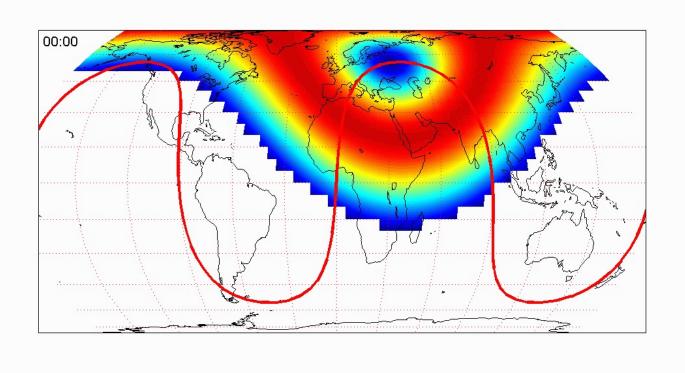
	II/IIA	IIR	IIR-M	IIF	Ш
Number SV's	28	13	8	12	32
First/Last Launch	1990-1997	1997-2004	2005-2009	2010-2016	2018-present
Satellite Weight (Kg)	900	1100	1100	844	2161
Power (W)	1100	1700	1700		
Design Life (Years)	7.5	7.5	7.5	12	15
In Use (as of Aug 2021)	0	8	7	12	4
L1 Signals	C/A, P(Y)	C/A, P(Y)	C/A, P(Y), M	C/A, P(Y), M	C/A, P(Y), M, L1C
L2 Signals	P(Y)	P(Y)	P(Y), L2C, M	P(Y), L2C, M	P(Y), L2C, M
L5 Signals	-	-	-	L5	L5

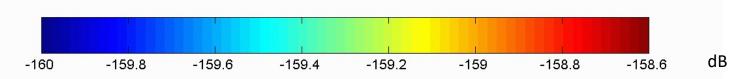

*Estimates

Sources: ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt


Misra and Enge, Global Positioning System: Signals, Measurements, and Performance, 2001

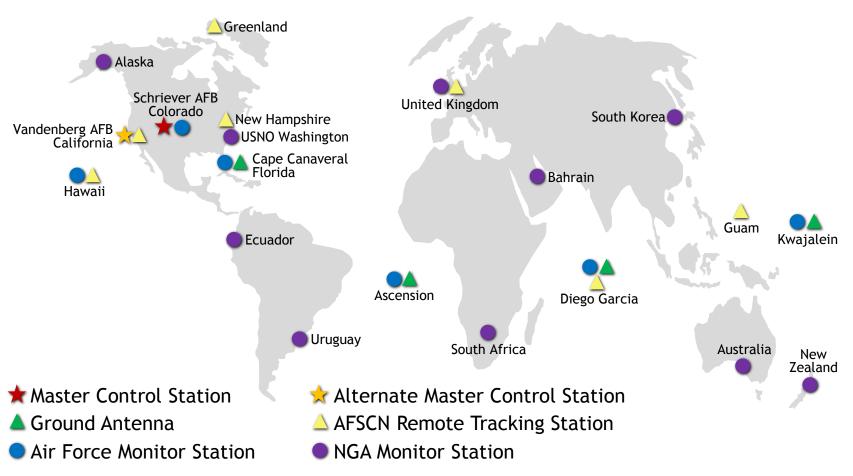
http://www.deagel.com/C3ISTAR-Satellites/GPS-Block-IIR a000238003.aspx http://www.deagel.com/C3ISTAR-Satellites/GPS-Block-IIF a000238004.aspx


Space Segment – GPS Constellation as Viewed from Space



Comparison of GPS to Other Satellite Orbits

Space Segment - Representative GPS Ground Track

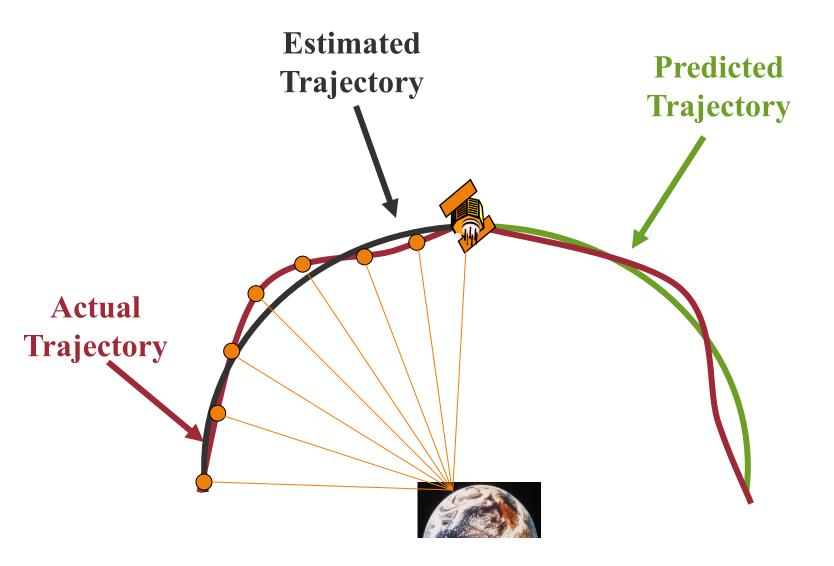


D. Goldstein, GPS Joint Program Office

Control Segment

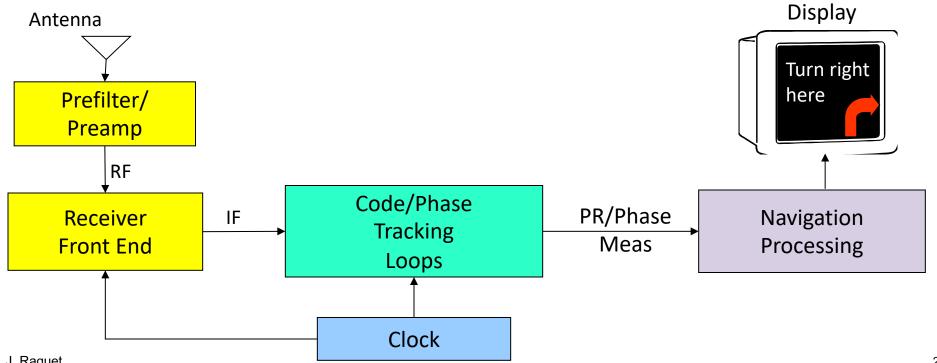
GPS Control Segment

Updated May 2017

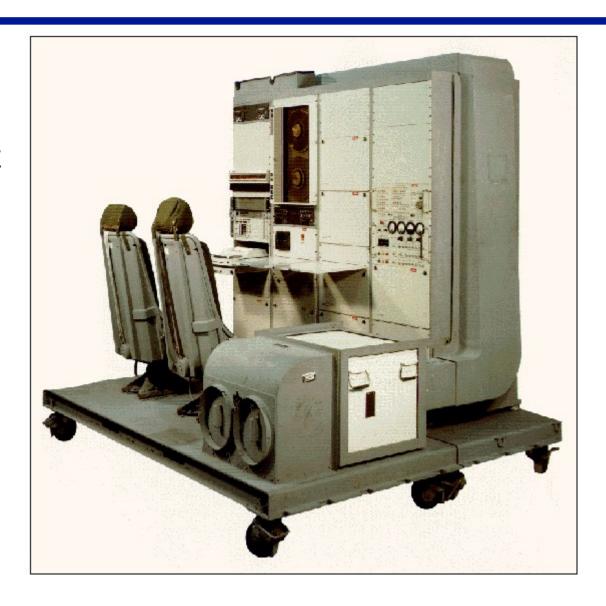

GPS - Control Segment

- GPS Master Control Station (MCS) located at Schriever AFB, CO (2nd Space Operations Squadron, or 2SOPS)
 - Manages constellation (flies satellites)
 - Monitors GPS system performance
 - Calculates data sent over the 50 bps navigation message
 - Orbit ephemeris data
 - Satellite clock error correction coefficients
 - Ionospheric model parameters
 - System status
 - GPS time information
- Communications with satellite using S-band data link
 - Types of communication
 - Satellite control
 - Navigation message upload
 - S-band communications are intermittent

