Ionosphere Scintillation Variability Over Africa

The ESA Monitor project

Y. Béniguel IEEA, France beniguel@ieea.fr

Contents

Low Latitudes

- Occurrence and probabilities
- Raw data analysis
- > High Latitudes
 - Scintillation occurrence dependencies
- Modelling

Ionosphere Variability

80 80 70 60 60 40 50 20 latitude 0 40 -20 30 -40 20 -60 10 -80 -150 50 100 150 -100 -58 longitude

TEC , F10.7 = 150. , date = 1/ 1/2003 , UT = 22.00

TEC Map

Location of turbulences

TurbulentIonosphereThe LowLatitudes

Medium Radar Observations

Observations at Kwajalen Islands Courtesy K. Groves, BC

Observations in Brazil Courtesy E. de Paula, INPE

The vertical extent may reach hundreds of kilometers

Physical Mechanism

Receiver level

Scintillation on Galileo Satellites L1 vs E5a

Galileo E5a / Tahiti day 85 (8 - 9 UT) 2013

Characterisation of Signal Fluctuations Indices Definition

$$S_4^2 = \frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}$$
 with $I = |E|^2$

$$\sigma_{\Phi}^2 = \langle \Phi^2 \rangle - \langle \Phi \rangle^2$$

0 < S4 < 1

ROTI =
$$\langle \left(\frac{\partial \text{ TEC}}{\partial t}\right)^2 \rangle - \langle \frac{\partial \text{ TEC}}{\partial t} \rangle^2$$

Decorrelation time

Example: one Day of Scintillation Occurrence Dependency on Local Time and on the Elevation Angle

ESA Measurement Campaigns

- Prediction of Ionospheric scintillations (PRIS) (2006 2008) *
- MONitoring of Ionosphere by innovative Techniques coordinated Observations and Resources (MONITOR) (2010– 2014) *
- MONITOR 2 (2014 2018) *
- ➢ e-MONITOR (2020 −) **

F10.7cm Radio Flux Progression

* IEEA + DLR, UPC, QINETIQ, ICTP, TAS, FMI, UWM, ...
** DLR + IEEA, UPC, ICTP, NLR, Airbus DE

MONITOR Objective

- Collection, processing and archiving:
 - ionospheric experimental data
- Establish scintillation monitoring network

in order to build the infrastructure allowing to analyse:

- impact on GNSS (EGNOS and Galileo)
- high solar activity periods
- extreme events

MONITOR: Data & Products

STATION DATA: 1-minute S4 and σ_{ϕ} , Raw data at 50 Hz, RINEX at 1Hz EXTERNAL DATA: Solar/geomagnetic indices, ionosonde data, EISCAT heating campaign

INTERNAL processors:

- Galileo ionospheric single frequency model (GALMOD)
- GALMOD correction performance evaluation (GALCOM)
- GALDIF (Galileo Ionospheric Disturbance Flag)
- Scintillation raw data analysis & mapping
 - Regional scintillation maps

EXTERNAL processors:

- TOMION: 15-minutes Global VTEC maps, GEC & IGS STEC
- Perturbation analysis:
 - sideral day variability index, MS-TID index, Solar Flare detector, ROTI, AATR
- SWACI: 15 min nowcast and forecast VTEC European maps
- EDAM: Rapid (2 hours) and ultra-rapid (15 min) electron density datamaps

MONITOR Scintillations Receivers Network

MONITOR Content

· Project partners

Introduction

- . . ejett paranere
- Documentation
- Stations map data
- Stations map products
- Search input data
- Search products
- Data policy
- · Contact

