Joint ICTP-IAEA Workshop on Physics and Technology of Innovative Nuclear Energy Systems 12-16 December 2022

GENERATION IV REACTOR DESIGNS

Chirayu Batra

Chief Technology Officer TerraPraxis https://www.terrapraxis.org/

December 2022

Brief Introduction

Acknowledgement

The following lecture is inspired by the presentation made by Prof Konstantin Mikityuk, PSI during the ICTP-IAEA workshop on physics and technology of innovative nuclear energy systems in 2018. There is a powerful storytelling involved in this lecture and with permission of Prof Mikityuk, I have taken that story to prepare this lecture with some modifications. The lecture recordings of 2018 are also available on YouTube

Outline

- Generation 4 International Forum Reactor Designs:
 - Broad introduction to GIF, GIF Goals and **Technology selection**
 - General features/characteristics of all GIF design
 - Specific design concept description
 - Speicific features of the selected design
 - Conclusions

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Sodium Fast Reactor

Lead Fast Reactor

Gas Cooled Fast Reactor

Supercritical Water Cooled Reactor

Molten Salt Cooled Reactor

Reactor Technology Evolution

- Generation I: 1950s 1960s (now probably only in UK)
- **Generation II:** 1970s ~2040 mainly present US and French operating Reactors
- **Generation III/III+:** 1996 Evolutionary designs
 - Simpler design, reduced cost, efficient, safer
 - Higher availability, longer operating life, reduced CDF, higher burnup, better load following capabilities, modular designs Wesstinghouse AP600 – 1999
- **Generation IV**: Innovative Designs
 - Safe, Secure, Sustainable, Competitive, Versatile

We need both technical and institutional innovation

Reactor Technology: early prototypes to innovative designs

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

3rd GIF Symposium 2015/ICONE 23 Conference - Makuhari Messe, Japan, May 2015

GIF: what is it?

- Established in 2001, the Generation IV International Forum (GIF) was created as a cooperative international endeavour seeking to develop the research necessary to test the feasibility and performance of fourth generation nuclear systems, and to make them available for industrial deployment by 2030.
- The GIF brings together 13 countries (Argentina, Australia, Brazil, Canada, China, France, Japan, Korea, Russia, South Africa, Switzerland, the United Kingdom and the United States), as well as Euratom – representing the 27 European Union members – to co-ordinate research and development on these systems.
- The GIF has selected six reactor technologies for further research and development:

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Reactor Technology	Fast	The
Sodium-cooled fast reactor (SFR)	X	
Lead-cooled fast reactor (LFR)	X	
Gas-cooled fast reactor (GFR)	X	
Very-high-temperature reactor (VHTR)		
Supercritical-water-cooled reactor (SCWR)	X	
Molten salt reactor (MSR)	X	

Х

GIF Reactor Technologies

Туре	Neutron Spectrum	Coolant	Temperature (°C)	Fuel Cycle	Size (MW)	Example developers
VHTR	Thermal	Helium	900–1000	Open	250–300	HTTR, JAEA, Japan, HTR-10, Tsinghua Unive HTR-PM, Tsinghua University & China Nuclea Engineering Corporation; XE-100, X-Energy
SFR	Fast	Sodium	550	Closed	30–150, 300– 1500, 1000–2000	TerraPower (Natrium), Toshiba -4S, GE Hitac PRISM, BN-600/800/1200, OKBM Afrikantov, CFR-600, China; PFBR, India
SCWR	Thermal or fast	Water	510–625	Open or closed	300–700, 1000– 1500	HPLWR
GFR	Fast	Helium	850	Closed	1200	Energy Multiplier Module (General Atomics)
LFR	Fast	Lead	480-800	Closed	20—180, 300— 1200, 600—1000	BREST-OD-300 Rosatom; SVBR
MSR	Fast or thermal	Fluoride or chloride salts	700–800	Closed	250–1000	Seaborg Technologies, Copenhagen Atomics TerraPower, Elysium Industries, Moltex Energ Flibe Energy, Thorium Tech Solution (FUJI MSR), Terrestrial Energy (IMSR), ThorCon

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Status of GIF Reactor Technologies

(Gen	GIF name neration IV International Forum)	Coolant	Neutron spectrum	Reactors already built	Reactors in operation at present	Existing projects
SFR	Sodium cooled Fast Reactor	Sodium	Fast	Yes	Yes	Yes
LFR	Lead cooled Fast Reactor	Lead or Lead- Bismuth	Fast	Yes (submarines)	No	Yes
GFR	Gas cooled Fast Reactor	Gas	Fast	No	No	Yes
SCWR	Super Critical Water Reactor	Water	Thermal or Fast	No	No	Yes
MSR	Molten Salt Reactor	Salt	Thermal or Fast	Yes	No	Yes
VHTR	Very High Temperature Reactor	Gas	Thermal	Yes	Yes	Yes