Galileo Control Segment



Control Segment – Trajectory Estimation/Prediction

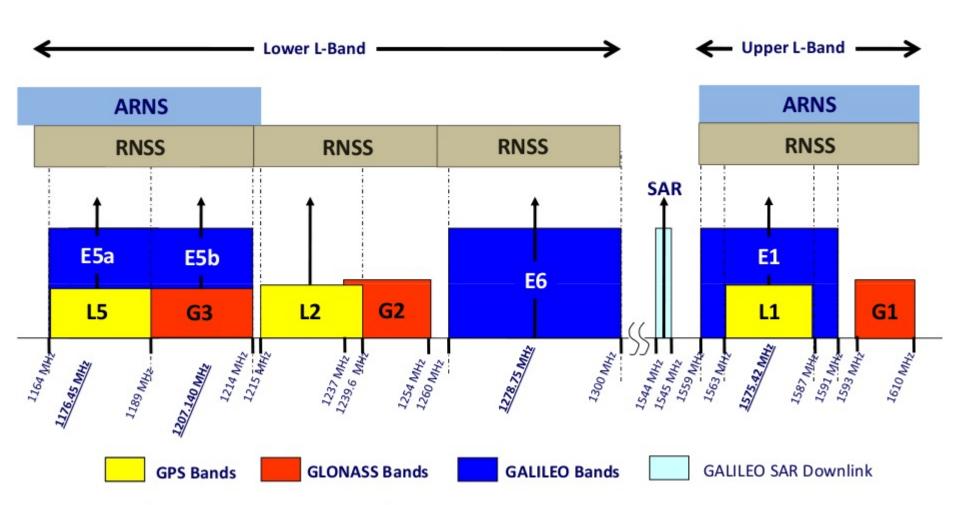

GPS - User Segment

- User segment consists of all GPS receivers
 - Space
 - Air
 - Ground
 - Marine
- **Typical GPS receiver components**

First Military User Equipment

First GPS MUE receiver developed under government contract by Rockwell Collins, circa 1977.

First Significant Transportable Civilian GPS Receiver

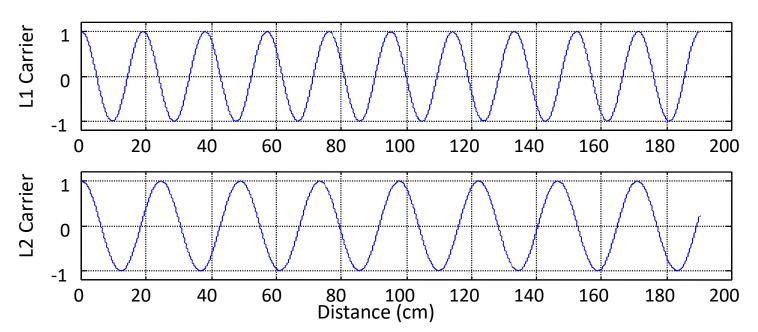


TI 4100 NAVSTAR Navigator Multiplex Receiver designed by Phil Ward for Texas Instruments (1981)

SECTION 4: SIGNAL STRUCTURE

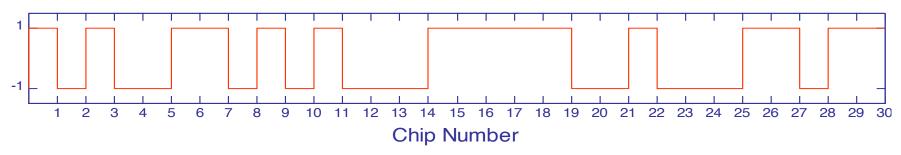
 So what do those satellites transmit anyway?

Satellite Navigation Bands


ARNS: Aviation Radio Navigation Service

RNSS: Radio Navigation Satellite Service

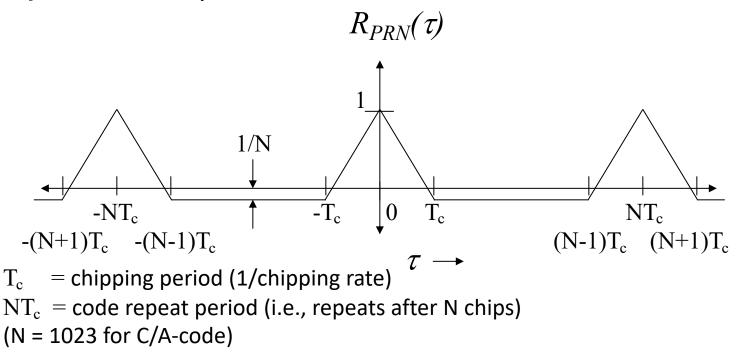
GPS Carrier Frequencies


- Fundamental frequency f_{θ} = 10.23 MHz
- GPS carrier (or center) frequencies
 - $-f_{Ll}$ = 1575.42 MHz = 154 f_0
 - $-f_{L2}$ = 1227.6 MHz = 120 f_0
 - $-f_{L5}$ = 1176.45 MHz = 115 f_0
- Wavelengths of carriers

$$\lambda_{L1} = c/f_{L1} \approx 19.03 \text{ cm}$$
 $\lambda_{L2} = c/f_{L2} \approx 24.42 \text{ cm}$ $\lambda_{L2} = c/f_{L2} \approx 25.48 \text{ cm}$

GPS Pseudo-Random Noise (PRN) Codes

 A PRN code is a binary sequence that appears to be random. Example:


- Not called a data bit, because it is not data being transmitted
- The number of chips per second is called the "chipping rate"
- PRN code sequence generated in hardware using a tapped feedback shift register
 - Sequence of bits where the new bit is generated by an exclusive-or of two previous bits in the sequence
 - Easy to implement in hardware

GPS Signal Autocorrelation

• Definition of autocorrelation for function g(t):

$$R(\tau) = \int_{-\infty}^{\infty} g(t)g(t+\tau)dt$$

 Autocorrelation function for maximum length PRN sequence (code amplitude of +/- 1)

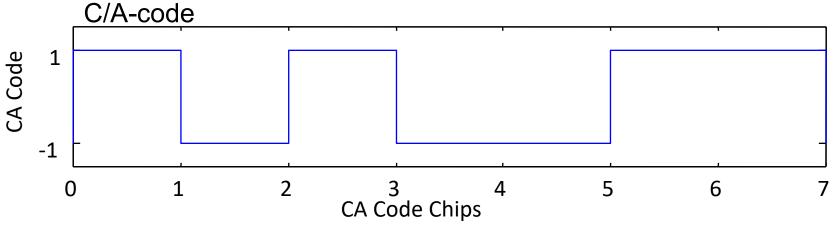
J. Raguet

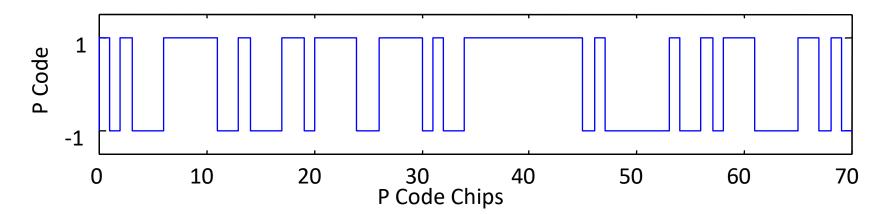
Legacy Signals: C/A and P-Codes

GPS uses two classes of codes

- Coarse-Acquisition (C/A) code
 - Intended for initial acquisition of the GPS signal
- Precise (P) code
 - Higher chipping rate, so provides better performance
- Comparison between C/A and P codes:

Parameter	C/A-Code	P-Code	
Chipping Rate (chips/sec)	1.023 x 10 ⁶	10.23 x 10 ⁶	
Chipping Period (nsec)	977.5 nsec	97.75 nsec	
Range of One Chip	293.0 m	29.30 m	
Code Repeat Interval	1 msec	1 week	

