
Object-oriented design

David Grellscheid

OO design, David Grellscheid 2022-11-29

Programming paradigm examples
Structured / Non-Structured

Declarative / Imperative

Procedural

Object-oriented

Functional

(Almost) any style can be implemented in any language

OO design, David Grellscheid 2022-11-29

Grady Booch
“Object-oriented analysis and design”
2nd edition
Addison-Wesley, 1994

OO design, David Grellscheid 2022-11-29

Main goal: manage complexity

Different approaches, OO is just one of them!
 

see e.g. Haskell for a completely different approach to
complexity handling: functional programming

They also evolve, requirements change over time

Real-world problems are complicated

OO design, David Grellscheid 2022-11-29

Complexity of the problem domain 
external; requires software maintenance, evolution, preservation

Development process 
impossible for one developer to understand large projects completely

Software is boundlessly flexible 
able to work at any level of abstraction; no fixed quality standards

Behaviour of discrete system 
natural world physics is local and continuous 
program state is not: combinatoric, small change -> large effect

OO design, David Grellscheid 2022-11-29

Complexity is hierarchical grouping of
subsystems, down to elementary components

Choice of elementary blocks is mostly
arbitrary

Links and interactions within a component are
much stronger than between components

Hierarchy uses only a few different
subsystems in different combinations

Working complex systems evolve from
working simple systems

OO design, David Grellscheid 2022-11-29

Deal with complexity by decomposition

Algorithmic decomposition:  
which steps in which order?

OO decomposition: 
which “real-world” entities are involved? 
how do they relate to each other?

Topic 1: object state

Also need two angles for the pointing direction:

lamp_state = [0,1,1,0,0,0,1,1,1]
lamp_state = [[0,1,1],[0,0,0],[1,1,1]]

lamp_state[1][2] == 1

thetas = [[0.3, 0.4, 0.5],[…],[…]]

 phis = [[0.7, 1.1, 0.0],[…],[…]]

lamp_state = [[0, 1, 1],[…],[…]]

 thetas = [[0.3, 0.4, 0.5],[…],[…]]

 phis = [[0.7, 1.1, 0.0],[…],[…]]

Parallel lists are clumsy to use

One possible solution: group the other way

 lamps = [[, ,],[, ,],[, ,]]

represents one lampNow,

lamp_state = [[0, 1, 1],[…],[…]]

 thetas = [[0.3, 0.4, 0.5],[…],[…]]

 phis = [[0.7, 1.1, 0.0],[…],[…]]

Parallel lists are clumsy to use

One possible solution: group the other way

 lamps = [[, ,],[, ,],[, ,]]

represents one lampNow,

3 arrays of values

an array of lamps

Lamp

 -is_on

 -theta

 -phi

is_on = 1

theta = 0.1

phi = 0.7

is_on = 0

theta = 0.3

phi = 0.1

is_on = 1

theta = 0.2

phi = 0.37

…is_on = 1

theta = 0.9

phi = 1.9

Lamp

 -is_on

 -theta

 -phi

is_on = 1

theta = 0.1

phi = 0.7

is_on = 0

theta = 0.3

phi = 0.1

is_on = 1

theta = 0.2

phi = 0.37

…is_on = 1

theta = 0.9

phi = 1.9

Class

object object object object

attributes /
member variables

Constructor

class Lamp:

 def __init__(self, on=0, th=0, ph=0):

 self.is_on = on

 self.theta = th

 self.phi = ph

l1 = Lamp(1, 0.4, 0.7)

l2 = Lamp(0, 1.1, 0.3)

print(l1.is_on)

print(l2.is_on)

print(l2.theta)

attributes

Constructor

objects

public class Lamp {

 int isOn;

 double theta;

 double phi;

 public Lamp(int on, double th, double ph) {

 isOn = on;

 theta = th;

 phi = ph;

 }

}

Lamp l1 = new Lamp(1, 0.4, 0.7);

Lamp l2 = new Lamp(0, 1.1, 0.3);

System.out.println(l1.isOn);

System.out.println(l2.theta);

attributes

Constructor

objects

Topic 2: object behaviour

We created objects with internal state.
What about lamp behaviours?