3rd GIF Symposium 2015/ICONE 23 Conference - Makuhari Messe, Japan, May 2015

- Electricity Production
- Cogeneration application
- Hydrogen production
- Seawater Desalination
- Process heat
- Synthetic Fuel and Chemicals
- Cooling application

Currently operating Fast Reactors

Reactor	Type, coolant	Power Th/E (MW)	Fuel type	Country	operation ye
BOR-60	Experimental, loop, sodium	55/10	oxide	Russia	1969-
BN-600	Demonstration, pool, sodium	1470/600	oxide	Russia	1980-
BN-800	Experimental, pool, sodium	2100/864	oxide	Russia	2014-
FBTR	Experimental, pool, sodium	40/-	oxide & carbide (metal)	India	1985-2030
CEFR	Experimental, pool, sodium	65/20	oxide	China	2010-
Joyo	Experimental, loop, sodium	140/-	oxide	Japan	1978-2007, ??
Monju	Prototype, loop, sodium	714/280	oxide	Japan	1994-96, 2010

5/6 GIF reactor designs are Fast Reactors

Designs under development

Reactor	Type, coolant	Power Th/E (MW)	Fuel type	Country	operation year
PRISM & Natrium	Demonstration, pool, sodium	840/311	metal	USA	From 2020s
ARC-100	Prototype, pool, sodium	260/100	metal	USA	
Astrid	Demonstration, pool, sodium	1500/600	oxide	France, with Japan	From 2024
Allegro	Experimental, loop?, gas	50-100 MWt	oxide	France	About 2025
MYRRHA	Experimental, Pb-Bi	57/-	oxide?	Belgium, with China	Early 2020s
ALFRED	Prototype, lead	300/120	oxide	Romania, with Italy & EU	From 2025
BN-1200	Commercial, pool, sodium	2900/1220	oxide, nitride	Russia	From mid-2020s
BREST-300	Demonstration, loop, lead	700/300	nitride	Russia	From 2020
SVBR-100	Demonstration, pool, Pb-Bi	280/100	oxide (variety)	Russia	From 2019
MBIR	Experimental, loop, sodium (Pb-Bi, gas)	100-150 MWt	oxide	Russia	From 2020
CDFR-1000	Demonstration, pool, sodium	/1000	oxide	China	From 2023
CDFBR-1200	Commercial, pool, sodium	/1200	metal	China	From 2028
PGSFR	Prototype, pool, sodium	400/150	metal	South Korea	From 2028
JSFR??	Demonstration, loop, sodium	3750/1500	oxide	Japan	From 2025?
TWR	Prototype, sodium	1475/600	metal	China, with USA	From 2023?
FBR-1,2	Commercial, sodium	1250/500	oxide, metal	India	?
VTR	Experimental, sodium	300 MWt	Mixed oxide	USA	2026

Fast SMRs under development

Reactor	Type, coolant	Power Th/E (MW)	Fuel type	Country	operation year
PRISM	Demonstration, pool, sodium	840/311	metal	GEH, USA	From 2020s
ARC-100	Prototype, pool, sodium	260/100	metal	ARC+GEH, USA	?
FMR	Demonstration, helium HTR	50	?	GA-EMS, USA	2035
EM2	Helium HTR	500/240	oxide?	GA, USA	?
Westinghouse LFR	Pool, lead	950/450	LEU oxide/silicide	Westinghouse, USA	?
Moltex SSR-U	MSR	750/300 (for 8 modules)	Pu+U chloride	Moltex UK	?
Astrid	Prototype, pool, sodium	100-200	oxide	France, with Japan	Delayed, after 2050
SVBR-100	Demonstration, pool, Pb-Bi	280/100	oxide (variety)	Russia	Cancelled
Gen4 module	Lead-Bi	70/25	LEU nitride	Gen4, USA	?
Sealer	Lead	3-10 MWe	LEU oxide/nitride	LeadCold, Sweden	By 2025
Aurora	Heatpipe	4/1.5	U-Zr metal	Oklo, USA	COL application
eVinci	Heatpipe	0.2-5.0 MWe	various	Westinghouse, USA	?

Characteristics of Generation IV reactors

The key factors characterizing the development and deployment of nuclear power reactors:

- Safety
- Economic Competitiveness
- Proliferation Resistance and safeguards
- Waste Management
- Efficiency of resource use higher burnup, recycling, increased efficiency
- Flexibility of applications cogeneration, process heat

To make nuclear sustainable

Goals/Criteria for Generation IV reactors

- Goal 1: Sustainability
 - Long term fuel supply
 - Minimize waste and long term stewardship burden
- Goal 2: Safety & Reliability
 - Very low likelihood and degree of core damage
 - Eliminate need for offsite emergency response
- **Goal 3: Economics**
 - Life cycle cost advantage over other energy sources
 - Financial risk comparable to other energy projects

Goal 4: Proliferation Resistance & Physical Protection

- Unattractive materials diversion pathway
- Enhanced physical protection against terrorism

