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Organizers

General
Organizers

Claudio Zeni, Scuola Internazionale Superiore di Studi Avanzati, Italy
Kevin Rossi, École polytechnique fédérale de Lausanne, Switzerland
Milica Todorović, Turku University, Finland
Patrick Rinke, Aalto University, Finland
Stefano de Gironcoli, Scuola Internazionale Superiore di Studi Avanzati, Italy

Venues

Main venue: SISSA Conference area Miramare Campus, Via Beirut 2, Grignano (IT).
See also Map below.
The workshop location can be reached using the bus 6 passing through Trieste centre. The
nearest stop to the conference’s venue is SS 14 Centro Fisica, castello Miramare. Signs will
be there to indicate the path from the bus stop to the conference venue.

Poster session: SISSA Main Building, Via Bonomea 256, Opicina (IT)
The poster session will be held on Wednesday, 11 May, 18.00-20.00h.
To reach SISSA Main Building, private buses have been booked and will leave SISSA
Miramare Campus at 17.30. During the poster session, a warm dinner and drinks will be
served. The posters will be displayed outdoor if weather allows. The “Theater room” is
otherwise going to be used. Poster sizes are A0 portrait or A1 landscape.
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Meals

Meals

Lunch will be provided free of charge on Tuesday, Wednesday, and Thursday.

Coffee breaks will also be provided free of charge.

A warm dinner will be served free of charge during the poster session.

The social dinner will be held on Thursday evening at Pizzeria da Pino, this meal is not
subsidized.

Internet Access

An EDUROAM account is required to access the internet through the ICTP network at
the Main Venue.

If you do not possess an EDUROAM account, you will receive an email from SISSA to
create a guest account for the conference.

If you do not possess an EDUROAM account and you have not received an email to create
a guest account, please contact the organizers.

Tutorials Lecture and Internet Access

A Google account is required to fully benefit from the Tutorial Lectures, as Google Colab
will be mostly used as the tool to run calculations and examples.

Code of Conduct

We strive for making every attendee feel welcome and respected, regardless of gender iden-
tity, sexual orientation, disability, physical appearance, body size, race, nationality, religion,
background, level of education, or socioeconomic status.

Do not hesitate to contact any of the organizers if you are the witness or the victim of
any discrimination or harassment. Step up and speak out to stop any kind of inappropri-
ate behaviour you witness. Bystander intervention creates safer communities and prevents
harmful escalation.

Health and Safety Measures

When you are indoor and you are not speaking, eating, or drinking, you are highly recom-
mended to wear a mask covering your mouth and nose, according to the latest Italian laws
on the matter. The use of a mask is mandatory on all Italian public transport such as bus,
train, and planes.

If you feel unwell do not attend the conference in person and join the event online. Tem-
perature checks will take place at the entrance of the conference venue, as per Italian Laws
on the subject.

Every attendee should feel in a safe environment, make sure to agree and respect the
right distance from others. If in doubt, a 1.5m distance is likely to ensure a lesser likelihood
of COVID19 transmission.
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Sponsors

