
Numerical Accuracy and
Floating-Point Maths

David Grellscheid 
based on slides by Axel Kohlmeyer, Temple U.

Floating point maths, David Grellscheid 2017-03-08

Before computations:
Modelling: neglecting certain properties 
Empirical data: not every input is known perfectly
Previous computations: data may be taken from other (error-
prone) numerical methods
Sloppy programming (e.g. inconsistent conversions)

During computations:
Truncation: a numerical method approximates a continuous
solution
Rounding: computers offer only finite precision in representing
real numbers

Floating point maths, David Grellscheid 2017-03-08

Computing the surface of the earth using
A = 4π r2

This involves several approximations:
Modelling: the earth is not exactly a sphere
Measurement: earth's radius is an empirical number
Truncation: the value of π is truncated
Rounding: all numbers used are rounded due to
arithmetic operations in the computer

Total error is the sum of all errors; usually one
will dominate

Floating point maths, David Grellscheid 2017-03-08

Computing the surface of the earth using
A = 4π r2

This involves several approximations:
Modelling: the earth is not exactly a sphere
Measurement: earth's radius is an empirical number
Truncation: the value of π is truncated
Rounding: all numbers used are rounded due to
arithmetic operations in the computer

Total error is the sum of all errors; usually one
will dominate

Floating point maths, David Grellscheid 2017-03-08

Real numbers have unlimited accuracy
On a computer, need to represent them in finite width

One option: fixed point numbers

16-bit fixed: range ±32768, step size 1

12/4-bit fixed: range ±2048, step size 0.0625

Floating point maths, David Grellscheid 2017-03-08

Need wider range in the same number of bits,
keeping reasonable precision.  
Relative precision often sufficient

[±][1.fraction] 2[exponent]

Single-precision floating point (float, 4 bytes)

223 = 8M available numbers between 1 and 2, 
but only 4k numbers between 2048 and 2049

Floating point maths, David Grellscheid 2017-03-08

Single-precision floating point (float, 4 bytes)

Double-precision floating point (double, 8 bytes)

Extended-precision floating point (long double, 10 bytes)

IEEE 754

Floating point maths, David Grellscheid 2017-03-08

demo

Maths pitfalls

Gaps in representation

Almost all reals cannot be represented exactly

223 = 8M available numbers between 1 and 2, 
but only 4k numbers between 2048 and 2049

Floating point maths, David Grellscheid 2017-03-08

demo

Maths pitfalls

Gaps in representation

Almost all reals cannot be represented exactly

223 = 8M available numbers between 1 and 2, 
but only 4k numbers between 2048 and 2049

>>> 0.1+0.2

0.30000000000000004

>>> print '{:10.60f}'.format(0.1)

0.100000000000000005551115123125782702118158340454101562500000

>>> print '{:10.60f}'.format(0.2)

0.200000000000000011102230246251565404236316680908203125000000

>>> print '{:10.60f}'.format(0.3)

0.299999999999999988897769753748434595763683319091796875000000

>>> print '{:10.60f}'.format(0.1+0.2)

0.300000000000000044408920985006261616945266723632812500000000

Floating point maths, David Grellscheid 2017-03-08

demo

Maths pitfalls

Gaps in representation

Almost all reals cannot be represented exactly

223 = 8M available numbers between 1 and 2, 
but only 4k numbers between 2048 and 2049

>>> 0.1+0.2

0.30000000000000004

>>> print '{:10.60f}'.format(0.1)

0.100000000000000005551115123125782702118158340454101562500000

>>> print '{:10.60f}'.format(0.2)

0.200000000000000011102230246251565404236316680908203125000000

>>> print '{:10.60f}'.format(0.3)

0.299999999999999988897769753748434595763683319091796875000000

>>> print '{:10.60f}'.format(0.1+0.2)