STATIONS MAP - DATA TYPES

Station Name	Project Operating Period	Latitude	Longitude	Equipment	Sampling frequency
Tahiti (French Polynesia)	Monitor 1 09/2012 - 09/2014	17.55° S	210.39° E	PolaRxS	50 Hz
Lima (Peru)	Monitor 1 09/2011 - 11/2016	12.18° S	282.58° E	GSV4004B	50 Hz
Cayenne (French Guyana)	Monitor 1 05/2006 - 04/2016	4.8° N	307.63° E	GSV4004B	50 Hz
Cape Verde	Monitor 1 12/2012 - 09/2015	16.73° N	337.07° E	GSV4004B + GISMO	50 Hz
Malindi (Kenya)	Monitor 1 04/2013 - 12/2013	3. ° S	40.72° E	PolaRxS	50 Hz
Sodankylä (Finland)	Monitor 1 11/2011 -	67.25° N	26.36° E	GSV4004B	50 Hz
Kevo (Finland)	Monitor 1 03/2013 -	69.75°N	27.019° E	GSV4004B	50 Hz
Dakar (Senegal)	SAGAIE	14.765° N	342.62° E	PolaRxS + Novatel FlexPack 6	50 Hz / 1 Hz
Ouagadougou (Burkina Fasso)	SAGAIE	12.368° N	358.47° E	Novatel FlexPack 6	l Hz
Lomé (Togo)	SAGAIE	6.132° N	1.223° E	PolaRxS + Novatel FlexPack 6	50 Hz / 1 Hz
Douala (Cameroon)	SAGAIE	4.049° N	9.699° E	Novatel FlexPack 6	1 Hz
N'Djamena (Chad)	SAGAIE	12.113° N	15.048° E	Novatel FlexPack 6	l Hz
Abidjan (Ivory Coast)	Monitor 2 05/2015 -	5.27° N	356.08 E	PolaRxS	50 Hz
Cotonou (Benin)	Monitor 2 07/2015 -	6.352° N	2°383 E	PolaRxS	50 Hz
Niamtogou (Togo)	Monitor 2 07/2015 -	9.774° N	1.098° E	PolaRxS	50 Hz
Bamako (Mali)	Monitor 2 07/2015 -	12.540° N	7.949 W	PolaRxS	50 Hz
Bahir Dar (Ethiopia)	Monitor 2 07/2014 -	11.598° N	37°396° E	GSV4004B	50 Hz
Kiruna (Sweden)	Monitor 2 04/2015 -	67.743° N	21.06° E	PolaRxS	50 Hz

Low Latitudes Receivers Network

Station Name	Project	Latitude	Longitude	Equipment	Sampling frequen	
Dakar (Senegal)	SAGAIE	14.765° N	342.62° E	PolaRxS + Novatel FlexPack 6	50 Hz / 1 Hz	
HOuagadougou (Burkina Fasso)	SAGAIE	12.368° N	358.47° E	Novatel FlexPack 6	1 Hz	
Lomé (Togo)	SAGAIE	6.132° N	1.223° E	PolaRxS + Novatel FlexPack 6	50 Hz / 1 Hz	
Douala (Cameroon)	SAGAIE	4.049° N	9.699° E	Novatel FlexPack 6	1 Hz	
N'Djamena (Chad)	SAGAIE	12.113° N	15.048° E	Novatel FlexPack 6	1 Hz	
Abidjan (Ivory Coast)	Monitor 2	5.27° N	356.08 E	PolaRxS	50 Hz	
Cotonou (Benin)	Monitor 2	6.352° N	2°383 E	PolaRxS	50 Hz	
Niamtogou (Togo)	Monitor 2	9.774° N	1.098° E	PolaRxS	50 Hz	
Bamako (Mali)	Monitor 2	12.540° N	7.949 W	PolaRxS	50 Hz	

Number of Events (> 1 mn) Northern Hemisphere vs Southern Hemisphere

North hemisphere wrt magnetic equator

South hemisphere wrt magnetic equator

weak : 0.2 < S4 < 0.4

medium : 0.4 < S4 < 0.6

Number of Events (1 mn) 1 Hz vs 50 Hz

North hemisphere wrt magnetic equator

50 Hz data

1 Hz data

About 2 times more events

Probability of scintillation occurrence 1 Hz vs 50 Hz recording / Comparison of results

