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✓ Sodium fire

✓ Sodium water reaction (SWR)
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* Advanced Reactor Knowledge- and AI-aided Design Integration 
Approach through the whole plant lifecycle



Safety Analysis of Sodium-Cooled Fast Reactor

Safety analysis of innovative reactor caused by its specific characteristics is 
one of the key issue for a plant safety as well as a public acceptance.

[Sodium-cooled fast reactor (SFR)]

Chemical reactivity of liquid sodium with oxygen and/or water/water vapor 
is a key issue, although it may not cause a core disruptive accident (CDA) 
directly.

Both experimental and numerical researches have been conducted to 
understand the phenomena deeply and to predict an influence on plant 
safety.

✓ Sodium fire

✓ Sodium-water reaction (in steam generator)
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Sodium Fire
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Key Physics in Sodium Fire
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• Spray combustion

• Pool combustion

• Heat and mass transfer
(to gas and structure)

• Chemical reaction
(atmospheric condition)

• Mass transfer
(water release from concrete)

• Heat and mass
transfer
(trough opening)



Numerical Tools for Sodium Fire Analysis
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(Lamped mass)

Zone model

SPHINCS

(CFD)

Field model

AQUA-SF

• Chemical reaction (Stoichiometric calculation) 

BISHOP

• Aerosol behavior (agglomeration and adhesion)

(Gibbs free energy minimization)
Na2O, Na2O2, NaOH

ABC-INTG

Those have been developed in Japan Atomic Energy Agency (JAEA).



Sodium Fire Modeling
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➢ Spray combustion
Particle tracking
Empirical combustion model is 
applied.

✓ Before ignition temperate
Analogy of mass and heat transfer

✓ After ignition
D2 law with convective effect

➢Pool combustion
Infinity flame sheet concept
Governing equations are functions of 
flame temperature (Tf) and height (h).

Sodium pool

Mass transfer Energy transfer

Flame

Reaction heat

Qf a

Qburn

Qfp

Concentration=0

（Diffusion or
convection）

（Diffusion）

(h)

(Tf)

OHO NN
22
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NaN
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PIRT* Analysis for Sodium Fire Phenomenon
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M. Aoyagi et al., ID-93, FR17, 2017
*Phenomena Identification and Ranking Table 

Related Concern** 1&2 1 2 2 1 1&2 2&3

Figure of Merit

Category

1) Droplet Generation H/L M/L M/L H/L M/L L/L H/M

2) Spray Combustion H/L M/L M/L H/L M/L L/L H/M

3) Reaction Heat Transfer (spray) H/L M/L M/L H/L M/L L/L L/M

4) Pool Enlargement L/M L/M L/M L/M L/M L/M L/M

5) Pool Combustion L/M L/H L/H L/M L/H L/M L/M

6) Reaction Heat Transfer (pool) L/M L/H L/H L/M L/H L/L L/L

7) Heat Conduction L/L H/H H/H L/L H/H L/M L/L

8) Heat Convection H/M M/M L/M M/H L/M L/M L/M

9) Heat Radiation M/M M/M L/M M/M L/M L/M L/L

10) Mass and Momentum Transfer M/L L/L L/L L/M L/L L/M M/H

11) Gas Species Transfer L/L L/L L/L L/L L/L H/H M/M

12) Aerosol Transfer L/L L/L L/M L/L L/M L/M H/H

13) Atmospheric Chemical Reaction L/L L/L L/L L/L L/L L/M L/M

14) Steel Liner Corrosion Wastage L/L L/L L/L L/L H/H L/L L/L
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Validation Matrix
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Phenomenon

Experiment (in JAEA)

Spray Fire Pool Fire

Multi-cell

Pool

(Run-D3)

Integrated

Mock-up

(Run-D4)

Single

Droplet

(FD)

Spray

(Run-E1)

Constant

Pool Area

(Run-D1)

Enlarging

Pool Area

(Run-F7)

1)Droplet Generation -*4 -*4 -*4 -*4 -*4 -*4

2)Spray Combustion ✓ ✓ n/a*5 n/a*5

3)Reaction Heat Transfer (spray) ✓ n/a*5 n/a*5

4)Pool Enlargement ✓ ✓

5)Pool Combustion n/a*5 ✓ ✓ ✓ ✓

6)Reaction Heat Transfer (pool) n/a*5 ✓ ✓ ✓ ✓

7)Heat Conduction ✓*6 ✓ ✓ ✓ ✓

8)Heat Convection ✓*6 ✓*6 ✓ ✓ ✓

9)Heat Radiation ✓ ✓*6 ✓*6 ✓*6

10)Mass and Momentum Transfer ✓

11)Gas Species Transfer ✓ ✓

12)Aerosol Transfer ✓ ✓ ✓ ✓

13)Atmospheric Chemical Reaction ✓

14)Steel Liner Corrosion Wastage -*4 -*4 -*4 -*4 -*4 -*4

1-3)Spray and 4-6)Pool combustion

7-10)Heat and 10-12)Mass transfer

13-14)Chemical reaction

*4: Out of range in the present matrix

*5: Negligible small influence

*6: Assessable but indirect measurement



Pool Fire Experiment (Run-F7)
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(Test section)

