
Alessandro Corbetta Pedestrian dynamics since 2012
fluid mechanics & stat. phys. Perspective

Machine Learning for fluid mechanics since 2016

Eindhoven

The
Netherlands

Department of Applied Physics
Fluids and Flows

https://crowdflow.phys.tue.nl

http://crowdflow.phys.tue.nl/

Alessandro Corbetta

Since 2015

Computing cluster Virtualization cluster, Hyperconverged storage

Coding: collaborative,
trustworthy, reproducible

Alessandro Corbetta

An infrastructure in shells

Interaction &

communication

Authority

& roles

Testing

& quality

Integration &

deployment

Development &

Research process

management

Containerization:

bitwise reproducibility

Accessibility,

Open source &

Community development

Process & high-density data

vault

version
control

Plan of the lectures

Structured
collaboration Trusting changes

Immediate
reproducibility

Gitlab
Conversational development

Continuous integration
Continuous deployment

Containers
Docker

Virtualenvs

Git

Repo examples:

− 1 code project

− 1 paper

− 1 student

− 1 project proposal

− 1 presentation

cd project_folder

git init .

Linus Torvalds, 2005
(frustrated by bitkeeper)

Startup

1 project 1 git repository

Next slides: 8 basic commands

Tracking versions

Make a snapshot of the current version

$ git add file1.py file2.py

$ git commit -m ‘added files’

And so on for the next snapshot
$ git add file1.py

$ git commit -m ‘changed XX YY’

Changes
git diff

Removed content

Added content

Changes
git log

First snapshot (commit)

Second snapshot (commit)

History & rollback

• Each commit holds a complete snapshot of the repository

git checkout <hash>

75b3 6yjk 9iop lkg4 376v

fi
le

s

hash

Branches for a safe future

Default branch “master” or “main”

New branch: git branch testing

Development in “testing”

Production-safe

New feature

Branches can evolve independently!

Production

Development

Merging
• git checkout master

• git merge iss53

Feature iss53 is

brought

To production

Merge conflicts
certain decisions are for humans only
• git checkout master

• git merge iss53

Manual merging might be needed (if merging is not obvious)

Git: basic version control

• git init

• git add stage file for snapshot

• git commit take snapshot

• git diff compare snapshots

• git log snapshot list

• git checkout move to a different snapshot

• git branch branch the future

• git merge join different futures in one

Coding: collaborative,
trustworthy, reproducible

Alessandro Corbetta

Collaborative development

origin
(remote)

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

Alessandro

David

Ivan

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

git clone git@gitlab.com:acorbe/SMR3199_FP_ex.git

Multiple solutions to host
the server yourself

Users have local repositories mirroring a remote origin.

Pulling/Pushing commits to the origin

To update <branch> locally
• git checkout <branch>

• git pull origin <branch>

To push to remote
• git checkout <branch>

• git push origin <branch>

Note: remotes can be public or private

Pulling/Pushing commits to the origin

Interaction between two or more developers

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro & David both do git clone

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro

David

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro
(developed
feature B)

David
(developed
feature C)

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

B3

develop_A

C3

develop_D

Both David and Alessandro committed

Collaborative development
What happens after clone?

Origin A0 A1 A2

master

Alessandro
B ready for master

David
(developed
feature C)

A0 A1 A2

masterorigin/master

A0 A1 A2

master
origin/master

B3

develop_A

C3

develop_D

git checkout master

git pull

git merge develop_A

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

Alessandro
pushes B

David
(developed
feature C)

A0 A1 A2

master
origin/master

A0 A1 A2

master
origin/master

B3

develop_A

C3

develop_D

git push origin master

master

B3

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

Alessandro
pushed

David
Willing to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3

develop_A

C3

develop_D

master

B3

git checkout master

git pull #UPDATES!!

master

B3

origin/master

HEAD

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

Alessandro
idle

David
Wiling to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3

develop_A

C3

develop_D

master

B3

git checkout develop_D

master

B3

origin/master

HEAD

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

David
Ready to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3

develop_A

C3

develop_D

master

B3

git merge master

develop now is

newer than master

by definition can

be safely merged

into master

master

B3

origin/master

HEAD

C4

Alessandro
idle

Collaborative development
What happens after clone?

Origin
idle

A0 A1 A2

David
Ready to push

A0 A1 A2

master
origin/master

A0 A1 A2

B3

develop_A

C3

develop_D

master

B3

git checkout master

git merge develop_D

master
B3

origin/master HEAD

C4

Alessandro
idle

Collaborative development
What happens after clone?

Origin
is updated

A0 A1 A2

David
pushes

A0 A1 A2

master
origin/master

A0 A1 A2

B3

develop_A

C3

develop_D

git push origin master

master
B3

origin/master
HEAD

C4

Alessandro
idle

C3

masterB3

C4

Maximizing scalability and effectiveness

Very complete/explicative
comment

Less explicative comment

• If all developers push to master, quality can degrade

• How to coordinate?

• How can we trust the changes?

• How to use this in research?

Maximizing scalability and effectiveness?
• If all developers push to master, quality can degrade

• How to coordinate?

• How can we trust the changes?

• How to use this in research?