Sponsors
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Programme

Programme

Start End Monday 09/05 Tuesday 10/05 Wednesday 11/05 Thursday 12/05 Friday 13/05

09:00 09:20

Anton Bochkarev Aldo Glielmo

Francesca Grisoni Zachary Ulissi
09:20 09:40

09:40 10:00 Sebastiano Saccani J arno Laakso

10:00 10:20 Andrea Anelli J onathan Schmidt

10:20 10:40
Coffee Break Coffee Break Panel Discussion + 

Coffee
Panel Discussion + 

Coffee10:40 11:00

11:00 11:20

Milica Todorović Franco Pellegrini
11:20 11:40 Sintija Stevanoska J igyasa Nigam

11:40 12:00
J ulia Westermeyer J ohannes Margraf

12:00 12:20

12:20 12:40

Lunch Break

Lunch Break

Lunch Break

Remarks + Prizes
12:40 13:00

13:00 13:20

13:20 13:40
Registration + Remarks Registration + Remarks

13:40 14:00

14:00 14:20

Felix Faber Alessandro Laio

Boris Kozinsky Lars Banko
14:20 14:40

14:40 15:00 Ilyes Batatia I-J u Chen

15:00 15:20 David P. Kovacs Felix Arendt

15:20 15:40
Coffee Break Coffee Break

Coffee Break Coffee Break

15:40 16:00 Robin Winter Rianne van der Berg

16:00 16:20

Matthias Rupp Kristoff Schütt

Tuan Le Lopanitsyna Nataliya

16:20 16:40 Yasemin B. Varolgünes Zhi Li

16:40 17:00
Sašo Džeroski Núria López

17:00 17:20

17:20 17:40
Transport to SISSA

17:40 18:00

18:00 18:20

Poster Session + 
Dinner

18:20 18:40

18:40 19:00

19:00 19:20

Social Dinner

19:20 19:40

19:40 20:00

20:00 20:20

20:20 20:40

20:40 21:00

Legend

Intro Lectures

Tutorials

Invited Talks

Contributed Talks

Industry Talks

Food Breaks

Other
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M
onday

Monday

13:00 - 13:45 Registration
13:45 - 14:00 Opening Remarks
14:00 - 15:20 Felix Faber

Intro Lecture: Representing Materials; an Overview and Covering New
Ground

15:20 - 16:00 Coffe Break
16:00 - 17:20 Matthias Rupp

Intro Lecture: Introduction to Learning with Kernels
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Monday

Representing Materials; an Overview and Covering New Ground

Felix Faber1

1 University of Cambridge, Cambridge, United Kingdom

Many varieties of representations for materials have emerged over the past decade. They
exist across a range of complexities and input spaces, from purely stoichiometry-based to
representations that encode coordinates and internal degrees of freedom. These representa-
tions all have advantages and drawbacks, and using the right tool for the job is important
for a successful outcome. I will give an overview of what I believe are the major cat-
egories of representations and will discuss their advantages, and drawbacks. I will then
discuss a promising way to overcome the problem of innumerable search spaces when us-
ing coordinate-based representations to discover stable materials by coarse-graining crystal
structures based on their possible symmetry operations.

8



M
onday

Monday

Introduction to Learning with Kernels

Matthias Rupp1

1 University of Konstanz, Konstanz, Germany

Kernel-based machine learning uses positive definite functions to systematically obtain non-
linear versions of linear algorithms such as ridge regression, Gaussian processes, support
vector machines, principal component analysis, and many others. I will provide a brief
introduction to learning with kernels, focusing on regression and interpolation of electronic-
structure calculations as an application.
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ay

Tuesday

9:00 - 10:20 Anton Bochkarev
Tutorial Lecture: Structural descriptors and atomic cluster expansion basis

10:20 - 11:00 Coffee Break
11:00 - 12:20 Milica Todorović

Tutorial Lecture: Materials structure-property mapping with kernel-based
methods

12:20 - 14:00 Lunch Break
14:00 - 15:20 Alessandro Laio

Intro Lecture: Automatic topography of multidimensional probability den-
sities

15:20 - 16:00 Coffee Break
16:00 - 17:20 Kristoff Schütt

Intro Lecture: Neural networks for materials applications
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T
uesday

Tuesday

Structural descriptors and atomic cluster expansion basis.

Anton Bochkarev1

1 Rhur Bochum Universitait, Bochum, Germany

Most modern machine learning interatomic potentials (MLIP) assume that the system
energy can be represented as a sum of atomic energy contributions which each depend on
their local atomic environments. A descriptor maps the local atomic environment to a
number. Here, we consider a few common descriptors and discuss the difference between
descriptor and basis-based MLIPs with the focus on the atomic cluster expansion (ACE). We
demonstrate a connection between the ACE basis and other common structural descriptors.
Additionally, we will train a simple ACE potential and demonstrate how one can use it for
materials simulations.
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Tuesday

Materials structure-property mapping with kernel-based methods

Milica Todorović1

1 University of Turku, Turku, Finland
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T
uesday

Tuesday

Automatic topography of multidimensional probability densities

Alessandro Laio1

1 Scuola Internazionali di Studi Superiori Avanzati, Trieste, Italy

Unsupervised methods in data analysis aim at obtaining a synthetic description of high-
dimensional data landscapes, revealing their structure and their salient features. We will
describe an approach for charting complex and heterogeneous data spaces, providing a to-
pography of the high-dimensional probability density from which the data are harvested.
We obtain information on the number and the height of the probability peaks, the depth
of the “valleys” separating them, the relative location of the peaks and their hierarchical
organisation. The topography is reconstructed by using an unsupervised variant of Density
Peak clustering [1,2] exploiting a non-parametric density estimator [3], which automatically
measures the density in the manifold containing the data [4]. Importantly, the density esti-
mator provides an estimate of the error. This is a key feature, which allows distinguishing
genuine probability peaks from density fluctuations due to finite sampling. We show that
this approach allows identifying the Markov States explored during a protein folding molec-
ular dynamic trajectory directly from the shape of the mulidimensional probability density,
namely without exploiting any kinetic information [5].

