
Optimization / Profiling

David Grellscheid

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

Typical scientific workflow
Correctness is main

concern

Start coding without
much planning

First version that looks
like it works is kept

Sub-optimal choices
only noticed later on

(if at all)

What writing scientific codes looks like…

• Many of us write programs to
solve specific problems in
science
• We create and use models to

describe our problems
• These models are implemented

as code and produce results
• Evaluating these results allows

us to validate our models and
improve them

Physical Problem

Model

Implementation

Evaluation

Refinements

A friend of my friend said that

you should never do XYZ,
because the code will be slower!

Donald Knuth, December 1974:

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative
impact when debugging and maintenance are
considered. We should forget about small
efficiencies, say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our opportunities in that
critical 3%.

“Structured Programming with go to Statements”, Computing Surveys, Vol 6, No 4.

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

Runtime is not the only factor to consider,
need to think about trade off between time spent in:

development
debugging
validation
portability

runtime in your own usage
other developers’ time (now/future)

total runtime for all users

CPU time much cheaper than human time!

Reusability is an efficiency!

If the student after you has to start from zero,
all your work is wasted

Optimization points
Someone else already solved (part of) the problem:

LAPACK, BLAS
GNU scientific library

C++ Boost
Numpy, Scipy, Pandas

…

Develop googling skills, evaluate what exists.
Quality often much better than self-written attempts

Optimization points

Choice of programming language

Be aware of what exists

Know strengths / weaknesses

But: needs to fit rest of project

take a look at Haskell, Erlang, Prolog
to get an idea how different the approaches can be

Optimization points

findLongestUpTo :: Int -> (Int,Int)
findLongestUpTo mx = maximum (map f [1 .. mx])
 where f x = (collatzLength x, x)

collatzLength :: Int -> Int
collatzLength 1 = 1
collatzLength n = 1 + collatzLength (collatzStep n)

collatzStep :: Int -> Int
collatzStep n
 | even n = n `div` 2
 | otherwise = 3 * n + 1

Optimization points

Program design

First version: understand the problems

now start again!

Second version: you know what you’re doing

refactor / clean up / make reusable

Done :-)

Optimization points

Algorithm / data structure choice

can get orders of magnitude in savings

Local and hardware-specific optimisations

- not in this course-

What are we optimizing?

Time
Memory

Disk
Electricity

Compile time
Ease of use

Ease of deployment
Ease of development

What are we optimizing?

Time
Memory

Disk
Electricity

Compile time
Ease of use

Ease of deployment
Ease of development

What are we optimizing?

Time
Memory

Disk
Electricity

Compile time
Ease of use

Ease of deployment
Ease of development

Complexity basics

Much simplified, skipping formal derivation

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

Complexity basics

Much simplified, skipping formal derivation

while not is_sorted(xs):
 random.shuffle(xs)

Scaling behaviour with size N of problem set:
O(1) - constant time independent of N
O(N) - linear with N
O(N2) - quadratic in N

O(N N!)

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

merge

Merge Sort

2 7 5 1 4 3 6 8

2 7 5 1 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 4 3 6 8

2 7 5 1 4 3 6 8

merge merge

merge

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 4 3 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

Merge Sort

2 7 5 1 4 3 6 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

Merge Sort

1 2 3 4 5 6 7 8

1 2 5 7 3 4 6 8

2 7 1 5 3 4 6 8

2 7 5 1 4 3 6 8

merge merge

merge

merge merge

merge

merge

O(N log N)

15 Sorting Algorithms in 6 Minutes
 http://youtu.be/kPRA0W1kECg

http://youtu.be/kPRA0W1kECg

Data structure complexity
Array
Vector

Linked list

Ordered map

Hash table

Nicolai Josuttis, “The C++ Standard Library”
http://bigocheatsheet.com/

http://bigocheatsheet.com/

Cache	Memory	

Ivan	GiroNo			
igiroNo@ictp.it	 Modern	Computer	Architectures	 13	

Loop:	load	r1,	A(i)	
		load	r2,	s	
		mult	r3,	r2,	r1	
		store	A(i),	r2	
		branch	=>	loop	

MAIN	MEMORY	

CACHE	

CPU	
Registers	

•  Designed	for	temporal/spa(al	
locality	

•  Data	is	transferred	to	cache	in	
blocks	of	fixed	size,	called	cache	
lines.	