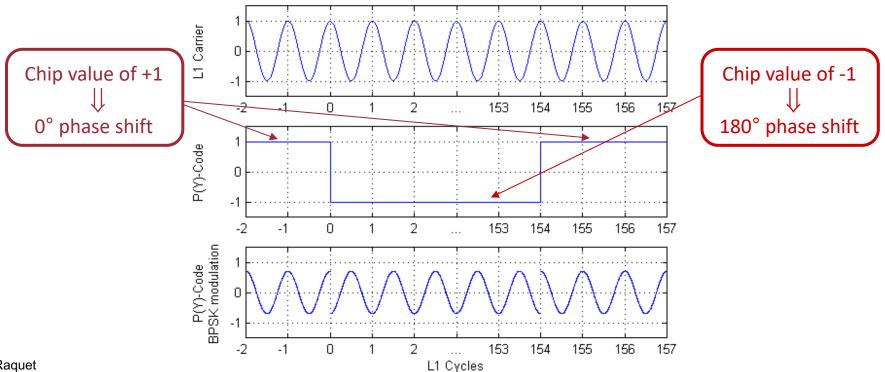

It's more difficult to lock onto the P-code (due to length of code)


- Requires accurate knowledge of time
- Normally, C/A-code locked onto first
 - · Easier, since there's only 1ms to search over
 - Once locked onto C/A-code, receiver has accurate time information for locking onto P-code
- Using accurate timing information to lock onto P-code without initial C/A-lock called "direct P(Y)-code acquisition"

Example C/A and P-Codes

Simulated C/A and P-Codes are given below.

Note that the P-code chipping rate is 10 times higher than the


P-Code Encryption for Anti-Spoofing

- P-code is unclassified and defined in ICD-GPS-200.
- Satellites don't normally transmit P-code, however.
 - P-code is encrypted by an encryption code
 - The encrypted P-code is called Y-code
 - Often referred to as P(Y)-code
 - Y-code is classified, so unauthorized users cannot
 - Directly lock onto the Y-code
 - Spoof the Y-code (i.e., make a fake signal that appears to be coming from a GPS SV)
 - Correlation techniques exist that allow advanced civilian receivers to lock onto P(Y)-code.
 - Degraded capability vs. direct Y-code tracking

Requires C/A-code lock

Code Modulation of Carrier

- So far, we've covered
 - GPS L1 and L2 carrier frequencies
 - C/A-code and P-code
- These need to be combined through modulation
 - GPS uses biphase shift key (BPSK) modulation

Legacy L1 and L2 Signal Breakdown (Legacy Signals)

- Note: 50 bps navigation message modulated on all of the codes
- L1 signal
 - P-code
 - C/A-code modulated on carrier that is 90° out of phase from P-code carrier

$$S_{L1}(t) = A_{P_{L1}}Y(t)N(t)\cos(\omega_1 t) + A_{C/A}CA(t)N(t)\sin(\omega_1 t)$$

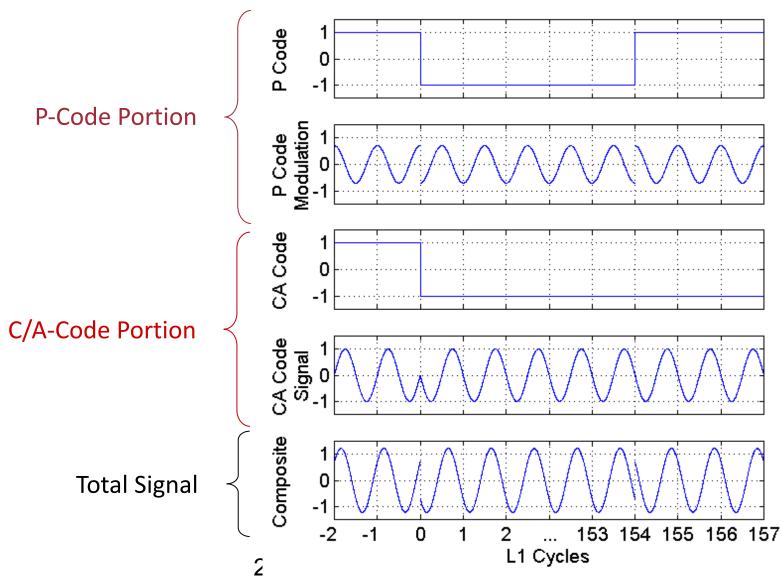
$$N(t) = 50 \text{ bps navigation message}$$