[1] Science, 1492, vol 322 (2014)
[2] Inf. Sci., doi.org/10.1016/j.ins.2021.01.010 (2021)
[3] JCTC ,1206, vol 14 , (2018)
[4] Sci Rep. 12140, vol 7 (2017)
[5] JCTC 80, vol 1, (2020)
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ay

Tuesday

Neural networks for materials applications

Kristoff Schütt1

1 MPI, Berlin, Germany

Neural networks have become a powerful tool to model potential energy surfaces and predict
chemical properties. Starting from descriptor-based neural network approaches, this talk
will focus on end-to-end learning of atomic representations and the incorporation of physical
constraints. Finally, I will highlight some advanced applications of these techniques such
as field-dependent potentials and generative neural networks.
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W
ednesday

Wednesday

09:00 - 10:20 Aldo Glielmo
Tutorial Lecture: Data-manifold characterisation: Estimating intrinsic di-
mension, density, and density peaks with DADApy

10:20 - 11:00 Coffee Break
11:00 - 12:20 Franco Pellegrini

Tutorial Lecture: Training neural network potentials with PANNA

12:20 - 13:40 Lunch + Registrations
13:40 - 14:00 Opening Remarks
14:00 - 14:40 Boris Kozinsky

Symmetry and uncertainty-aware models of interatomic interactions for fast
molecular dynamics

14:40 - 15:00 Ilyes Batatia
A Unified Understanding of Equivariant Interatomic Potentials

15:00 - 15:20 David Peter Kovacs
Atomic Cluster Expansion based Force Fields for Molecular Materials

15:20 - 15:40 Coffee Break
15:40 - 16:00 Robin Winter

Unsupervised Learning of Group Invariant and Equivariant Representations
and its Application to Molecular Conformations

16:20 - 16:40 Tuan Le
Unsupervised Representation Learning on Molecular Conformations

16:20 - 16:40 Yasemin Bozkurt Varolgünes
Interpretable embeddings from molecular simulations using Gaussian mix-
ture variational autoencoders

16:40 - 17:20 Sašo Džeroski
Learning explainable models from complex data with applications in QSAR
(quantitative structure-activity relationships) modelling

17:30 - 20:00 Poster session + Dinner
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Wednesday

Data-manifold characterisation: Estimating intrinsic dimension,
density, and density peaks with DADApy

Aldo Glielmo1

1 Banca d’Italia.

Data in physics and chemistry come in the form of very high dimensional descriptors pos-
sessing hundreds of even thousands of components, but they typically lie on manifolds
of much lower dimensionality and a rich set of hidden properties. In this tutorial, we will
overview some common numerical techniques to analyse fundamental characteristics of data-
manifold. We will cover methods to estimate the intrinsic dimension, the manifold density,
and the peaks of such density by accompanying a brief theoretical explanation of the meth-
ods with “hands-on” sessions with applications on toy datasets. The tutorial will extensively
use the DADApy package, available at https://github.com/sissa-data-science/DADApy.
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W
ednesday

Wednesday

Training neural network potentials with PANNA

Franco Pellegrini1

1 Scuola Internaziona di Studi Superiori Avanzati, Trieste, Italy.

In this tutorial, we will present the basic ideas behind neural network potentials (NNP) and
show you how to create one from scratch with our software PANNA. We will cover the whole
pipeline: starting from ab initio simulations to compute local descriptors, packing them and
feeding them to the NN training algorithm, monitoring and validating training and finally
extracting the resulting NNP to be deployed in real life applications. The tutorial will be
contained in a convenient notebook environment and will run on lightweight sample data
that can be processed in real time on your laptop or on the cloud. However, all the tools
presented and skills acquired will be directly translatable to a production environment.
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Wednesday

Symmetry and uncertainty-aware models of interatomic
interactions for fast molecular dynamics

