
Unit Testing

Unit tests

They should be small, precise, and independent

Check if a single unit of code works as expected/desired

Why Unit Tests?

• Fix bugs + Make sure they are not
reproduced

• Helps with refactoring

• Like a documentation (but it is
compiled/interpreted)

UT frameworks
• Python: pytest, nose, doctest, unittest

• C++: Catch, Google Test, Boost.Test, CppUnit, …

• Get tools to make things easier (automation, reports, fixtures, …)

Moc Objects

• Commonly used in testing OO code

• Create objects that are di"icult include

• Non-controlled or non-deterministic
behaviour (current time, current
temperature, ...)

• State di"icult to reproduce (network
error, large database, ...)

Test fixtures

• Set up (preconditions)

• Assert

• Tear down (postconditions)

Test Driven Development

full test coverage and less useless code

• Write unit tests that fails

• Write the minimum (sensible)
code to pass them

• Refactor

Best practices

• If you find a bug, turn it into a
test case

• When debugging, write tests

• Always leave the code in a better
state than you found it in