$$A_{P_{L1}} = \text{Amplitude of L1P-code signal} \approx -163 \text{ dBW}$$

$$A_{C/A} = \text{Amplitude of C/A-code signal} \approx -160 \text{ dBW}$$

$$\omega_1 = 2\pi f_{L1}$$
 P-Code

L2 signal

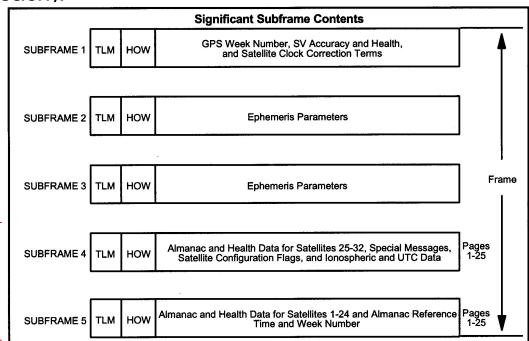

_2 signal P-Code

- P-code only
$$s_{L1}(t) = \widehat{A_{P_{L2}}}Y(t)N(t)\cos(\omega_2 t)$$

 $A_{P_{I2}}$ = Amplitude of L2 P - code signal \approx -166 dBW

$$\omega_2 = 2\pi f_{L2}$$

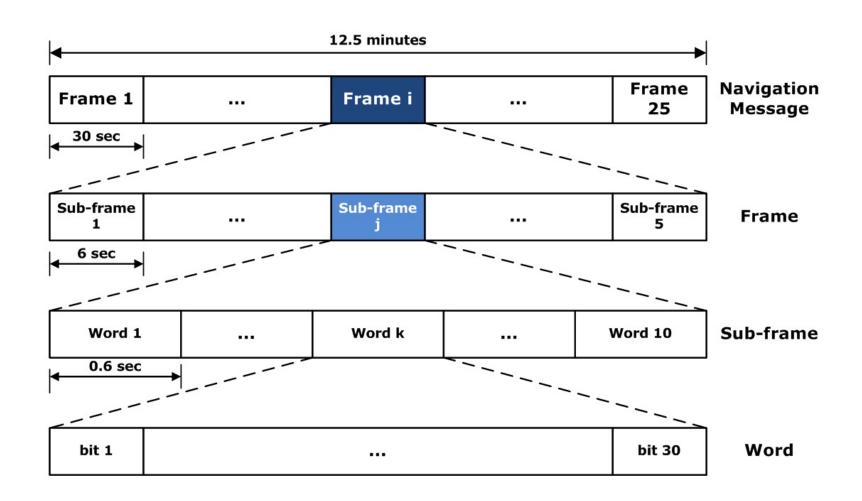
Sample of How L1 Signal is Generated



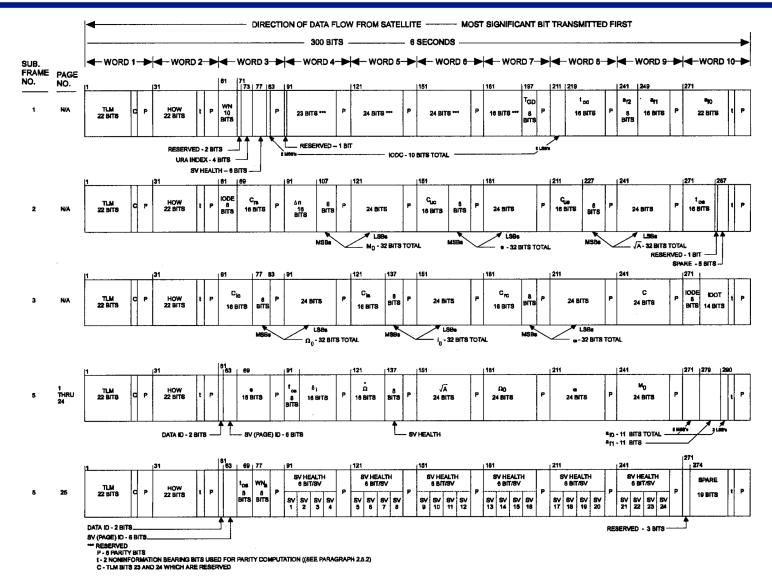
J. Raquet

39

LNAV - Legacy GPS Navigation Message

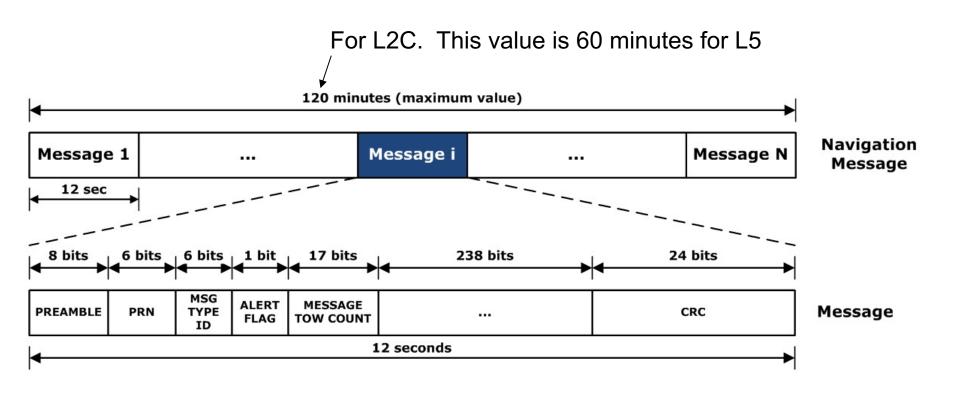

- In addition to the C/A or P(Y)-codes, the signal is also modulated with the 50 bit/sec navigation message
 - One "frame" is 1500 bits (30 seconds), and is broken into 5 300-bit "sub-frames" (6 seconds each):

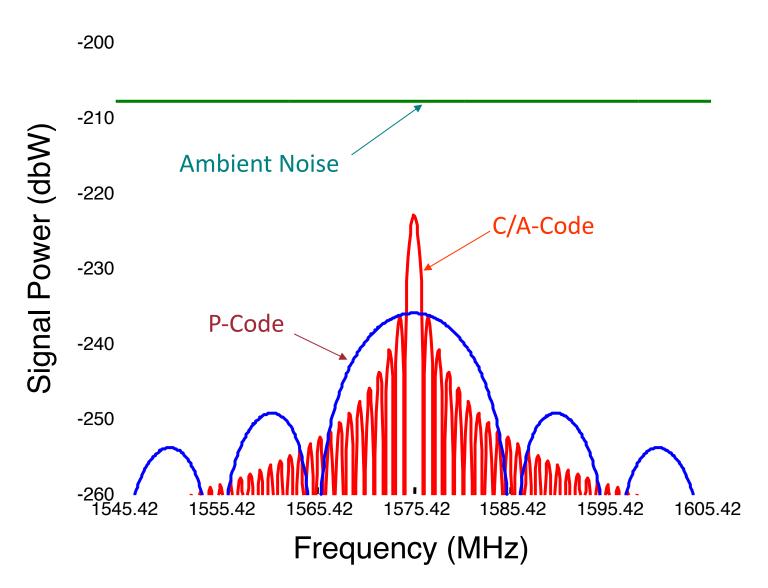
Subframes 4 and 5 change each frame (Total of 12.5 minutes to cycle through all messages)


- Navigation message is combined with code
 - For 1/0 representation: exclusive-or
 - for 1/-1 representation: multiplication

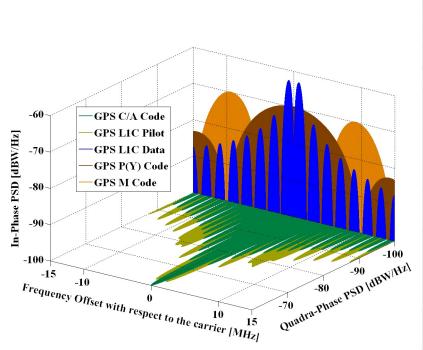
LNAV Structure

LNAV is rigid, fixed-length structure—not much ability to adapt


Data Format of Subframes 1, 2, 3, and 5

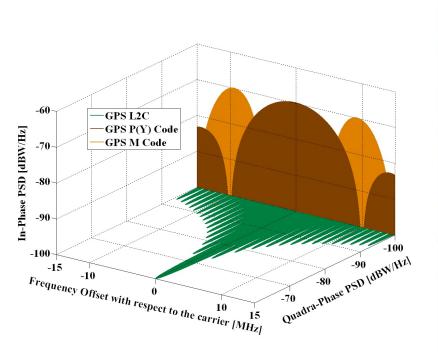

CNAV – Civil Navigation Message

- For L2C and L5 signals
- Much more flexible than current LNAV structure
- Enables more accurate orbit representation
- More modern coding approaches (forward error correction, convolutional code, CRC)
- GPS week now only repeats every 157 years (compared to 19.6 years for part of LNAV message)
- Additional messages (such as GPS-GNSS time offsets)


CNAV Structure

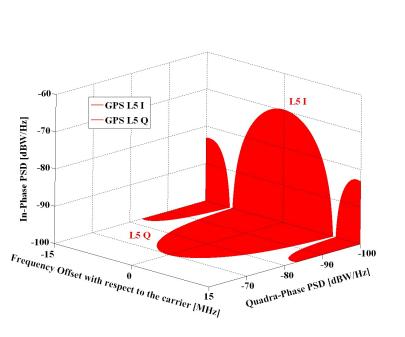
Comparison of GPS C/A-Code and P-Code Power Spectral Densities with Noise

GPS L1 Signals

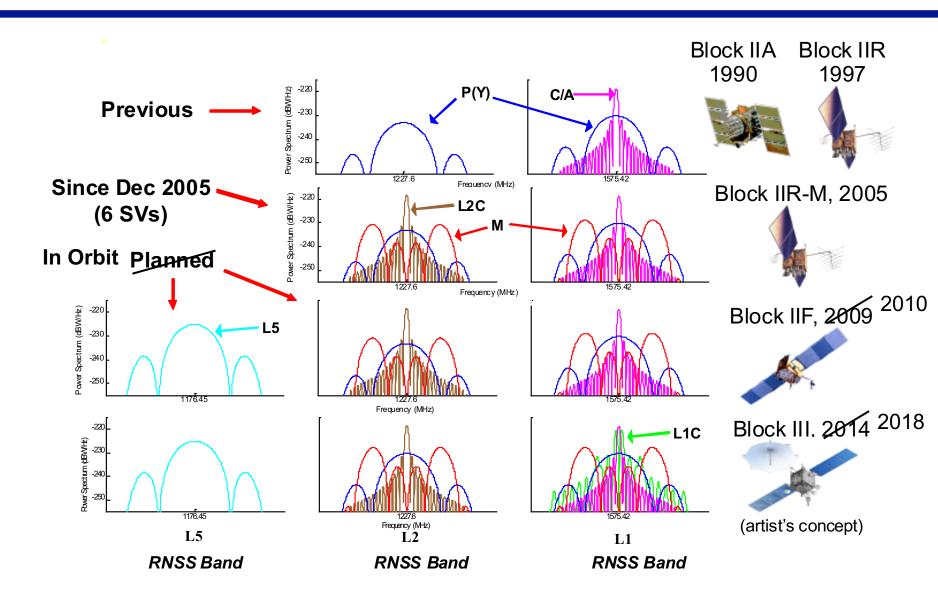

GNSS System	GPS	Gl	PS	GPS	GPS
Service Name	C/A	LIC		P(Y) Code	M-Code
Centre Frequency	1575.42 MHz	1575.42 MHz		1575.42 MHz	1575.42 MHz
Frequency Band	Ll	L	1	L1	Ll
Access Technique	CDMA	CD	MA	CDMA	CDMA
Signal Component	Data	Data	Pilot	Data	N.A.
Modulation	BPSK(1)	TMBOC(6,1,1/11)	BPSK(10)	BOC _{sin} (10,5)
Sub-carrier frequency [MHz]		1.023	1.023 & 6.138	-	10.23
Code frequency	1.023 MHz	1.023 MHz		10.23 MHz	5.115 MHz
Primary PRN Code length	1023	10230		6.19·10 ¹²	N.A.
Code Family	Gold Codes	Weil Codes		Combination and short- cycling of M- sequences	N.A.
Secondary PRN Code length	- 120	-	1800		N.A.
Data rate	50 bps / 50 sps	50 bps / 100 sps	120	50 bps / 50 sps	N.A.
Minimum Received Power [dBW]	-158.5	-157		-161.5	N.A.
Elevation	5°	5	0	5°	50