Boris Kozinski 1

1 Harvard University Camridge, United States of America

Harnessing the accuracy of quantum mechanics to design complex materials requires a series
of approximations to reach the desired length and time scales. I will describe our pursuit
of the paradigm of “ex-machina” computations where data-driven approximations are au-
tomatically developed using machine learning algorithms and enable access to previously
intractable systems. Non-parametric regression methods allow for learning of potential en-
ergy surfaces from expensive quantum calculations. To accelerate molecular dynamics cal-
culations, we developed the Neural equivariant interatomic potential model (NequIP) based
on tensor-valued symmetry-preserving layer architectures and used them to achieve state-
of-the-art accuracy and training efficiency for simulating dynamics of molecules, liquids,
heterogeneous catalysts, and ionic conductors [1]. In order to enable autonomous selection
of the training set for reactive systems, we developed the FLARE adaptive closed-loop algo-
rithm that constructs accurate and uncertainty-aware Bayesian force fields on-the-fly from
a molecular dynamics simulation, using Gaussian process regression [2]. We demonstrate
the performance of ML-accelerated MD simulations by studying 2D-to-3D transformations
of layered quantum materials [3] and catalyst dynamics [4,5].

[1] S. Batzner et al, Arxiv:2101.03164 (2021)
[2] J. Vandermause, et al, NPJ Computational Materials, 6, 20 (2020)
[3] Y. Xie et al, NPJ Computational Materials, 7, 40 (2021)
[4] J. S. Lim, et al, JACS. 2020, 142, 37, 15907–15916 (2020)
[5] J. Vandermause et al, arXiv:2106.01949 (2021)
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W
ednesday

Wednesday

A Unified Understanding of Equivariant Interatomic Potentials

Ilyes Batatia 1

1 ENS Paris-Saclay, Paris, France

Equivariant interatomic potentials constitute the general class of symmetry-aware data-
driven models learning potential energy surfaces from ab initio data. In this talk, I will
demonstrate how the Atomic Cluster Expansion (ACE) framework can be extended to
provide a unifying understanding of machine learning potentials including Message Passing
Neural Networks (MPNNs) like SchNet and NequIP, Behler-Parinallo neural networks as
well as the Gaussian Process regression-based SOAP-GAP approaches. The classification of
a wide range of models in the new design space generated by this framework provides a novel
tool to probe the key choices made by the different approaches. In particular, I will provide
a systematic analysis of the design choices of NequIP, the state-of-the-art MPNN potential,
and assess the key elements to its success. Finally, I will present BOTNet, a simplification
of NequIP with an interpretable architecture reaching state-of-the-art accuracy on a set of
challenging datasets.
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Wednesday

Atomic Cluster Expansion based Force Fields for Molecular
Materials

David Kovacs 1

1 University of Cambridge, Cambridge, United Kingdom

Machine Learning based force fields have revolutionised the modelling of materials at
the atomistic scale. I will demonstrate how Atomic Cluster Expansion (ACE) can be
used to build highly accurate and fast force fields. I will demonstrate that ACE force
fields parametrised using regularised linear regression can compete in accuracy with most
Gaussian Process and Neural Network based approaches. In particular, I will describe
several applications of ACE to molecular systems where it shows excellent smooth and
physical extrapolation to unseen parts of the Potential Energy Surface. I will also show
examples of reactive simulations and strategies for including long-range interactions into
Machine Learned force fields. Finally, I will briefly describe the multi-ACE framework,
which unifies all equivariant machine learning interatomic potentials including Message
Passing Neural Networks.
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ednesday

Wednesday

Unsupervised Learning of Group Invariant and Equivariant
Representations and its Application to Molecular Conformations

Robin Winter1

1 Bayer, AG

Equivariant neural networks, whose hidden features transform according to representations
of a group G acting on the data, exhibit training efficiency and an improved generalisa-
tion performance. In this work, we extend group invariant and equivariant representation
learning to the field of unsupervised deep learning. We propose a general learning strategy
based on an encoder-decoder framework in which the latent representation is disentangled
in an invariant term and an equivariant group action component. We describe explicitly
our construction for rotations, translations and permutations and test the validity and the
robustness of our approach in a variety of experiments with diverse data types employing
different network architectures. Finally, we demonstrate how our proposed framework can
be directly applied on molecular conformations expressed in Cartesian coordinates.
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Wednesday

Unsupervised Representation Learning on Molecular
Conformations

Tuan Le1

1 Bayer, AG

We study the generation of 3D molecular conformations from a representation learning per-
spective by autoencoding conformation described as a point cloud into a fixed-sized latent
embedding that serves as informative bottleneck to reconstruct the original conformation.
To faithfully represent the underlying geometry of a conformation and perform an accurate
reconstruction of its spatial coordinates after decoding, we implement an equivariant graph
neural network whose intermediate feature representations change according to rigid trans-
formations. We aim to achieve the generation of diverse conformations, by formulating the
learning problem as a self-supervised task and include a conditional prior distribution on
the conformation through the topological molecular graph.