0.300000000000000044408920985006261616945266723632812500000000

>>> 0.1 + 0.2 == 0.3

False

[±][1.fraction] 2[exponent]
Luca HELTAI

Floating Point Adder Block

29

c

z

EZ

EX

FX

Shift Right / Left

Inc / Dec

EY

Swap

FY

Shift Right

Exponent
Subtractor

Significand
Adder/Subtractor

1 1
sign

Sign
Computation

d = | EX – EY |

max (EX , EY)

add / subtract

Rounding Logic

sign
SY

add/sub

FZSZ

c

SX

z
Detect carry, or

Count leading 0’s

c

0 1

9Workshop on Advanced Techniques
in Scientific Computing

Math with Floating Point Numbers

Addition:

– Right bitshift mantissa and increment exponent of smaller
number until both exponents are the same

– Add mantissa of both numbers and bitshift until mantissa is
between 1.0 and 2.0 again

– Only if both numbers have the same sign and the same
exponent precision is preserved

Multiplication:

– Add exponents and multiply mantissa of both numbers

– Bitshift mantissa until its value is between 1.0 and 2.0

– No loss of precision; error is larger error of either number

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 1.1001 x 2-4
+1.1001 x 2-3

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 0.1100 x 2-3
+1.1001 x 2-3

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 0.1100 x 2-3
+1.1001 x 2-3

10.0101 x 2-3

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 0.1100 x 2-3
+1.1001 x 2-3

 1.0010 x 2-2

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 0.1100 x 2-3
+1.1001 x 2-3

 1.0010 x 2-2 = 18/64 0.28125

Floating point maths, David Grellscheid 2017-03-08

Example: 
 8-bit number with 4-bit mantissa

0.1 1.1001 x 2-4 = 25/256 0.09765625
0.2 1.1001 x 2-3 = 25/128 0.1953125
0.3 1.0011 x 2-2 = 19/64 0.296875

= 76/256

0.1+0.2 0.1100 x 2-3
+1.1001 x 2-3

 1.0010 x 2-2 = 18/64 0.28125
Online IEEE calculator, e.g.: http://weitz.de/ieee/

Floating point maths, David Grellscheid 2017-03-08

Maths pitfalls

FP maths is commutative, but not associative

Luca HELTAI

Accuracy can be a Big Problem

32

Value1 Value2 Value3 Value4 Sum
1.0E+30 -1.0E+30 9.5 -2.3 7.2

1.0E+30 9.5 -1.0E+30 -2.3 -2.3

1.0E+30 9.5 -2.3 -1.0E+30 0

❖ Adding double-precision floating-point numbers (Excel)

❖ Floating-Point addition is NOT associative

❖ Produces different sums for the same data values

❖ Rounding errors when the difference in exponent is large

Luca HELTAI

Floating-point Math Pitfalls

❖ Floating point math is commutative, but not associative!
Example (single precision):

❖ 1.0 + (1.5*1038 + (- 1.5*1038)) = 1.0

❖ (1.0 + 1.5*1038) + (- 1.5*1038) = 0.0

◇ the result of a summation depends on the order of how
the numbers are summed up

◇ results may change significantly, if a compiler changes the
order of operations for optimisation

◇ prefer adding numbers of same magnitude

◇ avoid subtracting very similar numbers

7

Floating point maths, David Grellscheid 2017-03-08

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0000

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0001

Ill-conditioned matrices
Small changes lead to big steps in the solution. 
Compare:

with:

Floating point maths, David Grellscheid 2017-03-08

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0000

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0001

Ill-conditioned matrices
Small changes lead to big steps in the solution. 
Compare:

with:

x=2, y=0

Floating point maths, David Grellscheid 2017-03-08

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0000

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0001

Ill-conditioned matrices
Small changes lead to big steps in the solution. 
Compare:

with:

x=2, y=0

x=1, y=1

Floating point maths, David Grellscheid 2017-03-08

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0000

1.0000 x + 1.0000 y = 2.0000
1.0000 x + 1.0001 y = 2.0001

Ill-conditioned matrices
Small changes lead to big steps in the solution. 
Compare:

with:

x=2, y=0

x=1, y=1

Danger if 2.0000 and 2.0001 look the same as Float!