(Sodium pool after test, Case 1)

Case 1 Case 2

Leakage rate 12 kg/hr

Duration 25 min

Sodium temperature 505 ºC

Leakage height 0.1 m 1.5 m

(Experimental condition)



Numerical Result (Gas Temperature)
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Spray / pool combustion ratio 1:180
Average temperature of dropped sodium 532[ºC]

1:17
731[ºC]

(℃)

Case 1 (height: 0.1m) Case 2 (height: 1.5m)



Comparison with Experiment
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Consideration of Suppression Effect 
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Simplified suppression model:

burn burnq q f

f

 = 

=
Totalweightof umburntsodiuminpool

Totalweightinpool(including droppedaerosol)
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Since suppression effect has a large uncertainty,
the model is not used for safety analysis currently.



Integrated Mock-up Experiment (Run-D4)
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Run-D4 experiment was mocked up Monju incident in 1995.

Camera view

A A
B B

C C

D

A: Leakage point
B: Sodium piping
C: Ventilation duct
D: Grating structure

D

Leakage rate 54g/s (2-179min) -> 48g/s (179-192min) -> 39g/s (192-224min)

Sodium temperature 480 ºC

Leakage height 3.6m



Recent Topic for Model Improvement
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Radiation heat transfer is considered in spray combustion
model to Enhance code applicability in case of low aerosol
concentration condition.

Wall

Original heat transfer model

Convection
droplet  gas

Convection
gas  gas

Radiation
gas  gas, wall

Wall

Improved heat transfer model

Convection
droplet  gas

Convection
gas  gas

Radiation
droplet  gas

Radiation
gas  gas, wall

M. Aoyagi, et al., NUTHOS-12, 974, China, 2018.

All reaction energy is released to gas firstly.
Reaction energy is released separately as
radiation heat flux and gas phase. 



Sodium Water Reaction
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Key Physics in Sodium-Water Reaction (SWR)
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Na
Failed tube

Adjacent tube

Water,
vapor

Wastage

Over-heating rupture

• Failure propagation

• Pressure propagation
inside piping system

• Critical flow
(compressibility)

• Chemical reaction
(SWR)

• Tube side condition
(emergency drain etc)

• Mechanical
deterioration
of tube

• Entrainment of
liquid sodium



SWR Related Analytical Tools
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• Critical flow
• Chemical reaction
• Entrainment of liquid sodium

• Mechanical deterioration of tube
(detailed analysis)

• Mechanical deterioration of tube
(Empirical)

• Failure propagation

• Pressure propagation
inside piping system

• Tube side condition

SERAPHIM

TACT

LEAP-III

SWACS

RELAP5



SWR Modeling
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➢ Surface reaction

✓ Na + H2O → NaOH + 1/2H2

✓ Infinite reaction rate
✓ Reaction products → gas phase
✓ Reaction heat → gas phase

➢ Gas phase reaction
✓ Arrhenius law
✓ Rate constant → MO* investigation

1 glsf b

j j

pg

H
Le Y a

C
 −= −

Le : Lewis number, H : coefficient of heat transfer, Cp : specific heat,
Y : mass fraction, a : interfacial area density

* Molecular Orbital method

Surface reaction >>
gas phase reaction



Numerical Models and Experiments

➢ Numerical models (for thermal-hydraulics)

✓ Multi-phase model

○ Multi-fluid model

(Liquid sodium (continuous phase and droplets), water and multi-component gas)

○ One-pressure model

✓ Solution method

○ HSMAC* with compressibility * Highly Simplified Maker And Cell

➢ Experiments for validation

✓ Critical flow (under-expanded jet)

✓ SWR with single target tube

20



Critical Flow
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K. H. Lee, Ph. D. thesis, Saga University, Japan, 2004. (from 
Saga University Digital Library: http://www.dl.saga-
u.ac.jp/z3950/hkshi/search_e.html
J. P. Kuehner, et al., AIAA 2002-2915, 2002.
M. A. Woodmansee, Ph. D. thesis, University of Illinois, USA, 
1999.

p0: Stagnation pressure

SERAPHIM (p0=0.7MPa, Re=4mm, 
second-order TVD, 0.125mm cell)

Exp. by Lee (p0=0.7MPa, Re=4mm)