22



W
ednesday

Wednesday

Interpretable embeddings from molecular simulations using
Gaussian mixture variational autoencoders

Yasemin Bozkurt Varolgunes1

1 Max Planck Institute for Polymer Research, Germany

Extracting insight from the enormous quantity of data generated from molecular simula-
tions requires the identification of a small number of collective variables whose correspond-
ing low-dimensional free-energy landscape retains the essential features of the underlying
system. Data-driven techniques provide a systematic route to constructing this landscape,
without the need for extensive a priori intuition into the relevant driving forces. In partic-
ular, autoencoders are powerful tools for dimensionality reduction, as they naturally force
an information bottleneck and, thereby, a low-dimensional embedding of the essential fea-
tures. While variational autoencoders ensure continuity of the embedding by assuming a
unimodal Gaussian prior, this is at odds with the multi-basin free-energy landscapes that
typically arise from the identification of meaningful collective variables. In this work, we
incorporate this physical intuition into the prior by employing a Gaussian mixture varia-
tional autoencoder (GMVAE), which encourages the separation of metastable states within
the embedding. The GMVAE performs dimensionality reduction and clustering within a
single unified framework, and is capable of identifying the inherent dimensionality of the
input data, in terms of the number of Gaussians required to categorize the data. We il-
lustrate our approach on two toy models, alanine dipeptide, and a challenging disordered
peptide ensemble, demonstrating the enhanced clustering effect of the GMVAE prior com-
pared to standard VAEs. The resulting embeddings appear to be promising representations
for constructing Markov state models, highlighting the transferability of the dimensionality
reduction from static equilibrium properties to dynamics.
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Wednesday

Learning explainable models from complex data with applications
in QSAR (quantitative structure-activity relationships) modelling

Sašo Džeroski 1

1 Jozef Stefan Institute, Ljubljana, Slovenia

We will present our recent methods for machine learning of explainable models from com-
plex data. This may involve structured inputs (e.g., descriptions of chemicals by graphs),
as in relational classification, and/or structured outputs (e.g., multiple, possibly hierarchi-
cally structured targets), as in multi-target regression. Other forms of complexity that we
consider involve partial annotations with target values (as in semi-supervised learning) and
massive or streaming data (as in data streams).

We will also present two applications of these methods in the context of drug discovery
and re-purposing. One of these concerns the re-purposing of drugs as host-directed antimi-
crobials for the treatment of tuberculosis and salmonella, while the other focuses on the
discovery of compounds to prevent lung fibrosis. Our approaches are general and we are
currently exploring their use in materials science.
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T
hursday

Thursday

09:00 - 09:40 Francesca Grisoni
Chemical language models for de novo molecule design

09:40 - 10:00 Sebastiano Saccani
Industrial applications of generative machine learning methods

10:00 - 10:20 Andrea Anelli
Exploring drugs’ solid state landscape using atomistic machine learning

10:20 - 11:20 Panel discussion and coffee
11:20 - 11:40 Sintija Stevanoska

Towards predicting corrosion inhibitors’ performance with machine learning

11:40 - 12:20 Julia Westermayr
Deep learning for excited states and molecular design

12:20 - 14:00 Lunch
14:00 - 14:40 Lars Banko

Data-driven high-throughput experimentation using combinatorial material
science methods and machine learning

14:40 - 15:00 I-Ju Chen
Precise atom manipulation through deep reinforcement learning

15:00 - 15:20 Felix Arendt
Evaluation of descriptors for property predictions of glasses by machine
learning

15:20 - 15:40 Coffee break
15:40 - 16:00 Rianne van den Berg

AI4science at Microsoft Research

16:00 - 16:20 Lopanitsyna Nataliya
Alchemical machine learning for high entropy alloys

16:20 - 16:40 Zhi Li
The phase diagram of iron up to Earth’s inner core conditions

16:40 - 17:20 Nuria Lopez
Machine Learning techniques in Heterogeneous Catalysis

19:00 - 20:40 Social Dinner, da Pino
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Thursday