Modernized GPS Signals

- L2C Block IIR-M SV's and later
 - Contains CM and CL Codes (Civilian Moderate and Long)
 - CM has CNAV Data Modulation
 - CL has NO Data Modulation
 - CNAV is half rate of 'standard NAV' and has several important improvements including Forward Error Correction and information to link GPS to other GNSS systems
- M Block IIR-M SV's and later
 - Centered on L1 and L2 frequencies
 - Binary Offset Carrier (BOC) 5.2 w/ bandwidth of 24 MHz
 - Carrier MNAV data (similar to CNAV)
- L5 Block IIF (and tested on late IIR-M's)
 - Two ranging codes transmited- I5 and Q5 (in-phase and quad)
 - I5 and Q5 10,230 bit sequences transmitted at 10.23 MHz


- L1C - GPS IIIA

GPS L2 Signals


GNSS System	GPS	GPS	GPS	GPS
Service Name	L2 CM	L2 CL	P(Y) Code	M-Code
Centre Frequency	1227.60 MHz	1227.60 MHz	1227.60 MHz	1227.60 MHz
Frequency Band	L2	L2	L2	L2
Access Technique	CDMA	CDMA	CDMA	CDMA
Spreading modulation	BPSK(1) result of multiplexing 2 streams at 511.5 kHz		BPSK(10)	BOCsin(10,5)
Sub-carrier frequency	-	-	-	10.23 MHz
Code frequency	511.5 kHz	511.5 kHz	10.23 MHz	5.115 MHz
Signal Component	Data	Pilot	Data	N.A.
Primary PRN Code length	10,230 (20 ms)	767,250 (1.5 seconds)	6.19 x 1012	N.A.
Code Family	M-sequence from a maximal polynomial of degree 27		Combination and short- cycling of M- sequences	N.A.
Secondary PRN Code length	-	-	-	N.A.
Data rate	IIF 50 bps / 50 sps IIR-M Also 25 bps 50 sps with FEC	-	50 bps / 50 <u>sps</u>	N.A.
Minimum Received Power [dBW]	II/IIA/IIR -164.5 dBW IIR-M -161.5 dBW IIF -161.5 dBW		II/IIA/IIR -164.5 dBW IIR-M -161.4 dBW IIF -160.0 dBW	N.A.
Elevation	5°		5°	5°

GPS L5 Signals

GNSS System	GPS	GPS
Service Name	L5 I	L5 Q
Centre Frequency	1176.45 MHz	1176.45 MHz
Frequency Band	L5	L5
Access Technique	CDMA	CDMA
Spreading modulation	BPSK(10)	BPSK(10)
Sub-carrier frequency	-	-
Code frequency	10.23 MHz	10.23 MHz
Signal Component	Data	Pilot
Primary PRN Code length	10230	10230
Code Family	Combination and short-cycling of M-sequences	
Secondary PRN Code length	10	20
Data rate	50 bps / 100 sps	-
Minimum Received Power [dBW]	-157.9 dBW	-157.9 dBW
Elevation	5°	5°

GPS Signal Modernization

SECTION 5: GPS RECEIVER MEASUREMENTS

What does the receiver measure?

GPS Measurements (Overview)

Each separate tracking loop typically can give 4 different measurement outputs

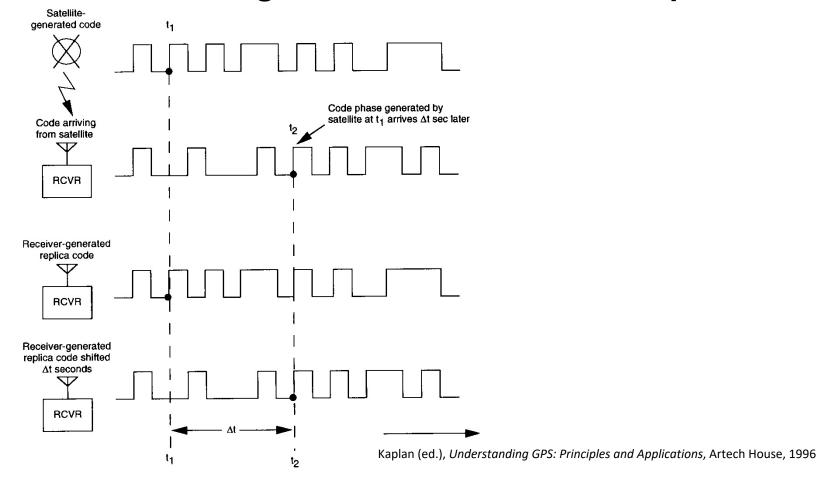
- Pseudorange measurement
- Carrier-phase measurement (sometimes called integrated Doppler)
- Doppler measurement
- Carrier-to-noise density C/N₀

Actual output varies depending upon receiver

- NovAtel, Trimble, Leica, etc. give them all
- RCVR-3A gives just C/N₀

Note: We're talking here about raw measurements

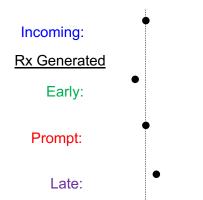
 Almost all receivers generate navigation processor outputs (position, velocity, heading, etc.)


Measurement Rates and Timing

Most receivers take measurements on all channels/tracking loops simultaneously

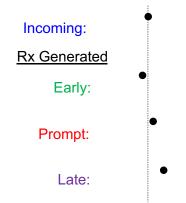
- Measurements time-tagged with the receiver clock (receiver time)
- The time at which a set of measurements is called a data epoch.
- The data rate varies depending upon receiver/application. Typical data rates:
 - Static surveying: One measurement every 30 seconds (120 measurements per hour)
 - Typical air, land, and marine navigation: 0.5-2 measurement per second (most common)
 - Specialized high-dynamic applications: Up to 50 measurements per second (recent development)

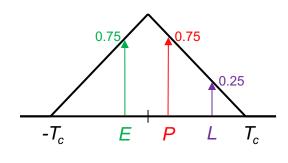
GPS Pseudorange Measurement


 Pseudorange is a measure of the difference in time between signal transmission and reception

How the PRN Code is Tracked

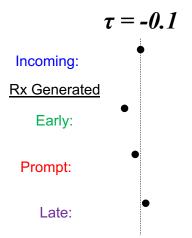
Aligned

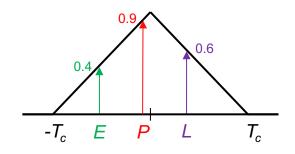




$$E - L = 0$$

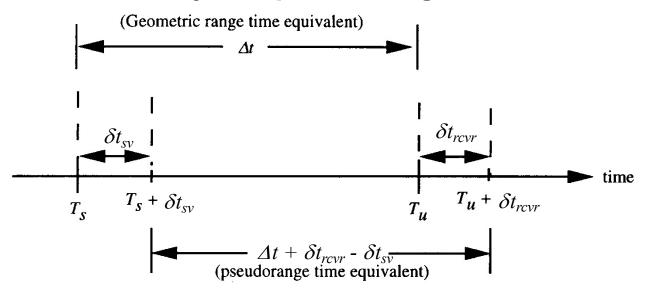
0.25 Chip Early


$$\tau = 0.25$$



$$E - L = 0.5$$

0.1 Chip Late



$$E - L = -0.2$$

Effect of Clock Errors on Pseudorange

 Since pseudorange is based on time difference, any clock errors will fold directly into pseudorange

- Small clock errors can result in large pseudorange errors (since clock errors are multiplied by speed of light)
- Satellite clock errors (δt_{sv}) are very small
 - Satellites have atomic time standards
 - Satellite clock corrections transmitted in navigation message
- Receiver clock (δt_{rcvr}) is dominant error