1 Hz

50 Hz

Probability of occurrence for at least one event Dakar latitude 14.765° N ; longitude 342.62° E / 50 Hz data

How many links simultaneously affected with scintillations

Dependency on the Latitude

Probability of scintillation occurrence with latitude

50 Hz receivers network (3 years of data)

Dependency on Local Time

Probability of scintillation occurrence depending on the local time

with $\sigma^2 = 5$ and t in hours

Scintillation also at day time

$$\int_{19 \text{ pm}}^{2 \text{ am}} f(t) dt = 0.98$$

Raw Data Analysis

Raw Data Analysis

1 hour of data at a high level of scintillations

Using all data recorded

% of time a fade depth level is exceeded

P = p(S4) * p(Fade Depth)

Time Series Frequency correlation / Observations Weak scintillations vs strong scintillations

Weak scintillations

Strong scintillations

Time Series Frequency Correlation / (Modelling)

Weak scintillations

Strong scintillations

Inter Frequency Correlation

Tahiti Galileo N° 12 doy 85 / 2013 **Galileo satellites** S4(L1) = 0.59 ; S4(E5a) = 1.36 S4 (E5a) = 1.27 * S4(L1) + 0.22 * (S4(L1))**2 15 1.4 1.2 10 E5a 1 5 S4 (E5a) 0.8 đВ 0.6 -5 0.4 -10 0.2 -15 0 2340 2350 2360 2380 2390 2400 0.2 0.4 0.6 0.8 2370 0 S4 (L1) Time (s.) Correlation coefficient L1 - L2 vs S4 (L1) Probability of simultaneous fades on L1 and L2 1 coefficient 0.8 0.1 Probability 0.6 Correlation 0.4 0.01 0.2 0.001 0 -20 -15 -10 0.2 0.4 0.6 0.8 1.2 S4(L1) Fade depth (dB)

1

TurbulentIonosphereThe HighLatitudes

High Latitude Receivers Network

Magnetometer

• All-sky camera Magnetometer and all-sky camera

Station Name	Project	Latitude	Longitude	Equipment	Sampling frequency
Sodankylä (Finland)	Monitor	67.25° N	26.36° E	GSV4004B	50 Hz
Kevo (Finland)	Monitor	69.75°N	27.019° E	GSV4004B	50 Hz
Kiruna (Sweden)	Monitor	67.743° N	21.06° E	PolaRxS	50 Hz

High Latitudes Fluctuations

Sodankyla : Novatel GSV 4004B receiver

Kiruna : Septentrio PolaRxS receiver

Distance Sodankyla – Kiruna : 280 km

Relationship Phase fluctuation / AE & Kp Indices High Latitudes

ILLA

December 2015 Magnetic Storm Phase fluctuation

No fluctuations outside these 6 minutes

Scintillation intensity fluctuation not significant for a GNSS application

Receiver : PolaRxS Septentrio

High latitude fluctuations

Sodankyla

Kiruna

Distance between receivers : 280 km Drift velocity : around 2 km / s. westward

TEC & ROTI High Lat

Probability of occurrence

GSV4004B receiver

PolaRxS receiver

1 order of magnitude lower with the PolaRxS receiver

How many links at the same time

The % of time is lower with the PolaRxS receiver

High Latitudes Number of Links

SigmaPhiNbOfPointsperPixel 2016

Peak value at about 65° of latitude

Fluctuations Map / High Latitudes

Scandinavian sector

sigma phi median values at IPPs cumulated over the year

Cycle Slips Low Latitudes vs High Latitudes

Modelling

Multiple Phase screens technique GISM*

Field Propagation Equation

$$E(\rho, z, \omega, t) = U(\rho, z, \omega) \exp\left\{j\left(\omega t - \int \langle k(z')\rangle dz'\right)\right\}$$