Chemical language models for de novo molecule design

Francesca Grisoni 1

1 Technical University of Eindhoven, Eindhoven, Netherlands

Deep learning is fueling computer-aided molecule discovery.[1,2] Chemical language mod-
els (CLMs) are one of the most recent additions to the chemist’s toolkit for AI-driven
molecule design.[3–5] CLMs can be used to generate novel molecules in the form of strings
(e.g., SMILES or amino-acid sequences) without relying on human-engineered assembly
or enumeration rules. Thanks to such a ‘rule-free’ character, CLMs allow navigating the
chemical space and generating focused chemical libraries.[6,7] In multiple instances, CLMs
have shown able to learn “grammar” rules for molecule construction, and to implicitly
capture “semantic” features, such as physicochemical properties, bioactivity, and chemical
synthesizability.[3,7,8] This talk will illustrate some successes of CLMs for drug discovery,
at the interface between method development and prospective application, e.g., the design
of natural-product-inspired modulators of nuclear receptors,[9] and the combination with
microfluidics-assisted synthesis.[10] Moreover, the talk will provide insights into recent ad-
vances towards automation of the design-make-test-analyze cycle.

[1] Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep
Learning in Drug Discovery. Drug Discov. Today 2018, 23 (6), 1241–1250.
https://doi.org/10.1016/j.drudis.2018.01.039.

[2] Jiménez-Luna, J.; Grisoni, F.; Weskamp, N.; Schneider, G. Artificial Intelligence in
Drug Discovery: Recent Advances and Future Perspectives. Expert Opin. Drug Discov.
2021, 16 (9), 949–959. https://doi.org/10.1080/17460441.2021.1909567.

[3] Segler, M. H.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating Focused Molecule
Libraries for Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4 (1),
120–131.

[4] Yuan, W.; Jiang, D.; Nambiar, D. K.; Liew, L. P.; Hay, M. P.; Bloomstein, J.; Lu, P.;
Turner, B.; Le, Q.-T.; Tibshirani, R.; others. Chemical Space Mimicry for Drug Discovery.
J. Chem. Inf. Model. 2017, 57 (4), 875–882.

[5] Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo Design of Bioactive Small
Molecules by Artificial Intelligence. Mol. Inform. 2018, 37 (1–2), 1700153.
https://doi.org/10.1002/minf.201700153.

[6] Skinnider, M. A.; Stacey, R. G.; Wishart, D. S.; Foster, L. J. Chemical Language
Models Enable Navigation in Sparsely Populated Chemical Space. Nat. Mach. Intell. 2021,
3 (9), 759–770. https://doi.org/10.1038/s42256-021-00368-1.

[7] Moret, M.; Friedrich, L.; Grisoni, F.; Merk, D.; Schneider, G. Generative Molecular
Design in Low Data Regimes. Nat. Mach. Intell. 2020, 2 (3), 171–180.

[8] Grisoni, F.; Moret, M.; Lingwood, R.; Schneider, G. Bidirectional Molecule Gener-
ation with Recurrent Neural Networks. J. Chem. Inf. Model. 2020, 60 (3), 1175–1183.
https://doi.org/10.1021/acs.jcim.9b00943.

[9] Moret, M.; Helmstädter, M.; Grisoni, F.; Schneider, G.; Merk, D. Beam Search for
Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence. Angew.
Chem. Int. Ed. 2021, 60 (35), 19477–19482. https://doi.org/10.1002/anie.202104405.

[10] Grisoni, F.; Huisman, B. J.; Button, A. L.; Moret, M.; Atz, K.; Merk, D.; Schn
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Thursday

Industrial applications of generative machine learning methods

Sebastiano Saccani 1

1 AIndo

Generative machine learning methods are a paradigm that is receiving a lot of investments
from the biggest IT and industrial companies worldwide. We will tackle the relationship
existing between self-supervised learning and generative models and showcase industrial
applications that exploit such techniques.
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Thursday