Doppler Shift (The "Original" Satellite Navigation)

For electromagnetic waves (which travel at the speed of light), the received frequency f_R is approximated using the standard Doppler equation

$$f_R = f_T \left(1 - \frac{(\boldsymbol{v}_r \cdot \boldsymbol{a})}{c} \right)$$

 f_R = received frequency (Hz)

 f_T = transmitted frequency (Hz)

 v_r = satellite - to - user relative velocity vector (m/s)

a = unit vector pointing along

line-of-sight from user to SV

c = speed of light (m/s)

- Note that v_r is the (vector) velocity difference

$$v_r = v - \dot{u}$$

v = velocity vector for satellite (m/s)

 \dot{u} = velocity vector for user (m/s)

• The Doppler shift Δf is then

$$\Delta f = f_R - f_T$$
 (Hz)

Doppler Measurement

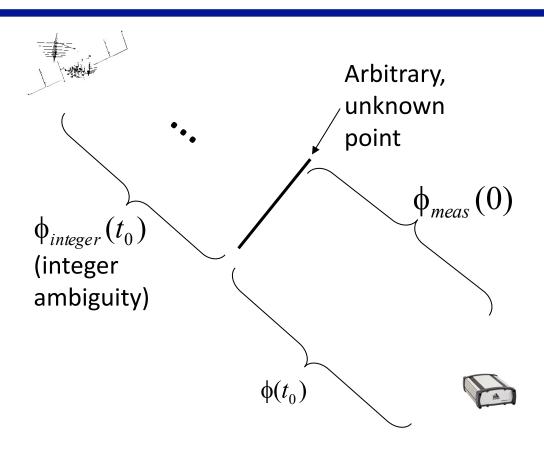
- The GPS receiver locks onto the carrier of the GPS signal and measures the received signal frequency
 - Relationship between true and measured received signal frequency:

$$\begin{split} f_{R_{meas}} \\ f_{R} &= f_{R_{meas}} (1 + \delta \dot{t}_{rcvr}) \\ f_{R} &= \text{true received signal frequency (Hz)} \\ f_{R_{meas}} &= \text{measured received signal frequency (Hz)} \\ \delta \dot{t}_{rcvr} &= \text{receiver clock drift rate (sec/sec)} \end{split}$$

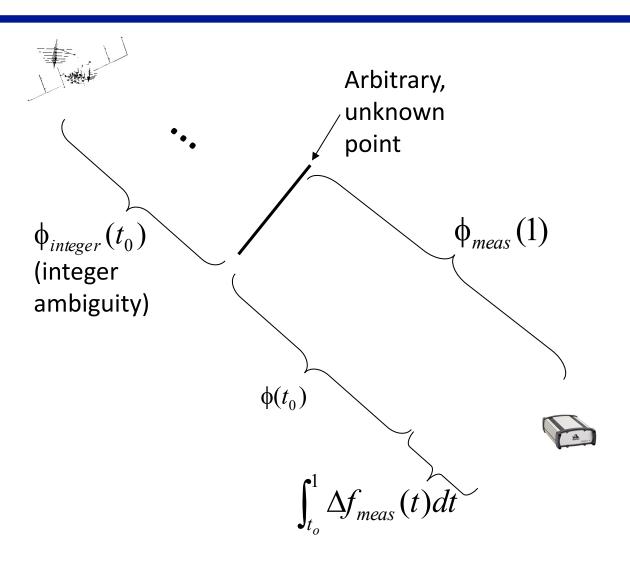
 Doppler measurement formed by differencing the measured received frequency and the transmit frequency:

$$\Delta f_{meas} = f_{R_{meas}} - f_{T}$$

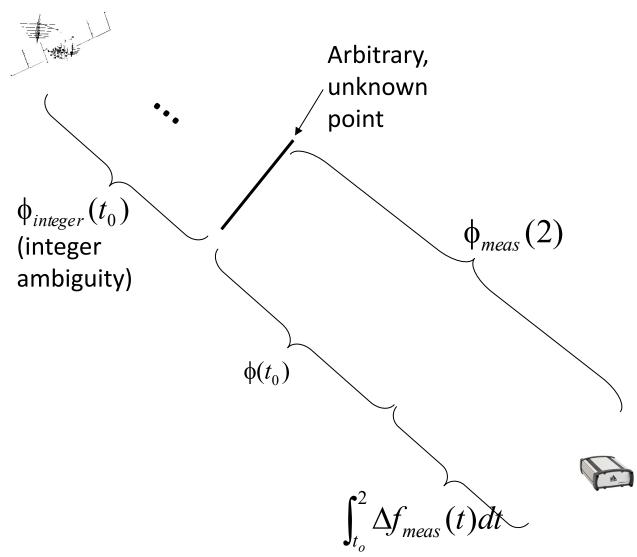
 Note: transmit frequency is calculated using information about SV clock drift rate given in navigation message


Carrier-Phase (Integrated Doppler) Measurement

• The carrier-phase measurement $\phi_{meas}(t)$ is calculated by integrating the Doppler measurements


$$\operatorname{range}(t) = \underbrace{\int_{t_o}^t \Delta f_{meas}(t) dt + \phi(t_0)}_{\phi_{meas}(t)} + \phi_{integer}(t_0) + \operatorname{clock\ error} + \operatorname{other\ errors}_{\phi_{meas}(t)}$$
(can be measured by receiver)

- The integer portion of the initial carrier-phase at the start of the integration $(\phi_{integer}(t_0))$ is known as the "carrier-phase integer ambiguity"
 - Because of this ambiguity, the carrier-phase measurement is not an absolute measurement of position
 - Advanced processing techniques can be used to resolve these carrier-phase ambiguites (carrier-phase ambiguity resolution)
- Alternative way of thinking: carrier-phase measurement is the "beat frequency" between the incoming carrier signal and receiver generated carrier.


Phase Tracking Example At Start of Phase Lock (Time = 0 seconds)

Phase Tracking Example After Movement (for 1 Second)

Phase Tracking Example After Movement (for 2 Seconds)

Ignoring clock and other errors

Comparison Between Pseudorange and Carrier-Phase Measurements

	Pseudorange	Carrier-Phase
Type of measurement	Range (absolute)	Range (ambiguous)
Measurement precision	~1 m	~0.01 m
Robustness	More robust	Less robust (cycle slips possible)

Carrier-to-Noise Density (C/N₀)

The carrier-to-noise density is a measure of signal strength

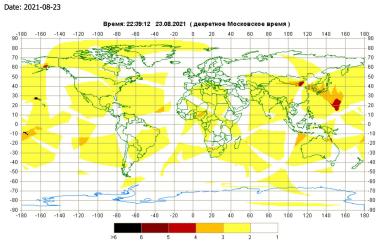
- The higher the C/N₀, the stronger the signal (and the better the measurements)
- Units are dB-Hz
- General rules-of-thumb:
 - C/N₀ > 40: Very strong signal
 - 32 < C/N₀ < 40: Marginal signal
 - C/N₀ < 32: Probably losing lock (unless using high sensitivity receiver)

C/N₀ tends to be receiver-dependent

- Can be calculated many different ways
- Absolute comparisons between receivers not very meaningful
- Relative comparisons between measurements in a single receiver are very meaningful

SECTION 6: GLONASS

00000000


00000

GLONASS

GLONASS constellation status at 23.08.2021

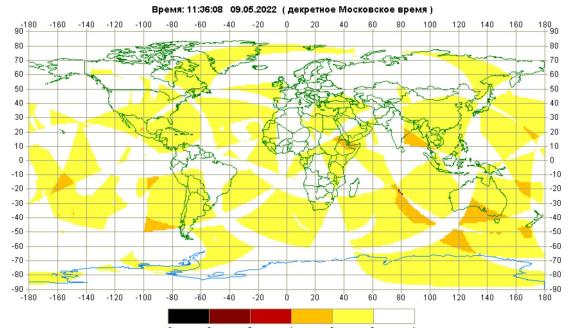
Total satellites in constellation	
In operation	23
In commissioning phase	0
In maintenance	1
Under check by the Satellite Prime Contractor	0
Spares	0
In flight tests phase	2

PDOP (elev > 5 deg)

SC GLONASS current position 22:37 (UTC + 3) 08.23.21

✓orbital plane # 1 ✓orbital plane # 2 ✓orbital plane # 3

GLONASS Webstite (9 May 2022)


https://www.glonass-iac.ru

GLONASS constellation status at 09.05.2022

Total satellites in constellation	25
In operation	23
In commissioning phase	0
In maintenance	2
Under check by the Satellite Prime Contractor	0
Spares	0
In flight tests phase	0

Current values of position geometry factor PDOP on the Earth surface (angle $\geq 5^{\circ}$).