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x =
1000
999

y =
998
999

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x =
1000
999

y =
998
999

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

x =
1000
999

y =
998
999

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

999
1000

y =
998

1000
x + y = 2

x =
1000
999

y =
998
999

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

999
1000

y =
998

1000
x + y = 2

1.00 y = 1.00
x + y = 2

x =
1000
999

y =
998
999

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

999
1000

y =
998

1000
x + y = 2

1.00 y = 1.00
x + y = 2

x =
1000
999

y =
998
999

x = 0

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

999
1000

y =
998

1000
x + y = 2

1.00 y = 1.00
x + y = 2

x =
1000
999

y =
998
999

x = 0 x = 1

Floating point maths, David Grellscheid 2017-03-08

x
1000

+ y = 1

x + y = 2

x
1000

+ y = 1

�999y = �998

x
1000

+ y = 1

y = 1.00

999
1000

y =
998

1000
x + y = 2

1.00 y = 1.00
x + y = 2

x =
1000
999

y =
998
999

x = 0 x = 1

Choice of algorithm matters!

Floating point maths, David Grellscheid 2017-03-08

Japan J. Indust. Appl. Math., 26 (2009), 249–277 Area 〈2〉

Inversion of Extremely Ill-Conditioned Matrices

in Floating-Point

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstraße 95, Hamburg 21071, Germany, and
Visiting Professor at Waseda University, Faculty of Science and Engineering
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: rump@tu-harburg.de

Received March 17, 2008
Revised December 5, 2008

Let an n × n matrix A of floating-point numbers in some format be given. Denote the
relative rounding error unit of the given format by eps. Assume A to be extremely
ill-conditioned, that is cond(A) " eps−1. In about 1984 I developed an algorithm to
calculate an approximate inverse of A solely using the given floating-point format. The
key is a multiplicative correction rather than a Newton-type additive correction. I did not
publish it because of lack of analysis. Recently, in [9] a modification of the algorithm was
analyzed. The present paper has two purposes. The first is to present reasoning how and
why the original algorithm works. The second is to discuss a quite unexpected feature
of floating-point computations, namely, that an approximate inverse of an extraordinary
ill-conditioned matrix still contains a lot of useful information. We will demonstrate this
by inverting a matrix with condition number beyond 10300 solely using double precision.
This is a workout of the invited talk at the SCAN meeting 2006 in Duisburg.

Key words: extremely ill-conditioned matrix, condition number, multiplicative correction,
accurate dot product, accurate summation, error-free transformations

1. Introduction and previous work

Consider a set of floating-point numbers F, for instance double precision
floating-point numbers according to the IEEE 754 standard [3]. Let a matrix
A ∈ Fn×n be given. The only requirement for the following algorithm are floating-
point operations in the given format. For convenience, assume this format to be
double precision in the following.

First we will show how to compute the dot product xTy of two vectors x, y ∈ F
in K-fold precision with storing the result in one or in K floating-point numbers.
This algorithm to be described in Section 2 uses solely double precision floating-
point arithmetic and is based on so-called error-free transformations [7, 13, 12].
The analysis will show that the result is of a quality “as if” computed in K-fold
precision.

The relative rounding error unit in IEEE 754 double precision in rounding to
nearest is eps = 2−53. Throughout the paper we assume that no over- or underflow
occurs. Then every single floating-point operation produces a result with relative
error not larger than eps.

This research was partially supported by Grant-in-Aid for Specially Promoted Research
(No. 17002012: Establishment of Verified Numerical Computation) from the Ministry of Edu-
cation, Science, Sports and Culture of Japan.

