Ionospheric Scintillation Monitoring and Mitigation

Jade Morton University of Colorado at Boulder Jade.Morton@Colorado.edu

Tutorial Outline

- 1. Background
- 2. Ionospheric Observations
- 3. Mitigation Techniques

Some materials are from Ch. 31 Ionospheric Effects, Monitoring, and Mitigation in Position, Navigation, and Timing Technologies in the 21st Century, edt. Y. Morton, F. van Diggelen, J. Spilker, and B. Parkinson, Wiley-IEEE Press, 2020.

Diffractive Effects: Scintillation

Scintillation Effects

Myer, G. and Y. Morton, "Ionosphere scintillation effects on GPS measurements, a new carrier-smoothing technique, and positioning algorithms to improve accuracy," *Proc. of ION ITM*, Reston, VA, Jan. 2018.

PVT Solution Availability Issue

University of Colorado Boulder

)3_

8

Accuracy Issue: March 17-18, 2015 St. Patrick's Day storm

Yang, Z., Y. Morton, "Kinematic PPP errors associated with ionospheric plasma irregularities during the 2015 St. Patrick's day storm," *Proc. ION GNSS*+, 2019.

High Latitude Scintillation Example

PRN 25 03/01/2011 HAARP Antenna #1

56

Boulder

14.5

High Latitude Scintillation: Mostly due to Refraction (TEC Variations)

Low Latitude **Scintillation** Example

Peru 3/11/2013 13:30UTC

57F

Equatorial Plasma Bubbles

Yokoyama, T., "Hemisphere-coupled modeling of nighttime medium-scale traveling ionospheric disturbances," *Adv. Space Res.*, 54(3): 481–488, 2014.

Scintillation Signal Model

Undisturbed signal model: Scintillation signal model:

$$s_{k} = \alpha_{k} D(k\Delta t - \tau_{k}) C(k\Delta t - \tau_{k}) e^{j\phi_{k}}$$
$$s_{s,k} = s_{k} \delta_{A,k} e^{j\delta_{\phi,k}} + \varepsilon_{k}$$

Ignore code and nav data disturbance:

$$s_{s,k} = \alpha_k \delta_{A,k} e^{j\phi_{s,k}} + \varepsilon_k$$

 $\phi_{s,k} = \phi_k + \delta_{\phi,k}$: the composite carrier phase of the scintillation signal

Scintillation Indices

M: number of correlation blocks over a selected period Typical setting: $T_I = 1 \text{ms} \rightarrow \text{M} = 20$; $T_I = 10 \text{ms} \rightarrow \text{M} = 2$

Must Detrend Before Applying Scintillation Index Calculation

Boulder

Another Indicator: Decorrelation Time

Rate of TEC Index: ROTI

$$ROTI(\delta t) = \sqrt{E\left\{\frac{|TEC(t+\delta t) - TEC(t)|^2}{\delta t^2}\right\}}$$

- TEC must be first detrended to ensure that the TEC time series is zero-mean
- can be computed using low-rate TEC measurements
- Typical sample interval $\delta t=1$ or 30s
- Typical averaging window $\delta t_w = 1$ to 5 min
- ROTI and S4 are highly correlated if the signal propagation direction is near parallel with magnetic field lines.

Carrano, C. S., Groves, K. M., & Rino, C. L. (2019). On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (CkL), and the scintillation index (S4). *J. Geophy. Res.: Space Phy.*, *124*(3), 2099-2112.

2. Scintillation Observations

Simultaneous Amplitude Fading and Phase Jumps

Frequency Diversity: Selective Fading

Equatorial Fading Frequencies

Fading Duration, Interval, Depth, and Rate of Occurrence

Jiao, Y., D. Xu, Y. Morton, C. Rino, "Equatorial scintillation amplitude fading characteristics across the GPS frequency bands," Navigation, 63(3): 267–281, 2016.