turn on/off

rotate

tilt

class Lamp:

 def __init__(self, on=0, th=0, ph=0):

 self.is_on = on

 self.theta = th

 self.phi = ph

 def turn_on(self):

self.is_on = 1

 def turn_off(self):

self.is_on = 0

 def rotate(self,angle):

self.phi += angle

attributes

Constructor

methods /
member functions

public class Lamp {

 int isOn;

 double theta;

 double phi;

 public Lamp(int on, double th, double ph) {

 isOn = on;

 theta = th;

 phi = ph;

 }

public void turnOn() { isOn = 1; }

public void turnOff() { isOn = 0; }

public void rotate(double angle) { phi += angle; }

public void tilt(double angle) { theta += angle; }

}

attributes

Constructor

methods

Object methods allow us to use language from the
problem domain rather than basic types:

Lamp lampA = new Lamp(1, 0.4, 0.7);

lampA.turnOff();

lampA.rotate(0.2);

lamp_A = Lamp(1, 0.4, 0.7)

lamp_A.turn_off()

lamp_A.rotate(0.2)

OO design, David Grellscheid 2022-11-29

State: inner structure with current values

Behaviour: external interaction and state
changes (construct / destruct // modify / select / iterate)

Identity: distinct to all other objects  
It’s not the name, one object can have many names! 
Identity considerations are relevant when looking at
copying, lifetime and ownership behaviour.

Object

OO design, David Grellscheid 2022-11-29

Objects with common structure and behaviour
belong to a class. The class defines both.

An object is an instance of a class.

Class

OO design, David Grellscheid 2022-11-29

Abstraction

Encapsulation

Modularity

Hierarchy

Core features of OO design

OO design, David Grellscheid 2022-11-29

Outside view of the object

Focus on relevant details, ignore others

Define distinction to other objects

No surprises, no unexpected side
behaviour

Abstraction

OO design, David Grellscheid 2022-11-29

Identify object invariants, properties that
must be true at any time

Operations have pre- and post-conditions,
they must be satisfied

Objects should never enter inconsistent
state

Abstraction

OO design, David Grellscheid 2022-11-29

Implementation details do not matter here

Define public member functions

Private section doesn’t matter yet

Abstraction

OO design, David Grellscheid 2022-11-29

separates object’s tasks from each other

actual implementation of the abstraction is
hidden

allows isolated implementation changes

internal design changes in the objects do not
impact the users of the objects

Encapsulation

OO design, David Grellscheid 2022-11-29

Abstractions only work well if
implementation is encapsulated!

Encapsulation

OO design, David Grellscheid 2022-11-29

Grouping of classes into functionally
related units. Modules should be loosely
coupled externally.

“Physical” collection of units in files, rather
than abstract connections

Difficult to get right first time, may need
several redesigns during development

Modularity

OO design, David Grellscheid 2022-11-29

OO design, David Grellscheid 2022-11-29

Abstractions form hierarchies

Helps to think about the useful levels

Two main kinds:

“is-a”: cat is an animal; oak is a plant

“has-a”: car has an engine; house has a door

Hierarchy

OO design, David Grellscheid 2022-11-29

Modelled by inheritance

Common functionality moves to the top;
applies to all classes down the hierarchy

Easy re-use of code alone is not  
a good reason for inheritance

Hierarchy: “is-a”

OO design, David Grellscheid 2022-11-29

Modelled by aggregation

Objects have other objects as member
variables

Hierarchy: “has-a”

OO design, David Grellscheid 2022-11-29

… main message …

OO design, David Grellscheid 2022-11-29

Abstractions form hierarchies

Helps to think about the useful levels

Two main kinds:

“is-a”: cat is an animal; oak is a plant

“has-a”: car has an engine; house has a door

Hierarchy

OO design, David Grellscheid 2022-11-29

Exercise

OO design, David Grellscheid 2022-11-29

Exercise: a freight station

City A

City D

City E

City C

City B

OO design, David Grellscheid 2022-11-29

City A

City D

City E

City C

City B

D

B

max 200t

max 450t

etc…

OO design, David Grellscheid 2022-11-29

City A

City D

City E

City C

City B

A 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvxA 5kg cwzvx

E 1kg frfkxC 3kg bfcad

OO design, David Grellscheid 2022-11-29

Design an OO model
for the station

Dmax 200t

a random train arrives,

A 5kg cwzvx

E 1kg frfkxC 3kg bfcad

is loaded with correct mail, leaves, and repeat

D

classes, objects, interfaces, public/private, which methods/state

but no implementation!