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

Floating point maths, David Grellscheid 2017-03-08

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

Japan J. Indust. Appl. Math., 26 (2009), 249–277 Area 〈2〉

Inversion of Extremely Ill-Conditioned Matrices

in Floating-Point

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstraße 95, Hamburg 21071, Germany, and
Visiting Professor at Waseda University, Faculty of Science and Engineering
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: rump@tu-harburg.de

Received March 17, 2008
Revised December 5, 2008

Let an n × n matrix A of floating-point numbers in some format be given. Denote the
relative rounding error unit of the given format by eps. Assume A to be extremely
ill-conditioned, that is cond(A) " eps−1. In about 1984 I developed an algorithm to
calculate an approximate inverse of A solely using the given floating-point format. The
key is a multiplicative correction rather than a Newton-type additive correction. I did not
publish it because of lack of analysis. Recently, in [9] a modification of the algorithm was
analyzed. The present paper has two purposes. The first is to present reasoning how and
why the original algorithm works. The second is to discuss a quite unexpected feature
of floating-point computations, namely, that an approximate inverse of an extraordinary
ill-conditioned matrix still contains a lot of useful information. We will demonstrate this
by inverting a matrix with condition number beyond 10300 solely using double precision.
This is a workout of the invited talk at the SCAN meeting 2006 in Duisburg.

Key words: extremely ill-conditioned matrix, condition number, multiplicative correction,
accurate dot product, accurate summation, error-free transformations

1. Introduction and previous work

Consider a set of floating-point numbers F, for instance double precision
floating-point numbers according to the IEEE 754 standard [3]. Let a matrix
A ∈ Fn×n be given. The only requirement for the following algorithm are floating-
point operations in the given format. For convenience, assume this format to be
double precision in the following.

First we will show how to compute the dot product xTy of two vectors x, y ∈ F
in K-fold precision with storing the result in one or in K floating-point numbers.
This algorithm to be described in Section 2 uses solely double precision floating-
point arithmetic and is based on so-called error-free transformations [7, 13, 12].
The analysis will show that the result is of a quality “as if” computed in K-fold
precision.

The relative rounding error unit in IEEE 754 double precision in rounding to
nearest is eps = 2−53. Throughout the paper we assume that no over- or underflow
occurs. Then every single floating-point operation produces a result with relative
error not larger than eps.

This research was partially supported by Grant-in-Aid for Specially Promoted Research
(No. 17002012: Establishment of Verified Numerical Computation) from the Ministry of Edu-
cation, Science, Sports and Culture of Japan.

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

Floating point maths, David Grellscheid 2017-03-08

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

Japan J. Indust. Appl. Math., 26 (2009), 249–277 Area 〈2〉

Inversion of Extremely Ill-Conditioned Matrices

in Floating-Point

Siegfried M. Rump

Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstraße 95, Hamburg 21071, Germany, and
Visiting Professor at Waseda University, Faculty of Science and Engineering
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: rump@tu-harburg.de

Received March 17, 2008
Revised December 5, 2008

Let an n × n matrix A of floating-point numbers in some format be given. Denote the
relative rounding error unit of the given format by eps. Assume A to be extremely
ill-conditioned, that is cond(A) " eps−1. In about 1984 I developed an algorithm to
calculate an approximate inverse of A solely using the given floating-point format. The
key is a multiplicative correction rather than a Newton-type additive correction. I did not
publish it because of lack of analysis. Recently, in [9] a modification of the algorithm was
analyzed. The present paper has two purposes. The first is to present reasoning how and
why the original algorithm works. The second is to discuss a quite unexpected feature
of floating-point computations, namely, that an approximate inverse of an extraordinary
ill-conditioned matrix still contains a lot of useful information. We will demonstrate this
by inverting a matrix with condition number beyond 10300 solely using double precision.
This is a workout of the invited talk at the SCAN meeting 2006 in Duisburg.