Template for presenting the Gen-IV reactor systems

General concept

- Image and main features
- Fact sheet (advantages, challenges, designs under development, reactors under operation)

Specific example

- Main parameters, reactor, fuel, core, BoP
- Problems from viewpoint of GIF goals

Pressurized Water Reactor: Generation-III concept to compare

TERRA PRAXIS GIF Reactors Overview, Chinaya Batta, December 2022

ROD TRAVEL HOUSING

- INSTRUMENTATION PORTS

- THERMAL SLEEVE

- LIFTING LUG

- CLOSURE HEAD ASSEMBLY

- HOLD-DOWN SPRING

CONTROL ROD GUIDE TUBE

CONTROL ROD DRIVE SHAFT

- INLET NOZZLE

CONTROL ROD CLUSTER (WITHDRAWN)

ACCESS PORT

REACTOR VESSEL

LOWER CORE PLATE

Concept	PWR
Specific design*	EPR
Thermal power (MW)	4300
Efficiency (%)	37
Primary coolant	H ₂ O
Pressure (MPa)	~16
Inlet/outlet temp. (C)	296 / 327
Moderator	H ₂ O
Neutron spectrum	Thermal
Breeding gain	<< 0
Reference	[1]
G1: Sustainability	Poor
G2: Safety & reliability	Good
G3: Economics	Good

*Specific designs chosen by lecturer

Gen-III PWR fuel rod, fuel assembly and core

- Fuel: enriched uranium dioxide
- Cladding: Zry (zircaloy)
- Open assembly (no duct=wrapper) \rightarrow cross flow between assemblies

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Control rods inserted in every FA

Pressurized Water Reactor: fact sheet

Advantages

- Operational experience and established technologies (economics)
- Light water as a coolant (transparent, easy to handle, boron control, ...)

Challenges

. . .

. . .

. . .

- High coolant pressure (safety issues of depressurization)
- Low breeding (sustainability)
- **Designs under development** — EPR, AP-1000, APR-1400

Reactors under operation As of December 2022, 303 operable reactors (290 GWe)

https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR
Specific design*	EPR
Thermal power (MW)	4300
Efficiency (%)	37
Primary coolant	H ₂ O
Pressure (MPa)	~16
Inlet/outlet temp. (C)	296 / 327
Moderator	H ₂ O
Neutron spectrum	Thermal
Breeding gain	<< ()
Reference	[1]
G1: Sustainability	Poor
G2: Safety & reliability	Good
G3: Economics	Good

*Specific designs chosen by lecturer PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

How to increase efficiency (improve G3)?

Supercritical-Water-cooled Reactor: concept

- Operates above thermodynamic critical point of water
- Applies advanced SCW technology used in coal plants

Supercritical-Water-cooled Reactor: fact sheet

Advantages

- Based on Gen-III+ reactor technology
- Merges it with advanced SCW technology used in coal plants
- Higher efficiency than Gen-III+
- Both thermal and fast spectrum possible

Challenges

- Materials, water chemistry, and radiolysis
- Thermal hydraulics to fill gaps in SCW heat transfer and critical flow databases
- Safety demonstration (positive void effect for fast spectrum option)
- Fuel qualification
- **Designs under development**
 - HPLWR (EU), ...
- **Reactors under operation** — None

HPLWR (EU): High Performance LWR

Concept	PWR		SC	WR	
Specific design*	EPR		HPLWR		
Thermal power (MW)	43	00	23	00	
Efficiency (%)	3	7	~/	44	
Primary coolant	H ₂ O		H	2 0	
Inlet/outlet temp. (°C)	296	327	280	500	
Pressure (MPa)	~16		~25		
Moderator	H	H ₂ O		H ₂ O	
Neutron spectrum	The	rmal	The	rmal	
Breeding gain	<<	< 0	<<	< 0	
Reference	[1]		[2	2]	
G1: Sustainability	Poor		Poor ↔		
G2: Safety & reliability	Good				
G3: Economics	Go	ood			

 Δ T increased from 31°C (PWR) to 220°C (HPLWR) – issue for peak cladding temperature (target 630°C).

Possible solution: \rightarrow Heating in three steps

HPLWR (EU): water circulation paths [2]

TERRA PRA**X**IS GIF Reactors Overview, Chirayu Batra, December 20

HPLWR (EU): reactor vessel internals design [2] Control rods inserted in Upper plenum water channels feedwater inlet outlet (4 lines)[†] (4 lines) **Backflow limiter** Thermal insulation of vessel (280°C) from outlet flange (500°C) =vaporato Superheat **Superheat** Downcomer Wall thickness 45 cm

Lower mixing chamber Core inlet chamber Lower plenum

HPLWR (EU): core design [2]

Superheater 1:

52 Clusters Downward Flow

> Candidate cladding alloys under examination (corrosion issues): — ferritic-martensitic steels;

- stainless steels;
- nickel-base alloys;
- ODS alloys.