Schlieren photograph

Mach disk

Pressure along centerline of jet

(p0=0.617MPa, pe/pa=3.3, Re=5mm, 

second-order TVD, 0.125mm cell)



SWR with Single Target Tube
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(32)
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Na

Water vapor

Vertical sectional view of computational domain

• Pressure of water vapor (nozzle): 17.17 MPa
• Temperature of water vapor (nozzle): 374.4 ºC
• Pressure of sodium: 0.15 MPa
• Initial temperature of sodium: 522 ºC
• Inner diameter of nozzle: 8.2 mm
• Leak rate: about 1.0 kg/s

[mm]



Computational result
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Comparison of Temperature
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134

234

TC-1

TC-6

TC-7

Discharging tube

Target tube
TC-2

TC-3

TC-4

TC-5

Target tubeCenterThermocouples
Initial
After-movement

mm

TC-1

TC-2

TC-3

TC-4

TC-5

TC-3

TC-6

TC-7

The numerical analysis reproduced the tendency of 
the experimental result.

Computational temperature : mass weighted average of gas and liquid phases



Recent Topic for Applicability Improvement
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1
8

0
0

 m
m

ϕ600 mm

Discharging nozzle
ϕ3.7 mm

Na
470 C, 0.2 MPa

Water vapor
352 C, 17.0 MPa

Tubes
ϕ31.8 mm43

ϕ400 mm Inner vessel

Outer vessel

Sodium inflow holes
50 mm, 40 mm2 Unstructured mesh

Experiment on SWR with tube bundle

Extended to unstructured mesh arrangement*

* Uchibori, et al, NURETH-19, 35562 (2022)



Computational Result by Unstructured Mesh
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Innovative Numerical Approach

(ARKADIA)

27



What is ARKADIA ?
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• Knowledge base that stores insights from past nuclear 
reactor development projects and R&D

• State-of-the-art computational methods linked with the 
knowledge base and AI*

Advanced Reactor Knowledge- and AI-aided Design Integration 
Approach through the whole plant lifecycle

Automatic optimization of plant design including safety 
measures from various perspectives such as safety and 
economics

* Artificial Intelligence



Motivation
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• Support evaluation of various innovative reactor concepts 
represented by SFRs

• Optimize plant lifecycle of advanced reactors 
automatically by using state-of-the-art simulation 
technologies and knowledge

• Keep and transfer technology bases including knowledge

• Develop human resources



Example of Optimization Problem
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Size
Measures against 

sodium fire

Size A Measure 1

Size B Measure 2

・・・ ・・・

Postulated event during Severe Accident (SA)

Optimization of CV design considering SA

(1)

(2)

(3)

(1) Sodium leakage and combustion

(2) Increase of temperature and pressure

(3) Failure of containment vessel

Containment vessel (CV)Reactor vessel (RV)

Design

parameters

Constraint condition

Satisfy requirements on safety and economics

Objective

Find best solutions (minimize objective function)



Optimization Flow
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Start

• Confirm achievement

of objective 

Step (1)

• Define objective function

1 2 1 2| 1 1object e e e and e= +  

e1: safety elemental function

e2: economics elemental function

Step (2)

• Collect required information

Ex) specifications and cost data of CV

• Evaluate e2

• Select analysis condition

Step (3)

• Perform an analysis of CV response

• Evaluate e1

Step (4)

Finish

Change analysis

condition

(find best solution by AI)

e1
e2

object
Best
solution

Numerical simulation



Procedures and System Structure
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AI-aided platform

Start

(1) Set objective

(2) Obtain related 

information and select 

evaluation condition

(3) Evaluate

Finish
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Generalized evaluation flowchart

Three systems that comprises ARKADIA

Steps (1), (2), (4)

Step (3)



ARKADIA-Design and -Safety
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• Individual development in the first phase

• Integration into a single system in the second phase

ARKADIA-Design ARKADIA-Safety 
optimizes core design, plant structure 

design, and maintenance program

provides design satisfying requirements of

safety and economics from SA simulation

Example coupled simulation by VLS

(Neutronics, thermal hydraulics, structure)

Example SA simulation by VLS

(hypothetical condition)

Pipe break

[C] [¢/cm3]

Core temperature Core reactivity Coolant and atmosphere temperature

during loss of reactor level event



SPECTRA code as base of VLS
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AI-aided platform

ARKADIA-Safety

SPECTRA code for integrated analysis of in- and ex-vessel 

phenomena during SAs in SFRs

(Severe-accident PhEnomenological Computational tool

for TRansient Assesment)



Motivation for SPECTRA Development
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Initiating phase Transition phase