Key words: extremely ill-conditioned matrix, condition number, multiplicative correction,
accurate dot product, accurate summation, error-free transformations

1. Introduction and previous work

Consider a set of floating-point numbers F, for instance double precision
floating-point numbers according to the IEEE 754 standard [3]. Let a matrix
A ∈ Fn×n be given. The only requirement for the following algorithm are floating-
point operations in the given format. For convenience, assume this format to be
double precision in the following.

First we will show how to compute the dot product xTy of two vectors x, y ∈ F
in K-fold precision with storing the result in one or in K floating-point numbers.
This algorithm to be described in Section 2 uses solely double precision floating-
point arithmetic and is based on so-called error-free transformations [7, 13, 12].
The analysis will show that the result is of a quality “as if” computed in K-fold
precision.

The relative rounding error unit in IEEE 754 double precision in rounding to
nearest is eps = 2−53. Throughout the paper we assume that no over- or underflow
occurs. Then every single floating-point operation produces a result with relative
error not larger than eps.

This research was partially supported by Grant-in-Aid for Specially Promoted Research
(No. 17002012: Establishment of Verified Numerical Computation) from the Ministry of Edu-
cation, Science, Sports and Culture of Japan.

250 S.M. Rump

Throughout this paper we use the Frobenius norm ‖A‖F :=
(∑

a2
ij

)1/2. It is
unitary as the often used spectral norm, but it is much easier to compute and of
similar size as by ‖A‖2 ≤ ‖A‖F ≤

√
rank(A) · ‖A‖2.

For a matrix A ∈ Rn×n, the condition number cond(A) = ‖A−1‖ · ‖A‖ charac-
terizes the sensitivity of the inverse of A with respect to small perturbations in A.
More precisely, for small enough ε and ‖∆A‖ = ε‖A‖,

‖(A + ∆A)−1 − A−1‖
ε‖A−1‖ ≤ cond(A). (1.1)

Practical experience verifies that for a general perturbation ∆A we can expect
almost equality in (1.1). Now consider an extremely ill-conditioned matrix A ∈
Fn×n. By that we mean a matrix A with cond(A) % eps−1. As an example taken
from [10] consider

A4=





−5046135670319638 −3871391041510136 −5206336348183639 −6745986988231149
−640032173419322 8694411469684959 −564323984386760 −2807912511823001

−16935782447203334 −18752427538303772 −8188807358110413 −14820968618548534
−1069537498856711 −14079150289610606 7074216604373039 7257960283978710



.

(1.2)
This innocent looking matrix is extremely ill-conditioned, namely

cond(A4) = 6.4 · 1064.

An approximate inverse R of extremely ill-conditioned matrices calculated by any
standard algorithm such as Gaussian elimination is so severely corrupted by round-
off errors that we cannot expect a single correct digit in R. For our matrix A4

we obtain

invfl(A4) =





−3.11 −1.03 1.04 −1.17
0.88 0.29 −0.29 0.33

−2.82 −0.94 0.94 −1.06
4.00 1.33 −1.34 1.50



,

fl(A−1
4) =





8.97 · 1047 2.98 · 1047 −3.00 · 1047 3.37 · 1047

−2.54 · 1047 −8.43 · 1046 8.48 · 1046 −9.53 · 1046

8.14 · 1047 2.71 · 1047 −2.72 · 1047 3.06 · 1047

−1.15 · 1048 −3.84 · 1047 3.85 · 1047 −4.33 · 1047



.

(1.3)

Here R := invfl(A4) denotes an approximate inverse of A calculated in floating-
point, for example by the Matlab command R = inv(A), whereas fl(A−1

4) denotes
the true inverse A−1

4 rounded to the nearest floating-point matrix. Note that in
our example R is almost a scalar multiple of A−1

4 , but this is not typical. As can
be seen, R and A−1

4 differ by about 47 orders of magnitude. This corresponds to a
well-known rule of thumb in numerical analysis [2].

One may regard such an approximate inverse R as useless. The insight of the
algorithm to be described is that R contains a lot of useful information, enough

Floating point maths, David Grellscheid 2017-03-08