Superheater 2:

52 Clusters, Upward Flow

HPLWR (EU): BoP concept

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR		SC	WR
Specific design*	EPR		HPLWR	
Thermal power (MW)	43	00	23	00
Efficiency (%)	3	7	~4	44
Primary coolant	H ₂ O		H	20
Inlet/outlet temp. (°C)	296	327	280	500
Pressure (MPa)	~`	16	~25	
Moderator	H ₂ O		H	20
Neutron spectrum	The	rmal	Thermal	
Breeding gain	<<	< 0	<<	< 0
Reference	[1]		2]
G1: Sustainability	Poor			→
G2: Safety & reliability	Good			
G3: Economics	Go	ood		

 How to keep high efficiency (improve G3) but at the same time avoid problems related to water at high pressure and temperature (improve G2)?

Very-High-Temperature Reactor: concept

- Both graphite prismatic and pebble bed are considered as reference configurations

Very-High-Temperature Reactor: fact sheet

Advantages

- High temperature enables non-electric applications
- "Walk-away" safe
- Inert gas coolant
- High efficiency

Challenges

. . .

- Reach temperature of ~1000°C (for hydrogen production)
- Coupling with process heat applications
- Graphite as a waste

Designs under development

— Čhinese HTR-PM

Reactors under operation — Japanese HTTR

HTR-PM (China)

Concept	PWR		SCWR		
Specific design*	EPR		HPLWR		
Thermal power (MW)	43	00	23	00	
Efficiency (%)	3	7	~4	44	
Primary coolant	H ₂ O		H ₂	2 0	
Inlet/outlet temp. (C)	296	327	280	500	2
Pressure (MPa)	~	16	~25		
Moderator	H ₂ O		H	2 <mark>0</mark>	
Neutron spectrum	The	rmal	Thermal		
Breeding gain	<<	< 0	<<	< 0	
Reference	[[1]		2]	
G1: Sustainability	Poor		~	\rightarrow	
G2: Safety & reliability	Good				
G3: Economics	Go	bod			

*Specific designs chosen by lecturer

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Large amount of activated graphite produced (radwaste)

HTR-PM (China): fuel

Diameter 60mm Fuel Pebble

UO₂ Kernel: 0.425mm Porous Carbon Buffer: 0.095mm Inner Pyrolytic Carbon Layer: 0.04mm Silicon Carbide Layer: 0.035mm Outer Pyrolytic Carbon Layer: 0.04mm

Fuel

Number of pebbles in the core Heavy metal per pebble Number of coated particles in each pebble Fuel loading scheme Average discharge burnup

UO₂ 420'000 ~7 g ~ 11'660 Multi-pass (six times) 90 MWd/kgU

HTR-PM (China) [3]: reactor

TERRA PRAXIS GIF Reactors Overview, Chiray Patta, December 2022 University

Pebble-bed Reactor design parameters

Example: HTR-PM Parameters

Plant electrical power, MWe	210
Core thermal power, MW (one module)	250
Number of NSSS Modules	r 4
Core diameter, m	
Core height, m	1
Primary helium pressure, MPa	r 7
Core outlet temperature, °C	750
Core inlet temperature, °C	250
Fuel enrichment, %	8.5
Steam pressure at turbine, Mpa	13.25
Steam temperature at turbine, °C	566
Efficiency, %	42

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR		SCWR		
Specific design*	EPR		HPLWR		
Thermal power (MW)	4300		2300		
Efficiency (%)	37		~44		
Primary coolant	H ₂ O		H ₂ O		
Inlet/outlet temp. (C)	296	327	280	500	
Pressure (MPa)	~16		~25		
Moderator	H ₂ O		H ₂ O		
Neutron spectrum	Thermal		Thermal		
Breeding gain	<< 0		<< 0		
Reference	[1]		[2]		
G1: Sustainability	Poor		\leftrightarrow		
G2: Safety & reliability	Good		\downarrow		
G3: Economics	Good		1		

The weakness of SCWR and (V)HTR is low breeding gain and difficulty to reach G1. How to reach G1 and in particular improved fuel utilization?

No moderator

- Helium coolant
- Both direct and indirect cycle considered (indirect cycle selected)

Gas-cooled Fast Reactor: fact sheet

Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Transparent and inert coolant
- High efficiency

Challenges

- Safety demonstration and in particular decay heat removal in case of loss of flow and depressurization accidents
- High-temperature materials and fuel qualification

Designs under development

- ALLEGRO 75 MWth
- GCFR 2400 MWth

• Reactors under operation — None

GCFR (EU): main parameters

Concept	PV	VR	SC	WR
Specific design*	EF	PR	HPL	.WR
Thermal power (MW)	43	00	23	00
Efficiency (%)	3	7	~4	14
Primary coolant	H	20	H	20
Inlet/outlet temp. (C)	296	327	280	500
Pressure (MPa)	~`	16	~	25
Moderator	H	20	H	20
Neutron spectrum	The	rmal	The	rmal
Breeding gain	<<	< 0	<<	: 0
Reference	[1]		2]
G1: Sustainability	Pc	or	+	→
G2: Safety & reliability	Go	od		
G3: Economics	Go	bod		