The field amplitude value U is a solution of the parabolic equation (paraxial approximation)

$$2 j k \frac{\partial U(\rho)}{\partial z} + \nabla_t^2 U(\rho) + k^2 \varepsilon_1(\rho) U(\rho) = 0$$

Method of solution : phase screen technique

Field Propagation Equation

Solution of the parabolic equation

$$2 j k \frac{\partial}{\partial z} \langle U(r) \rangle + \nabla_{t}^{2} \langle U(r) \rangle + k^{2} \langle \varepsilon(r) U(r) \rangle = 0$$

$$2 j k \frac{\partial}{\partial z} \langle U(r) \rangle + \nabla_{t}^{2} \langle U(r) \rangle + j \frac{k^{3}}{4} A(0) \langle U(r) \rangle = 0$$

Using the phase index autocorrelation function

$$B(z,\rho) = \langle \varepsilon(\rho_1) \ \varepsilon(\rho_2) \rangle \qquad A(\rho) = \int B(z,\rho) dz$$

Phase Screen Technique

Propagation : 1st & 3rd terms ; scattering : 2nd & 3rd terms

Phase & Intensity Spectra

3 parameters : $\sigma_{\rm Ne}$; q₀ ; p

Phase Synthesis (1D)

$\Phi(\rho) = FFT^{-1}(FFT(u) * \gamma_{\Phi}(k))$

u random number with a uniform spectral density

Done at each successive layer

1D Analysis Isotropic Medium

$$B_{\Phi}(\rho) = \frac{C_{P}}{2\pi} \int \gamma_{\Phi}(k) \exp(-jk\rho) dk$$

$$\left[B_{\Phi}(\rho)\right]_{1D} = \frac{C_{P}}{2\pi} \frac{\sqrt{\pi}}{2^{(p-3)/2} \Gamma(p/2)} q_{0}^{1-p} (\rho q_{0})^{(p-1)/2} K_{(p-1)/2} (\rho q_{0})\right]_{1D}$$

Anisotropic vs Isotropic

Additional geometric factor with respect to the 2D case

 $G = \frac{ab}{\left(AC - B^2/4\right)^{1/2}}$

a, b ellipses axes

A, B, C trigonometric terms resulting from rotations related to variable changes

NICT Model : Bubbles Development

- > Receiver at d = 180km
- Satellite at h = 1200 km from d = 350 to 0 km

Crossing Bubbles for one Particular Elevation Angle

143 phase screens

TEC, S4 and σ_{ϕ} Time series Scanning the medium

Modelling vs Measurements

Modelling vs Measurements (Intensity of received signal)

Modelling vs Measurements (Phase of received signal)

Sigma Phi all satellites Cayenne, days 314 to 319 / year 2006 PRN2 The phase RMS value is **PRN13** \diamond slightly lower than the S4 **PRN10** 0.8 PRN4 \times Sigma Phi (radian) value PRN24 0.6 PRN28 Measurements **PRN12** 0.4 PRN8 PRN29 PRN26 0.2 PRN6 0 -20 0 20 -40 40 60 80 100 Cayenne day 314 / 2006 GISM LT 13 \diamond 23 Modelling 27 0.8 \times 8 17 Some samples exhibit high 28 0.6 10 24 0.4 29 values (both measurements 2 0.2 and modelling) due to the 5 cycle slips 0 6 18 19 20 21 23 24 22

LT

Modelling vs Measurements one month of measurements

All links considered: input data from the 1 mn pre processed file of recorded data

Positioning Errors Related to scintillations

Positioning errors from Measurements in Brazil in 2001

- Solving the navigation equation
- Satellite trajectories obtained from the Yuma files