Exploring drugs’ solid state landscape using atomistic machine
learning

Andrea Anelli 1

1 Roche, Hoffman-La Roche, Basel, Switzerland

Organic molecules can adopt different solid forms depending on their chemistry and
external conditions, generating a polymorphic degree of freedom. Since the different solid
forms have distinct physico-chemical behavior (e.g. solubility, compressibility etc. . . ), it is
paramount to know which crystalline patterns a molecule can aggregate into. A promising
route to characterize the crystalline landscape of organic crystals is to perform quantum
mechanical atomistic simulations of each potential polymorph, so as to obtain a much
needed ranking of the observable crystals. While this routine is fully general and applicable
to any class of compounds, it requires a substantial computational investment, allowing
its use mostly for molecules in the later development stages. To overcome these costs,
and render this approach truly high-throughput, we propose an infrastructure to speed
our calculations by training a machine learning crystal ranker. By using our method, we
report n-fold increases in performances, paving the way for crystal structure prediction to
penetrate in the earlier development stages.
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Thursday

Towards predicting corrosion inhibitors’ performance with
machine learning

Sintija Stevanoska 1

1 Lubjana, Slovenia

Organic corrosion inhibitors are molecular substances used in relatively low concen-
trations that effectively reduce the rate of corrosion of metals and their alloys. It has
been widely believed that corrosion inhibition is related to inhibitor molecular electronic
properties, and one commonly utilized inference is that efficient inhibitors display a small
HOMO–LUMO gap. However, studies that considered many corrosion inhibitors demon-
strated the lack of correlation between a given individual molecular electronic property and
corrosion inhibition.[1,2] For this reason, several studies utilized machine-learning (ML)
approaches to generate predictive models for screening new inhibitors.[2,3] These studies
showed that the usefulness of inhibitor molecular electronic properties as input features in
ML models depends on the metallic material to be protected, i.e., they were found useful
for pure Mg,[3] but not for Al alloys.[2] Herein, we apply several ML approaches for re-
gression (including model trees, regression trees and random forests thereof, and multiple
linear regression) to screen heterocyclic organic compounds as corrosion inhibitors of pure
copper in 3 wt.% NaCl solution. Our molecular dataset consisted of 24 heterocyclic organic
compounds, whose corrosion inhibition performance was determined experimentally.[1] We
utilized two classes of input features (named class-1 and class-2). AlvaDesc 2.0[4] and
MarvinSketch 21.9[5] were used to generate 3984 class-1 descriptors, including constitu-
tional and topological parameters and molecular physicochemical variables. Preprocessing
steps were performed in AlvaDesc 2.0 to reduce the total number of descriptors to a set of
356 information-rich variables. As for class-2, we utilized 31 different molecular electronic
parameters[6]—such as ionization potential, electron affinity, electronegativity—calculated
with the B3LYP density-functional-theory method. We built ML models by using either
class-1, class-2, or class-1+class-2 input features. As the molecular dataset was small, we
used leave-one-out cross-validation. Results indicate that neither class-1 nor class-2 input
features (nor their combination) can provide highly predictive models (the best models have
a cross-validated correlation coefficient of r ∼ 0.5). This limited success implies that neither
the molecular electronic properties nor the constitutional and topological parameters are
useful descriptors for corrosion inhibition. The challenge is thus to find useful descriptors
for corrosion inhibition. This is in line with our view that it is currently unknown what
makes a good corrosion inhibitor in terms of physicochemical properties and how it differs
from a bad inhibitor.

[1] A. Kokalj at al., Corros. Sci. 2021, 179, 108856.
[2] D. A. Winkler et al., Green Chem. 2014, 16, 3349–3357.
[3] C. Feiler et al., Corros. Sci. 2020, 163, 108245.
[4] A. Mauri, in Ecotoxicological QSARs (Ed.: K. Roy), Springer US, New York, NY,

2020, pp. 801–820.
[5] Calculator Plugins, Marvin 21.9, ChemAxon, 2021. http://www.chemaxon.com
[6] A. Kokalj et al., Corros. Sci. 2021, 193, 109900.
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Deep learning for excited states and molecular design

Julia Westermayr 1, Joe Gilkes1, Rhyan Barrett1, Reinhard J. Maurer1

1 University of Warwick, Warwick, United Kingdom

High-throughput screening of excited states in molecules can advance the search for func-
tional organic molecules with potential importance for modern organic electronics. However,
time-consuming experiments and high computational costs of accurate quantum chemical
calculations severely limit the characterization of such systems and consequently targeted
molecular design [1].