*Specific designs chosen by lecturer

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

GCFR-2400 (EU): fuel

← Sandwich cladding Ø~9 mm: — inner SiC/SiC layer — middle metalic liner — outer SiC/SiC layer

Buffer bond:

— high-porosity C-based braid

CEA manufactured "Sandwich" cladding

M. Zabiégo, et al. "Overview of CEA's R&D on GFR fuel element design: from challenges to solutions", FR'13 conference proceedings

(U-Pu)C fuel pellet

GCFR-2400 (EU): core

Inner core fuel assemblies

Outer core fuel assemblies

Fission gas plenums

Axial reflectors

Diverse and shutdown devices

Control and safety devices

Rod followers

Radial reflectors

GCFR-2400 (EU): reactor

Spherical guard vessel

GCFR (EU): BoP concept

Power: 2400 MWth Fuel: (U-Pu)C Clad: SiC-SiC_f

- Guard vessel for backup pressure
- Heavy gas injection in accidents with depressurization
- DHR loops with forced convection

GCFR (EU): How to improve safety?

Loop for DHR at high pressure

- DHR under depressurized conditions a key safety issue
- Instead of coolant thermal inertia use
- Passive DHR loop using Bryton cycle

Indirect coupled cycle: primary blower on the secondary turbomachine shaft

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PV	VR	SCWR		(V)F	ITR	GFR	
Specific design*	EF	PR	HPLWR		HTR-PM		GCFR	
Thermal power (MW)	43	00	2300		458		2400	
Efficiency (%)	37		~44		~45		~/	15
Primary coolant	H ₂ O		H	20	Η	е	Н	е
Inlet/outlet temp. (C)	296 327		280	500	250	750	400	780
Pressure (MPa)	~16		~25		~7		~7	
Moderator	H ₂	2^{0}	H ₂ O		С		None	
Neutron spectrum	The	rmal	Thermal		Thermal		Fast	
Breeding gain	<<	< 0	<<	< 0	<< 0		~ 0	
Reference	[1	1]		2]	[3	8]	[4	4]
G1: Sustainability	Poor			\rightarrow	?		\uparrow	
G2: Safety & reliability	Go	od	\downarrow		\uparrow		\downarrow	
G3: Economics	Go	od			1		?	

The weakness of GFR is low thermal inertia of the core requiring special safety measures against core meltdown in case of depressurization events. How to improve G2?

Sodium-cooled Fast Reactor: concept

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Sodium-cooled Fast Reactor: fact sheet

Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Excellent thermal conductivity of sodium \rightarrow VERY efficient cooling
- Large margin to boiling ($\sim 300^{\circ}$ C) \rightarrow no pressurization required
- Significant operational experience (300+ reactor-years)

Challenges

- Chemically active in contact with water or air \rightarrow intermediate circuit needed — Significant scattering cross section \rightarrow spectrum hardening when removed \rightarrow positive reactivity effect \rightarrow special safety measures needed
- **Designs under development** — PFBR (India), BN-1200 (Russia), ASTRID (France), ESFR (EU), ...
- **Reactors under operation**
 - BOR-60, BN-600, BN-800 (all Russia)
 - CEFR (China)

ESFR (EU): main parameters

Concept	PV	VR	SC	WR	(V)ŀ	ITR	G	- R	SF	R
Specific design*	EF	PR	HPL	.WR	HTR	-PM	GC	FR	ES	FR
Thermal power (MW)	43	00	23	00	45	58	24	00	36	00
Efficiency (%)	37		~44 ~45		45	~4	45	~42		
Primary coolant	H_2	20	H	20	H	е	H	е	Ν	a
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545
Pressure (MPa)	~	16	~2	25	~	7	~	7	~0	.2
Moderator	H_2	20	H	2 <mark>0</mark>	()	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ast	Fa	ist
Breeding gain	<<	: 0	<<	< 0	<<	: 0	~	0	~	0
Reference	[1]	[2	2]	[3	8]	[4	4]	[5	5]
G1: Sustainability	Pc	or	~	\rightarrow		?				
G2: Safety & reliability	Go	od			\uparrow		\downarrow		\downarrow \uparrow	
G3: Economics	Go	od	,		1		?		\downarrow	

Exothermic sodium-water and sodium-air reaction

SFR fuel rod and fuel subassembly

- steel
- interassembly flow
- Fuel stack height ~ 1 m; He inside
- Large (~1 m) FG plenum below

Fuel and cladding are: mixed uranium and plutonium dioxides (MOX) and stainless

Hexagonal lattice of rods fixed with helicoil wire spacers Closed assembly (duct=wrapper) \rightarrow no cross flows between assemblies but

Absorbers are inserted in the dedicated assemblies.