Date: 2022-05-09

SC GLONASS current position 11:36 (UTC+3) 09.05.22

vorbital plane #1 vorbital plane #2 vorbital plane #3

GLONASS Signal

GLONASS uses Frequency Division Multiple Access (FDMA)

- All satellites transmit same PRN code, but at different frequencies
- More costly receiver design
- Better interference rejection
 - Interference at a given frequency will affect only the satellite transmitting at that frequency
 - Cross-correlation between PRN codes is not an issue

Like GPS, each GLONASS satellite transmits on two L-band carrier frequencies (L1 and L2)

- L1 includes 0.511 MHz CA-code and 5.11 MHz P-code
- L2 includes 5.11 MHz P-code
- 50 bps navigation message modulated onto L1 and L2
- CA-code has 1ms repeat rate
- P-code has 1s repeat rate
 - Actual maximal-length P-code repeats at 6.57s intervals, but it's truncated at 1s

GLONASS Frequencies

Carrier frequencies

$$f_{L1} = 1602 + 0.5625K$$
 MHz
 $f_{L2} = 1246 + 0.4375K$ MHz

- Frequency shift underway to move GLONASS out of radio astronomy band
 - Until 1998: *K* = 0 to 12
 - 1998-2005: *K* = -7 to 12
 - After 2005: K = -7 to 4
- Frequency sharing by anti-podal satellites
- Ratio of L1 to L2 frequencies is 9/7
- Note that adjacent CA-codes operate near the "null" of each other
- Adjacent satellites have cross-correlation levels not exceeding 48 dB
 - Better than GPS

GLONASS Navigation Messages

- Like GPS, GLONASS transmits a 50 bps navigation message that's modulated on CA-code and P-code
- Unlike GPS, the GLONASS navigation message is different for CA-code and P-code
 - CA-code navigation message
 - Precise ephemeris (position, velocity, and acceleration rather than Keplerian parameters)
 - Time to acquire: 30 seconds
 - Almanac data (Keplerian parameters)
 - Time to acquire: 2.5 minutes
 - Epoch timing
 - · Synchronization bits
 - Error correction bits
 - Satellite health
 - · Age of data
 - P-code navigation message
 - Not published, but empirically studied
 - · Precise ephemeris
 - Time to acquire: 10 seconds
 - Almanac data
 - Time to acquire: 12 minutes

Comparison Between GPS and GLONASS

	GLONASS	GPS	
Number of Satellites	24	24	
Number of orbital planes	3	6	
Spacing within orbital plane	45 deg	varied	
Orbital inclination	64.8 deg	55 deg	
Orbital radius	25,510 km	26,560 km	
Orbital period	11 hours, 15 min	11 hours, 58 min	
Ground track repeat	8 siderial days 1 siderial day for next slot	1 siderial day	
Datum	PZ-90	WGS-84	
Time reference	UTC(SU)	UTC(USNO)	
Access method	FDMA	CDMA	
Carrier frequencies	L1: 1602+0.5625K L2: 1246+0.4375K K=-7 to 12 (4)	L1: 1575.42 L2: 1227.60	
Code	CA-code on L1 P-code on L1 and L2	CA-code on L1 P(Y)-code on L1 and L2	
Code frequency	CA-code: 0.511 MHz P-code: 5.11 MHz	CA-code: 1.023 MHz P-code: 10.23 MHz	
Crosscorrelation interference	-48 dB	-21.6 dB	
Number of code elements	CA-code: 511 P-code: 5110000	CA-code: 1023 P-code: 2.35E14	
Selective availability	No	Yes	
Anti-spoofing	No	Yes	
Navigation message rate	50 bps	50 bps	
Navigation message length	2.5 min	12.5 min	

SECTION 7: GALILEO

......

00000

Galileo Overview

Constellation

- 30 Satellites (MEO)
- 56 deg inclination

Signals

- Generally reusing GPS frequency spectrum
- Dual frequency planned for standard users from the beginning

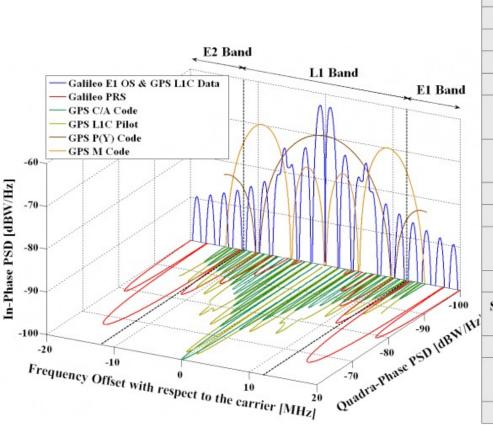
Levels of service

- Open Access Navigation: This will be 'free to air' and for use by the mass' market; Simple timing and positioning down to 1m.
- Commercial Navigation (Encrypted): High accuracy to the cm; Guaranteed service for which service providers will charge fees.
- Safety Of Life Navigation: Open service; For applications where guaranteed accuracy is essential; Integrity messages will warn of errors.
- Public Regulated Navigation (Encrypted): Continuous availability even in time of crisis; Government agencies will be main users.
- Search And Rescue: System will pick up distress beacon locations; Feasible to send feedback, confirming help is on its way.

Schedule

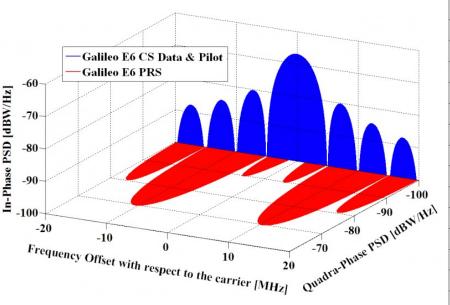
- As of Jun 2017, 15 of the planned 30 satellites have been launched
- IOC: Dec 2016, Projected FOC: 2019

73


Galileo Satellite History (current as of 9 May 2022)

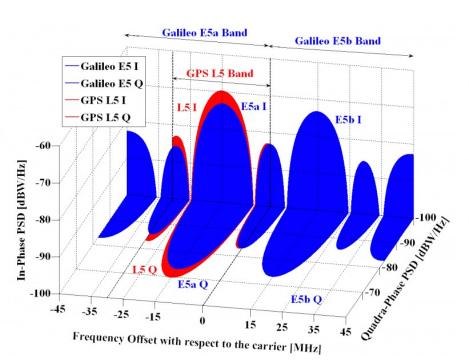
Summary of satellites, as of 7 December 2021

Block	Launch	Satellit	In operation		
	period	Full success	Failure	Planned	and healthy
GIOVE	2005–2008	2	0	0	0
IOV	2011–2012	4	0	0	3
FOC	From 2014	22	2 ^[α]	10	21
G2G	From 2024	0	0	12	0
Total		28	2	22	24


a. A Partial failure

Galileo (and GPS) L1 Signals

CNSS System	Galileo	Galileo	Galileo	
GNSS System				
Service Name	E1 OS		PRS	
Centre Frequency		1575.42 MHz		
Frequency Band		E1		
Access Technique		CDMA		
Spreading modulation	CBOC(6,1,1/11)	BOC _{cos} (15,2.5)	
Sub-carrier frequency	1.023 MHz and 6.138 (Two sub-carriers)		15.345 MHz	
Code frequency	1.023 MHz		2.5575 MHz	
Signal Component	Data Pilot		Data	
Primary PRN Code length	40	4092		
Code Family	Random Codes		N/A	
Secondary PRN Code length		25	N/A	
Data rate	250 sps		N/A	
Minimum Received Power [dBW]	-157		N/A	
Elevation	10°		N/A	