0.0001 degree \rightarrow 10 meters

Extreme events

Storms list

Month with Dst values < -100 nT															
	1	2	3	4	5	6	7	8	9	10	11	12	Month	Count	
	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D	Year	per Year	
			Х						XX	Х			2011	4	
			Х	Х			Х			XX	Х		2012	6	
			Х			XX	Х						2013	4	
		XX		XX									2014	4	
			Х			Х						Х	2015	3	
	XX					Х				Х			2016	4	
					Х				Х				2017	2	
								Х					2018	1	
	2	2	4	3	1	4	2	1	3	4	1	1	Sur	n: 28	

EGNOS Days of Decrease Performance

The EGNOS days of decrease of performance were all corresponding to a peak of the magnetic activity

Study Case

St Patrick magnetic storm 17 – 22 march 2015

Index detection of the 2015 St Patrick geomagnetic storm

U N I W E R S Y T E T WARMIŃSKO-MAZURSKI W OLSZTYNIE

- Largest storm for the last 10 years
- Intense particle precipitation
- Aurora was recorded at mid-latitudes

VTEC snapshots @ 2h from 17/03/2015 (doy 76) 00h to 19/03/2015 (doy 77) 24h

Maps of the Peak Activity

VTEC / TECU 20150316_075.64800

day 75 : 18 h

VTEC / TECU 20150317_076.43200

80 120 60 100 40 20 Latitude / deg 80 0 60 -20 40 -40 -60 20 -80 0 -150 -100 -50 0 50 100 150 Longitude / deg

day 76 : 12 h

VTEC / TECU 20150317_076.36000

day 76 : 10 h

VTEC / TECU 20150317_076.64800

day 76 : 18 h

17/03/2015 (doy 76), to 21/03/2015 (day 80) Availability maps

(from https://egnos-user-support.essp-sas.eu/new_egnos_ops/?q=apv1_availability)

Conclusion

Scintillation occurrence & Probabilities

- Low latitudes : The probability of scintillation events was derived depending on the season, latitude and local time for one and several satellites
- High latitudes : relationship to the magnetic activity

Raw data analysis

- > Fade and inter fades durations & probabilities were given, depending on the S4 value.
- Signal Correlation characteristics
- Modelling : GISM (phase screen model)

Extreme events

References

- Béniguel Y., I. Cherniak, A. Garcia-Rigo, P. Hamel, M. Hernández-Pajares, R. Kameni, A. Kashcheyev, A. Krankowski, M. Monnerat, B. Nava, Herbert Ngaya, R. Orus - Perez, H. Secrétan, D. Sérant, S. Schlüter, V. Wilken, "MONITOR Ionospheric Network: Two case studies on Scintillation and Electron Content Variability", Annals of Geophysicae, doi:10.5194/angeo-35-377-2017
- "Effects of ionospheric scintillations on GNSS, A white paper", SBAS Iono Group : BC, Stanford, Mitre, JPL, NB University, ESA, IEEA, ICTP, ..., 2010
- Béniguel, Y. "Ionospheric scintillations: Indices and modeling", Radio Science, 2019, 54, doi: 10.1029/2018RS006655
- Y. Béniguel, M. Angling, E. Banfi, C. Bourga, M. Cueto, R. Fleury, A. Garcia-Rigo, P. Hamel, R. Hartmann, M. Hernández-Pajares, N. Jakowski, K. Kauristie, R. Orus, R. Prieto-Cerdeira, JJ Valette, M. van de Kamp, "Ionospheric Effects on GNSS Performance", 2012, 6th ESA workshop on Satellite Navigation techniques and European workshop on GNSS signals and signal processing, NAVITEC), doi: 10.1109/Navitec.2012.6423122
- Béniguel Y., P. Hamel, "A Global Ionosphere Scintillation Propagation Model for Equatorial Regions", Journal of Space Weather Space Climate, 1, (2011), doi: 10.1051/swsc/2011004

Setting model parameters

Spectrum Parameters

5 days RINEX files considered in the analysis

S4 > 0.2 & sigma phi < 2 (filter convergence)

2 parameters to define the spectrum : T (1 Hz value) & p

Slope spectrum vs time after sunset

Phase variance Time domain vs frequency domain