ESFR (EU): radial core layout

- Perfectly symmetric
- 6 batches = 6-year fuel cycle
- Mixed scheme (no reshuffling)
- Internal storage for 50% of core loading
- Corium discharge tubes
- All DSD rods equipped with passivelyactivated Curie-point electromagnetic locks

ESFR has two groups of the absorber rods for reactor shutdown:

- 1. Control and Shutdown Devices/Rods (CSD)
- 2. Diversified Shutdown Devices/Rods (DSD)

\sim			1
4 5 6	Outer fuel	6 batches×48 = 288	1
00	CSD / DSD	24 / 12	
R1 R2 R3	1st / 2nd /3rd reflector ring	66 / 96 / 102	
S1	Spent Inner / Outer fuel storage	3 batches×36 = 108	
S2	Spent Inner / Outer fuel storage	3 batches×48 = 144	
\bigcirc	Corium discharge tubes	31	

- 1 Inner zone SA
- 2 Outer zone SA
- 3 Control assembly
- 4 Corium discharge path
- 5 Shielding SA
- 6 Internal spent fuel storage

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Fissile fuel (~18% Pu content) Fertile blanket Steel blanket Fission gas plenum Sodium plenum Shielding (absorber)

ESFR (EU): global view

ESFR (EU): primary system

Above core structure – Inner vessel (redan) – Primary pump – Vessel cooling pipes – Strongback – Reactor vessel –

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

ESFR (EU): BoP concept

Power: 3600 MWth Fuel: (U-Pu)O₂ Clad: stainless steel

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PV	VR	SC	WR	(V)ł	ITR	GF	R	SF	R
Specific design*	EF	PR	HPL	_WR	HTR	R-PM	GC	FR	ES	FR
Thermal power (MW)	43	00	23	00	4	58	24	00	36	00
Efficiency (%)	3	7	~	44	~4	45	~4	45	~4	42
Primary coolant	H	20	H	2 0	Η	le	Н	е	N	a
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545
Pressure (MPa)	~`	16	~	25	~	7	~	7	~()).2
Moderator	H ₂	20	H	20	(C	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ast	Fa	ast
Breeding gain	<<	< 0	<	< 0	<<	< 0	~	0	~	0
Reference	[1]	[2	2]	[3	3]	[4	4]	[5	5]
G1: Sustainability	Pc	or	+	\rightarrow		?				
G2: Safety & reliability	Go	bod		Ļ					↓	↑
G3: Economics	Go	bod		↑				?	↓	↑

loop). How to improve G2 and G3, keeping G1?

TERRA PRA**X**IS GIF Reactors Overview, Chirayu

 \rightarrow

SFR is the most mature concept among GIF fast reactors. However, the weakness of SFR is the risk of sodium-water and sodium-air reaction and corresponding design complication (e.g., intermediate

— Simplicity No intermediate circuit Oxygen control for materials protection

Lead-cooled Fast Reactor: fact sheet

Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- High density \rightarrow thermal inertia is VERY high
- and high natural circulation level
- Passive with water and air \rightarrow no intermediate circuit
- Large margin to boiling $(1740^{\circ} \text{ C}) \rightarrow \text{no pressurization required}$

Challenges

- High density \rightarrow erosion, seismic refueling issues
- At high temperature structural materials (such as iron or nickel) are slowly dissolving in lead
 - flow \rightarrow protection needed
- High void reactivity effect (e.g. gas entry)
- Low margin to freezing $(327^{\circ}C) \rightarrow$ special safety measures needed
- **Designs under development**
 - ELFR, ALFRED, BREST-OD-300, SSTAR
- **Reactors under operation**
 - None (very small operational experience)

— High thermal conductivity and expansion coefficient \rightarrow efficient heat removal at low velocities

ALFRED (EU): European LFR demonstrator project

Concept	PWR	SCWR	(V)HTR	GFR	SFR	LFR	
Specific design*	EPR	HPLWR	HTR-PM	GCFR	ESFR	ALFRED	
Thermal power (MW)	4300	2300	458	2400	3600	300	
Efficiency (%)	37	~44	~45	~45	~42	~42	Slow
Primary coolant	H ₂ O	H ₂ O	He	He	Na	Pb -	dissolution of
Inlet/outlet temp. (C)	296 327	280 500	250 750	400 780	395 545	400 480	structural
Pressure (MPa)	~16	~25	~7	~7	~0.2	~0.5	materials
Moderator	H ₂ O	H ₂ O	С	None	None	None	
Neutron spectrum	Thermal	Thermal	Thermal	Fast	Fast	Fast	
Breeding gain	<< ()	<< 0	<< 0	~ 0	~ 0	~ 0	
Reference	[1]	[2]	[3]	[4]	[5]	[6]	
G1: Sustainability	Poor	\leftrightarrow	?	1	↑	1	Limited
G2: Safety & reliability	Good	\downarrow	\uparrow	\downarrow	$\downarrow\uparrow$		operational
G3: Economics	Good	1	1	?	\downarrow	?	experience