The conversational development paradigm

1. IDEA
2. ISSUE

3. PLANNING
4. CODING

5. COMMITTING

6. TESTING

7. REVIEWING
8. STAGING

9. PRODUCTION

10. FEEDBACK

Gitlab/github: meant to support this approach

Development model => content & conversations between developers
Fosters collaborations w/o centralized entities

In my experience: very scalable also in research (codes & execution)!

Super-structure to a Git repository

What others developer did?

Content/commits

Issues

Merging your contribution

Testing

Issue at first
• I have an idea
• There is a bug
• I want to propose a new feature

Issue at first
• Case of a bug --> the issue got ticket number #113

From issue to code

• If Ivan is in charge of fixing #113:
• [Clones the code – if he does not have already]

• Branches master -> e.g. into branch ISSUE113 (for trackability)

• git checkout –b ISSUE113 master

ISSUE113

From issue to code

• If Ivan is in charge of fixing #113:
• [Clones the code – if he does not have already]

• Branches master -> e.g. into branch ISSUE113 (for trackability)

• git checkout –b ISSUE113

• Corrects bugs & make regression tests

• git add code tests

• git commit –m ‘[ISSUE #113] – how code and tests

have been changed’

• git push origin ISSUE113

master

ISSUE113

From issue to code

• If Ivan is in charge of fixing #113:
• git commit –m ‘[ISSUE #113] – how code and tests

have been changed’

• git push origin ISSUE113

master

ISSUE113

Ivan

origin/ISSUE113

master

ISSUE113

Origin

From issue to code

• If Ivan is in charge of fixing #113:
• git commit –m ‘[ISSUE #113] – how code and tests

have been changed’

• git push origin ISSUE113

ALWAYS DO specify the issue number in the
commit message. This will link
each contribution to the related motivation

Code review

git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

• Code review from authoritative parties is required

• Ask the authoritative part to merge your contribution through a merge request

master

ISSUE113

Origin

Code review
merge request
git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

• Code review from authoritative parties is required

• Ask the authoritative part to merge your contribution through a merge request

master

ISSUE113

Origin

Code review
merge request
git push origin ISSUE113

master is a privileged branch. Developers must not push directly! (generally is
also prohibited)

master

ISSUE113

Origin

Code review
merge request

master
ISSUE113

Origin

Code review
merge request

Code can (should) be reviewed
before merging by an authority

Nightly testing

• Did the development of the day worked ok?
• 11PM – start test suit current dev branch

• 8AM – see problems; fix

• Issues?

Aims

• Understand quickly if code (each branch) pass tests

• Merge frequently; avoid drifts

• Test before merging and merge

• Tests run quickly (O(10min))

Also

• Deploy frequently – “agile” dev-user cycle

Coding: collaborative,
trustworthy, reproducible

Alessandro Corbetta

Automated testing
• We want each commit tested (“by trusted party”)

• We want to merge codes only if they pass tests!

• Continuous integration
each commit that we push to the origin is tested

I can merge safely: tests are passed

Continuous integration

• Each push: automated remote testing

• Every user fully aware of the code state

• If testing quick, dev cycle & master merge: very frequent
• Many github repos: hundreds merge per day after remote testing

Continuous integration in gitlab

• a file in the repo root
.gitlab-ci.yml

tells the server how to run tests and in which environment

• Can be one single test case or a very complicated testing pipeline
with cross-test dependence.

Minimal python example

Minmal python example: CI

image: python:latest

test-only:

script:

- pip install pytest pytest-cov

- pytest -vvv

.gitlab-ci.yml

Minmal python example: CI

image: python:latest

test-only:

script:

- pip install pytest

- pytest -vvv

.gitlab-ci.yml

Running in a linux sandbox with up-to-date python (Docker container)

Installing dependencies, here put numpy etc…
(better with requirements.txt)

Testing

See examples

https://git.smr3696.ictp.it/gitlab-instance-59615060/pytest-example

Continous deployment

• One step further: serving the product immediately

• Example: static pages that serve docs, executables…

Best practices

• Edits always follow issues

• Pull/commit/push/merge request often.
• You don’t want your version to diverge

• Make meaningful commit message

• Commit message include ticket number

• NEVER commit products, just source.
• (products can be made in cloud by continuous integration)

• E.g. documentation can be generated by CI

• Never commit large binary files. Git does not properly understand
those (git-lfs)

Minmal python example: testing

image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy nose

test:

script:

- cd binary_str_2_float

- nosetests -v

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy pytest pytest-cov

test:

script:

- cd binary_str_2_float

- pytest -v

We will run the tests in a “virtual linux machine” which runs
the latest python version. (Docker container)

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy pytest pytest-cov

test:

script:

- cd binary_str_2_float

- pytest -v

The machine is empty. We need to configure it from scratch
every time. (good for reproducibility)/

.gitlab-ci.yml

Building continuous integration pipelines
Case of our python exercise
image: python:latest

variables:

PIP_CACHE_DIR: "$CI_PROJECT_DIR/.cache"

cache:

paths:

- .cache/pip

- venv/

before_script:

- python -V # Print out python version for debugging

- pip install virtualenv

- virtualenv venv

- source venv/bin/activate

- pip install numpy pytest pytest-cov

test:

script:

- cd binary_str_2_float

- pytest -v

Calls the tests and captures the value fail/pass return value

Result is sent back to the server.

.gitlab-ci.yml