•  Opera(on	of	LOAD/STORE	can	lead	
at	two	different	scenario:	

•  cache	hit	
•  cache	miss	

 L1 cache reference 0.5 ns

 Branch mispredict 5 ns

 L2 cache reference 7 ns

 Mutex lock/unlock 25 ns

 Main memory reference 100 ns

 SSD random read 150,000 ns = 150 µs

 Read 1 MB sequentially from memory 250,000 ns = 250 µs

 Read 1 MB sequentially from SSD 1,000,000 ns = 1 ms

 Disk seek 10,000,000 ns = 10 ms

 Read 1 MB sequentially from disk 20,000,000 ns = 20 ms

 Send packet EU->US->EU 150,000,000 ns = 150 ms

 L1 cache reference 0.5 s

 Branch mispredict 5 s

 L2 cache reference 7 s

 Mutex lock/unlock 25 s

 Main memory reference 100 s

 SSD random read 1.7 days

 Read 1 MB sequentially from memory 2.9 days

 Read 1 MB sequentially from SSD 11.6 days

 Disk seek 16.5 weeks

 Read 1 MB sequentially from disk 7.8 months

 Send packet EU->US->EU 4.8 years

 L1 cache reference 0.5 s

 Branch mispredict 5 s

 L2 cache reference 7 s

 Mutex lock/unlock 25 s

 Main memory reference 100 s

 SSD random read 1.7 days

 Read 1 MB sequentially from memory 2.9 days

 Read 1 MB sequentially from SSD 11.6 days

 Disk seek 16.5 weeks

 Read 1 MB sequentially from disk 7.8 months

 Send packet EU->US->EU 4.8 years

 L1 cache reference 0.5 s

 Branch mispredict 5 s

 L2 cache reference 7 s

 Mutex lock/unlock 25 s

 Main memory reference 100 s

 SSD random read 1.7 days

 Read 1 MB sequentially from memory 2.9 days

 Read 1 MB sequentially from SSD 11.6 days

 Disk seek 16.5 weeks

 Read 1 MB sequentially from disk 7.8 months

 Send packet EU->US->EU 4.8 years

 L1 cache reference 0.5 s

 Branch mispredict 5 s

 L2 cache reference 7 s

 Mutex lock/unlock 25 s

 Main memory reference 100 s

 SSD random read 1.7 days

 Read 1 MB sequentially from memory 2.9 days

 Read 1 MB sequentially from SSD 11.6 days

 Disk seek 16.5 weeks

 Read 1 MB sequentially from disk 7.8 months

 Send packet EU->US->EU 4.8 years

Optimization strategy
Don't optimize the whole code
Profile the code, find the bottlenecks
They may not always be where you thought they were

Break the problem down
Try to run the shortest possible test you can to get meaningful results
Isolate serial kernels

Keep a working version of the code!
Getting the wrong answer faster is not the goal.

Optimize on the architecture on which you intend to run
Optimizations for one architecture will not necessarily translate

The compiler is your friend!
If you find yourself coding in machine language, you are doing to much.

Intro

This is the most important slide in the talk

Never, ever optimize unless you have good reason to.

I Why do you need to optimize?
I Do you have a clear plan of action?
I What do you expect to gain?
I How long will it take?
I Are you still sure it’s worth it?

Chris Pollard (Glasgow, MCNet) optimizations@mcnet 2016 05 18 3 / 22

Python profiling options

timeit python -m timeit -s ‘import myfile as m;
x=27’ ‘m.somefunc(x)’

import cProfile
cProfile.run(somefunc(27))cProfile

All are in the standard library

time from time import time
start = time()
somefunc(27)
end = time()

pyprof2calltree
qcachegrind

Interesting package to give just-in-time compilation on
arbitrary code

https://numba.pydata.org/

Link to compiled code

Try to stay with Python-only until performance
becomes a problem. Numpy etc. make this possible

https://numba.pydata.org/
http://bigocheatsheet.com/

Link to external code

f2py for Fortran (part of numpy)

ctypes for C (standard lib)

cython for C and C++ (on PyPI)

…

http://bigocheatsheet.com/