*Specific designs chosen by lecturer

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

ALFRED (EU): core

- Inner Fuel Assembly \bigcirc
- Outer Fuel Assembly
- **Control Rod** $\langle \circ \rangle$
- Safety Rod S
- \bigcirc

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

- Dummy Element (shield)

ALFRED (EU): primary system

Reactor roof: hot, standard flanged connections, *no rotational plugs*

Fuel assemblies: MOX, grid spacers, hexagonal, wrapped, *extended stem*

Reactivity control: two diverse and redundant systems, control and shut-down rods

Primary system configuration: pool-type, *enhanced natural convection* in accident conditions

Primary pumps: mechanical, at hot leg

Decay heat removal: isolation condenser connected to dip-coolers with straight double-walled tubes

Reactor and safety vessels: hanged, torospherical bottom head

ALFRED (EU): BoP concept

Power: 300 MWth Fuel: (U-Pu)O₂ Clad: Stainless steel

Reactor vessel

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PV	VR	SC	WR	(V)ŀ	ITR	GI	R	SF	R	LF	R
Specific design*	EF	PR	HPL	.WR	HTR	-PM	GC	FR	ES	FR	ALF	RED
Thermal power (MW)	43	00	23	00	45	58	2400		3600		300	
Efficiency (%)	3	37 ~44		14	~4	~45 ~45		~42		~42		
Primary coolant	H ₂	20	H ₂	20	Η	е	H	e	N	a	Ρ	b
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545	400	480
Pressure (MPa)	~`	16	~2	25	~	7	~	7	~(.2	~(.5
Moderator	H ₂	20	H_2	20	(2	No	ne	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ast	Fa	ast	Fa	ast
Breeding gain	<<	< 0	<<	: 0	<<	: 0	~	0	~	0	~	0
Reference	[1]	[2	2]	[3	3]	[4	4]	[{	5]	[6	6]
G1: Sustainability	Pc	or	~	→		?						
G2: Safety & reliability	Go	bod							Ļ	↑	Ļ	↑
G3: Economics	Go	bod	1				(?				?

are still possible. How to practically eliminate the core meltdown?

 \rightarrow

In all considered systems the accidents with core meltdown has extremely low probability, but they

Molten Salt Reactor (thermal): concept

02-GA50807-02

Molten Salt Reactor (fast): concept

02-GA50807-02

Molten Salt Reactor (fast): fact sheet [7]

Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Large margin to boiling \rightarrow no pressurization required
- Strongly negative fuel salt density (void) reactivity effect
- High efficiency due to high temperatures
- No structural materials \rightarrow no radiation damages
- Possibility to add or remove fuel salt and simpler reprocessing
- Continuous removal of insoluble fission products

• Challenges

- Strong corrosiveness of molten salt fuels
- Lack of usual barriers (fuel cladding) \rightarrow new safety approach needed
- High fluence on vessel
- Part of fuel always outside core \rightarrow larger fuel inventory needed; reduced β
- Low margin to freezing
- Low or unknown solubility of compounds formed during operation
- Designs under development
 - MSFR, MOSART, FHR
- Reactors under operation

— None

n spectrum ed effect

MSFR (EU): core and reactor

Fuel circuit includes:

- core (open volume with shape optimized for fluid dynamics);
- 16 external recirculation loops, each includes
 - pipes (cold and hot region);
 - bubble separator;
 - pump;
 - heat exchanger;
 - bubble Injection. _____

3 circuits:

- Fuel circuit
- Intermediate circuit
- Energy conversion system
- + Draining tanks

MSFR (EU): BoP concept

MSR: many concepts are currently studied

MSR Classification

MSR Classification

Class	I. Graphite k	based MSRs	II. Homoger	neous MSRs	III. Heteroge	neous MSRs
Family	I.1 Fluoride salt cooled reactors	I.2 Graphite moderated MSRs	II.3 Homog. fluoride fast MSRs	II.4 Homog. chloride fast MSRs	III.5 Non-graphite moderated MSRs	III.6 Heter chloride fast
Fuel state	Solid	Liquid	Liquid	Liquid	Liquid	Liquid
Spectrum	Thermal	Thermal	Fast	Fast	Thermal	Fast
Salt type	Fluorides	Fluorides	Fluorides	Chlorides	Fluorides	Chloride
Neutronics performance	Burner, Converter	Burner, Converter, Breeder	Burner, Converter, Breeder	Burner, Converter, Breeder, Breed & Burn	Burner, Converter, Breeder	Burner, Con Breede Breed & E
Actinides	Enriched U, TRU, Th as semi-inert matrix	Enriched U, TRU, closed Th-U cycle	Enriched U, TRU, closed Th-U cycle and U-Pu cycle	Enriched U, TRU, closed Th-U cycle, and U-Pu cycle	Enriched U, TRU, closed Th-U cycle	Enriched U, closed Th-U and U-Pu o
Irradiation induced issues	Limited burnup of fuel in graphite matrix	Limited graphite moderator lifespan	Limited vessel lifespan	Limited vessel lifespan	Limited vessel and str. material lifespan	Limited vess str. material li
Fuel extensive pumping	No	Yes	Yes	Yes	Yes (No if cooled by moderator)	No
Heat transp. medium	Fluoride coolant salt	Fluoride fuel salt	Fluoride fuel salt	Chloride fuel salt	Fluoride fuel salt (or moderator)	Molten salt c coolan
Primary heat exchange	In core	Ex. core	Ex. core	Ex. core	Ex. core (In core)	In core