Galileo E6 Band

GNSS System	Galileo	Galileo	Galileo
Service Name	E6 CS data	E6 CS pilot	E6 PRS
Centre Frequency	1278.75 MHz		
Frequency Band	E6		
Access Technique	CDMA		
Spreading modulation	BPSK(5) BPSK(5) BC		BOC _{cos} (10,5)
Sub-carrier frequency	- I-	-	10.23 MHz
Code frequency	5.115 MHz		
Signal Component	Data Pilot Data		
Primary PRN Code length	5115	5115	N/A
Code Family	Memory codes N/A		N/A
Secondary PRN Code length	_	100	N/A
Data rate	$1000 \mathrm{\ sps}$	-	N/A
Minimum Received Power [dBW]	-155 N/A		N/A
Elevation	10° N/A		N/A

CS – Commercial Service PRS – Public Regulated Service

Galileo E5 Band

GNSS System	Galileo	Galileo	Galileo	Galileo	
Service Name	E5a data	E5a pilot	E5b data	E5b pilot	
Centre Frequency	1191.795 MHz				
Frequency Band	E5				
Access Technique		CD	MA		
Spreading modulation		AltBOO	C(15,10)		
Sub-carrier frequency	15.345 MHz				
Code frequency	10.23 MHz				
Signal Component	Data	Pilot			
Primary PRN Code length	10230				
Code Family	Combination and short-cycling of M-sequences				
Secondary PRN Code length	20	100	4	100	
Data rate	50 sps	-	250 sps	-	
Minimum Received Power [dBW]	-155 dBW		-155 dBW		
Elevation	10° 10°				

BeiDou (China)

Regional System (Beidou 1)

- A signal is transmitted skyward by a remote terminal.
- Each of the geostationary satellites receive the signal.
- Each satellite sends the accurate time of when each received the signal to a ground station.
- The ground station calculates the longitude and latitude of the remote terminal, and determines the altitude from a relief map.
- The ground station sends the remote terminal's 3D position to the satellites.
- The satellites broadcast the calculated position to the remote terminal.

Global System (Beidou 2, formally called "Compass")

- 35 SV constellation planned (5 GEO, 27 MEO, 3 IGSO SVs)
- Public service 10 m accuracy
- Licensed military service

J. Raquet 78

SECTION 7: BEIDOU

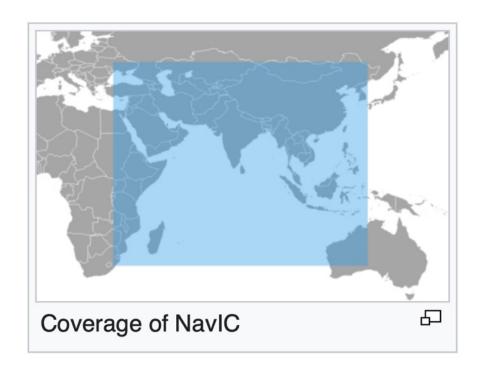
......

00000

BeiDou Satellite History

Summary of satellites, as of 23 June 2020

Block	Launch	Satellite launches			Currently in orbit	
	period	Success	Failure	Planned	and healthy	
1	2000–2006	4	0	0	0	
2	2007–2019	20	0	0	12	
3	2015-present	35	0	0	30	
Total		59	0	0	42	

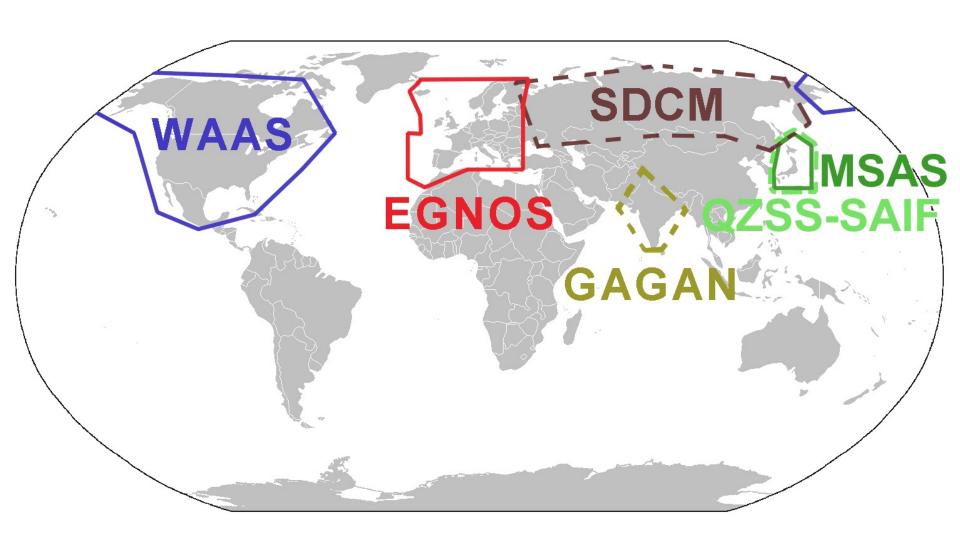

Final BeiDou Constellation

	Geostationary Orbit	Inclined Geosynchronous Orbit)	Medium Earth Orbit
Orbit parmts.	GEO	IGSO	MEO
Semi-Major Axis (Km)	42164	42164	27878
Eccentricity	0	0	0
Inclination (deg)	0	55	55
RAAN (deg)	158.75E, 180E, 210.5E, 240E,260E	218E,98E,338E	
Argument Perigee	0	0	
Mean anomaly (deg)	0	218E:0,98E:120,338E:240	
# Sats	5	3	27
# Planes	1	3	3

Final BeiDou Constellation

Indian Regional Satellite Navigation System (IRNSS)

- Sometimes called NavIC (acronym for Navigation with Indian Constellation)
- Constellation of geosynchronous satellites
 - 3 in geostationary orbit
 - 5 in inclined geosynchronous orbit
- Stand-alone system
 - Does not require any other GNSS
- Continuous coverage over India and surrounding areas


SECTION 8: AUGMENTATION SYSTEMS 00000000

Augmentation Systems

- WAAS (Wide Area Augmentation System) US
 - Declared operationsl in Jul 2003
 - 3 geostationary satellites
 - 38 reference stations
- MSAS (MTSAT Satellite based Augmentation System) Japan
 - Declared operational in September, 2007
 - 2 geostationary satellites
- EGNOS (European Geostationary Navigation Overlay Service) Europe
 - Declared operational in Oct 2009
 - 3 geostationary satellites
 - 40 reference stations
- GAGAN (GPS Aided GEO Augmented Navigation) India
 - Declared operational in July, 2013
 - 3 geostationary satellites
 - 15 reference stations
- QZSS (Quasi-Zenith Satellite System) Japan
 - Declared operational in Nov 2018
 - Four satellites
 - Highly elliptical "tundra" orbits (so satellites linger over Japan)
- Are others

J. Raquet

SBAS Coverage Map

SBAS Satellites

SBAS	SATELLITE	ORBIT LONGITUDE	PRN	SIGNALS
EGNOS	Inmarsat-3-F2/AOR-E	15.5° W	120	L1
	Astra 5B	31.5° E	123	L1/L5
	Artemis	21.5° E	124	L1
	Inmarsat-4-F2	25° E	126	L1
	SES-5	5° E	136	L1/L5
GAGAN	GSAT-8	55° E	127	L1/L5
	GSAT-10	83° E	128	L1/L5
MSAS	MTSAT-1R	140° E	129	L1
	MTSAT-2	145° E	137	L1
QZSS	QZS-1	135° E	183	L1
SDCM	Luch-5A	167° E	140	L1
	Luch-5B	16° W	125	L1
	Luch-5V	95° E	141	L1
WAAS	Intelsat Galaxy 15 (CRW)	133° W	135	L1/L5
	TeleSat Anik F1R (CRE)	107.3° W	138	L1/L5
	Inmarsat-4-F3 (AMR)	98° W	133	L1/L5

Questions?