University of Colorado Boulder

Carrier Frequency Dependence

Jiao, Y., D. Xu, Y. Morton, C. Rino, "Equatorial scintillation amplitude fading characteristics across the GPS frequency bands," *Navigation*, 63(3): 267–281, 2016.

University of Colorado Boulder

Nav Bit Error Rate

Time of Occurrence

Seasonal Behavior

Galmiche, A., Vincent, F., Laurent, F., "Temporal and Geographical overview of the ionospheric amplitude scintillating variability in west Africa from a SAGAIE network GNSS database," J. Space Weather & Space Climate, 2019.

Geomagnetic **Storm Impact**

Low latitude

Jiao, Y. and Y.T. Morton, "Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24," Radio Sci., 50(9): 886–903, 2015.

University of Colorado Boulder

Phase Scintillation Index Dependence on Magnetic Field Disturbance

Jiao, Y., Y.T. Morton, "Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24," *Radio Sci.*, 50(9): 886–903, 2015.

University of Colorado Boulder

Propagation in Space

Yang, Z., Y. Morton, I. Zakharenkova, I. Cherniak, S. Song, W. Li, "Global view of ionospheric disturbances impacts on kinematic GPS positioning solutions during the 2015 St. Patrick's Day storm," *J. Geophy. Res., Space Sci.*, DOI: 10.1029/2019JA027681, 2020.

University of Colorado Boulder

Ground- and Space-based Observations

CubeSat GNSS Radio Occultation Ionosphere Monitoring

Coherent Reflection Tracks Over Arctic and Antarctica

3/2/2022

Example TEC Retrieval from Spire Data: Kara Sea

Wang, Y., Y. J. Morton, "Ionospheric total electron content and disturbance observations from space borne coherent GNSS-R measurements," *IEEE Trans. Geosci. Remote Sensing*, doi: 10.1109/TGRS.2021.3093328, 2021.

University of Colorado Boulder

4. Mitigation Techniques

Why GNSS Receiver Lose Lock During Strong Scintillation?

Conflicting Demands for Weak Signal & Dynamic Signal For Strong Scintillation

Processing Component	Correlator	Estimator	Filter
Design Parameter	Integration Time	Estimator Type	Bandwidth
Weak Signal	Long	Phase	Narrow
Highly Dynamic Signal	Short	Frequency	Wide

A More Intuitive Way to Understand Why GNSS Receivers Lose Lock

Q: Where Do We Get the "Raw" Data?

Global SDR Data Collection Network

Advanced Receiver Designs: Multi-Domain Processing

• Open loop: Delay and Doppler Models

Multi-Domain GNSS Receiver Processing

- Adaptive tracking Parameter optimization
- Vector processing —— Signal spatial diversity
- Open loop → Models
- Adaptive hybrid tracking \implies Models + parameter optimization

Adaptive Tracking: Parameter Optimization

 b_1 , μ_1 , b_2 , μ_2 are functions of receiver hardware qualities and platform dynamics

- Yang, R., K. Ling, E. Poh, Y. Morton, "Generalized GNSS signal carrier tracking in challenging environments: part I – modeling and analysis," IEEE Trans. Aero. Elec. Sys., 2017.
- Yang, R., Y. Morton, K. Ling, E. Poh, "Generalized GNSS signal carrier tracking in challenging environments: part II optimization and implementation," IEEE Trans. Aero. Elec. Sys., 2017.

Inter-Frequency Carrier Doppler Relationship

Vector Tracking vs. Scalar Tracking

Open Loop Tracking (GNSS-RO, RNSS-R)

Conclusions

- Ionospheric scintillation affects GNSS signal propagation and limits receiver PVT solution availability and accuracy
- Ground-based and LEO satellite-based GNSS receivers have played a critical role in monitoring the state of the ionosphere and space weather activities
- Advanced GNSS receiver algorithms are necessary to provide reliable
 monitoring services for ionospheric scintillation
- New approaches such as GNSS-R have the potential to fill data gaps in ionospheric scintillation monitoring.