TE EXCITATION PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Summary

We briefly considered 6 specific reactor designs representing 6 GIF concepts in order to discuss some advantages and challenges of these designs (but not to rank the designs!)

Concept	PV	VR	SC	WR	(V)HTR		GFR		SFR		LFR		MS	SR	
Specific design*	EF	PR	HPL	.WR	HTR-PM		GCFR		ESFR		ALFRED		MS	FR	
Thermal power (MW)	43	00	23	00	458		2400		3600		300		30	00	
Efficiency (%)	3	7	~4	4	~45		~45		~42		~4	42	~4	3	
Primary coolant	H	20	(H ₂	0	Н	е	ŀ	le		a	P	b	LiF-T (Pu-N	ˈhF₄- IA)F₃	
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545	400	480	600	800	
Pressure (MPa)	~'	16	~	~25		~7		~7 ~0		~0.2 ~0.5		~0	.2		
Moderator	H	20	H ₂	0	С		Nc	one	None		None		No	ne	
Neutron spectrum	The	rmal	The	rmal	Thermal		Fast		Fast		Fast		Fa	st	
Breeding gain	<<	< 0	<<	: 0	<<	: 0	~ 0		~ 0		~ 0		~	0	
Reference	[1]	[2	2]	[3	3]	[4	4]	[5]		[6]		[7]	
G1: Sustainability	Pc	or	~	\leftrightarrow		?)	\uparrow		1		1		1		
G2: Safety & reliability	Go	bod		1	\uparrow		\downarrow		\downarrow				1	?)
G3: Economics	Go	bod	1		1		?				?		?		

*Specific designs chosen by lecturer

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Coolant densities and operational ranges of GIF reactors

• What conclusions can we derive from this plot?

References

- R. Leverenz, L. Gerhard, A. Göbel, "The European Pressurized Water Reactor: A Safe and Competitive Solution for Future Energy Needs", Proc. of International Conference Nuclear Energy for New Europe 2004, Portorož, Slovenia, September 6-9, 2004.
- T. Schulenberg, J. Starflinger, P. Marsault, D. Bittermann, C. Maráczy, E. Laurien, J.A. Lycklama à Nijeholt, H. Anglart, M. Andreani, M. Ruzickova, A. Toivonen, "European supercritical water cooled reactor", Nuclear Engineering and Design 241 (2011) 3505–3513.
- Z. Zhang, Y. Dong, F. Li, Z. Zhang, H. Wang, X. Huang, H. Li, B. Liu, X. Wu, H. Wang, X. Diao, H. Zhang, J. Wang, "The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation", Engineering 2 (2016) 112–118.
- R. Stainsby, K. Peers, C. Mitchell, C. Poette, K. Mikityuk, J. Somers, "Gas Cooled Fast Reactor research in Europe". Nuclear Engineering and Design 241 (2011), 3481-3489. 4.
- K. Mikityuk, E. Girardi, J. Krepel, E. Bubelis, E. Fridman, A. Rineiski, N. Girault, F. Payot, L. Buligins, G. Gerbeth, N. Chauvin, C. Latge, J.-C. Garnier, "ESFR-SMART: new Horizon-2020 project on SFR safety", IAEA-CN245-450, Proceedings of International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable, Development FR17 conference, 26-29 June 2017, Yekaterinburg, Russia.
- P. Lorusso, S. Bassini, A. Del Nevo, I. Di Piazza, F. Giannetti, M. Tarantino, M. Utili, "GEN-IV LFR development: Status & perspectives", Progress in Nuclear Energy 105 (2018) 318–331.
- B. Hombourger "Conceptual Design of a Sustainable Waste-BurningMolten Salt Reactor", EPFL, PhD thesis, 2018.

TERRA PRAXIS GIF Reactors Overview, Chirayu Batra, December 2022

Thank you

Chirayu Batra

Email: Chirayu.Batra@TerraPraxis.org

LinkedIn www.linkedin.com/in/chirayubatra

Twitter: @chirayubatra

"I have been driven by the conviction that much more than 1 percent of the energy contained in uranium must be utilized if nuclear power is to achieve its real long-term potential."

> - Enrico Fermi TERRA PRAXIS