Penetration

PAMR/PAHR* Ex-vessel phenomena

SPECTRA

Event

progress

during SA

in SFR

Evaluate in- and ex-vessel phenomena consistently by a single code

• Completion of evaluation of multiple SA scenarios and 

parametric analyses by this single code

• Optimization of a plant design from safety evaluation

* Post-Accident-Material-Relocation/Post-Accident-Heat-Removal 

Conventional

method
Code A Code B Code C Code D

Results



Selected phenomena during SA
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: Ex-vessel

: In-vessel

: Already incorporated

into the code

⚫

Reactor vessel

Intermediate

heat exchanger

Secondary

cooling loop

Containment vessel

Atmospheric 

chemical reaction
Transport of fission products

⚫Ex-vessel thermal hydraulics

⚫Sodium fire

⚫In-vessel thermal hydraulics

Transport of fission products

Neutronics and core disruption

⚫Molten core relocation

⚫Sodium-concrete interaction ⚫Debris-concrete interaction



Current Structure of SPECTRA
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In-vessel module

Ex-vessel module

Multidimensional multifluid model for coolant behavior

Particle model for molten core relocation

Lumped mass model for gas and aerosol behavior

Sodium fire, sodium–concrete and

debris–concrete interaction model

Coupled

Coupled

Coupled

Leakage of sodium or debris

by pressure difference



Analytical Models in In-Vessel Module
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• Behavior of coolant (base model)

– Fully-implicit, single-pressure, multi-component, multi-fluid model

• Molten core relocation

– Dissipative Particle Dynamics (DPD) method

✓ Low computational load

✓ Useful for simulating molten core both in liquid and solid state

✓ Empirical parameters for particle-particle interaction

• Coupling of Computational Fluid Dynamics (CFD) and DPD

– Porosity and permeability in CFD

– Exchange of momentum and energy



Analytical Models in Ex-Vessel Module
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• Behavior of multi-component gas and aerosol (base model)

– Lumped mass model considering compressibility and buoyancy

– Volume change of atmosphere by accumulation of leaked sodium

– Fully implicit method

• Sodium fire

– Spray and pool fire models from SPHINCS and AQUA-SF

• Sodium-concrete interaction

• Debris-concrete interaction



Analysis of LORL event (1/4)
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2
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p
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= =

In- and ex-vessel integrated analysis for Loss Of Reactor Level (LORL) event

In-vessel condition (two-dimensional)

IHX

(stopped

cooling

at 0 [s])

IHX

(continued

cooling)

Cover gas

Core structure

Core

Heating part

(decay heat

from 0 [s])
Reactor vessel

Liquid

sodium

Pump

(stopped

at 0 [s])

Pump

(continued

operation)

Leakage

of sodium

Primary cooling loop



Analysis of LORL event (2/4)
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Upper part of CV

70000 [m3]

N2 97 mol%

O2 3 mol% 

Environment

1.01010 [m3]

Environment

1.01010 [m3]

Lower part of CV

1500 [m3]

Primary compartment

5000 [m3] 

Air

N2

(1)

(2)

Air

Air

(1)Leakage of sodium starts at 0 [s]

(2)Leakage of sodium and debris starts at 200 [s]

Ex-vessel condition (five cells)



Analysis of LORL event (3/4)
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• This analysis starts from the condition of a uniform temperature.

• The liquid surface fluctuation and the temperature change disappeared 

within a certain time.

• The reached steady-state was used as an initial condition of LORL analysis.



Analysis of LORL event (4/4)
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In-vessel

• Coolant level drops

• Temperature in core region 

rises and molten core falls

• Cooling path fails completely, 

and coolant temperature rises

Ex-vessel

• Atmosphere temperature 

rises due to sodium fire and 

sodium-debris-concrete 

interaction

Total mass of leaked debris

The SPECTRA code can evaluate the overall complex

thermal hydraulics phenomena.



Target Range on Safety Assessment
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PRA: Probabilistic Risk Assessment



PRA on Success Criteria & Source term
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✓ PRA on
focused scenario 
with given branch 
probabilities

✓ Dynamic PRA on 
wide-rage scenario 
with on-demand 
branch probabilities

10-x

1-10-x

10-y

1-10-y

10-z

1-10-z

☚



Summary

➢ Safety analysis of SFR

Thermal-hydraulics with sodium chemical reactivity is key issue for 
plant safety of SFR. From Verification and Validation’s (V&V) 
viewpoint, an international collaboration will play important role in 
near future.

➢ Innovative numerical approach (ARKADIA)

ARKADIA has the state-of-the-art computational methods linked 
with the knowledge base (so called a digital triplet) and AI.

This system will realize automatic optimization of a plant design 
based on safety evaluation including PRA, and thus it realizes an 
improvement of development efficiency of innovative reactors.

46



Thank you for your kind attention!!
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