In this talk, we will show how deep learning can advance this research area by using an
automated approach to molecular design that combines two deep learning techniques: The
first is based on a physics-inspired deep learning model for high-throughput screening of
optical and electronic properties with near experimental accuracy [2]. The second technique
we use is generative deep learning, which allows us to generate novel molecules by learning
the structural distribution of a dataset. In successive iterations, the output of the genera-
tive model is filtered with the spectroscopic deep learning model and then used to retrain
the generative model with a bias. In this way, molecules with finely tuned optoelectronic
properties can be efficiently generated [3].

[1] J. Westermayr and P. Marquetand, Chem. Rev., 121(16) 121, 16, 9873–9926 (2020).
[2] J. Westermayr and R. J. Maurer, Chem. Sci. 12, 10755-10764 (2021).
[3] J. Westermayr, J. Gilkes, R. Barrett, R. J. Maurer, unpublished (2022).
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Data-driven high-throughput experimentation using
combinatorial material science methods and machine learning

Lars Banko 1

1 Ruhr Universitait Bochum, Bochum, Germany

Machine learning offers an enormous potential to accelerate the discovery of new ma-
terial systems and the optimization of existing ones. The applications are manifold, e.g.,
for the analysis of complex data sets, for the prediction of new materials and the active
control of experiments. Combinatorial materials science allows relatively large data sets to
be generated through parallel synthesis and high-throughput measurements. Increasingly
complex chemical composition spaces, however, pose challenges to the current methodology.
This talk will introduce some concepts and application examples of machine learning in ma-
terials science, covering synthesis-processing-microstructure-relationships, machine learning
companion agents for X-ray diffraction data analysis, and an outlook towards autonomous
experimentation.
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Precise atom manipulation through deep reinforcement learning

I-Ju Chen 1

1 Aalto University, Helsinki, Finland

Atom manipulation in scanning tunneling microscopy has enabled the creation of ar-
tificial lattices for research on exotic quantum states and atomic-scale miniaturization of
computational devices. The ability to autonomously arrange atomic structures with preci-
sion will enable the scaling up of nanoscale fabrication and expand the range of artificial
structures. However, it is challenging to select manipulation parameters that can achieve
atomic precision throughout extended operations due to spontaneous tip apex changes and
the difficulty of modeling tip-atom interactions. Here we use deep reinforcement learning
to control the real-world atom manipulation process. Several state-of-the-art reinforcement
learning techniques are used jointly to boost data efficiency. The deep reinforcement learn-
ing agent learns to manipulate Ag adatoms on Ag(111) surfaces with optimal precision and
is integrated with path planning algorithms to complete an autonomous and robust atomic
assembly software toolkit. These results demonstrate that state-of-the-art deep reinforce-
ment learning can offer effective solutions to real-world challenges in nanofabrication. In
particular, we expect deep reinforcement learning to be a promising approach to discover
manipulation parameters for novel surface/adsorbate combinations.
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Evaluation of descriptors for property predictions of glasses by
machine learning

Felix Arendt 1

1 Friedrich Schiller University Jena, Jena, Germany

The development of new glasses is often hampered by inefficient "trial-and-error" de-
sign discovery methods. As an alternative, machine learning (ML)-based approaches are
becoming increasingly popular to accelerate the discovery and optimization of novel ad-
vanced materials. The most Subsequently, the glass structure is used as an additional
source of information to improve the predictive performance of the ML models. To this
end, high-throughput molecular dynamics simulations of glasses are performed and image
recognition methods such as beta-variational autoencoders are used to extract descriptors
related to structural information. This combined approach of ab initio descriptors and
structural descriptors is expected accelerate the development of glasses with tailored prop-
erties. Subsequently, the glass structure is used as an additional source of information
to improve the predictive performance of the ML models. To this end, high-throughput
molecular dynamics simulations of glasses are performed and image recognition methods
such as beta-variational autoencoders are used to extract descriptors related to structural
information. This combined approach of ab initio descriptors and structural descriptors is
expected accelerate the development of glasses with tailored properties. source of informa-
tion for deriving ML models for glasses is their chemical composition. Here we evaluate
different descriptors for ML models of various glass properties based on both compositional
information as well as ab initio derived properties of their components. These ab initio
descriptors can reproduce the performance of their purely compositional counterparts for
a large, comprehensive glass dataset, and in some cases even improve upon it for a smaller
dataset covering a variety of oxides, chalcogenides, and metallic glasses.
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AI4science at Microsoft Research

Rianne van den Berg 1

1 Microsoft Research Amsterdam, Netherlands

Over the last 10 years deep learning has clearly disrupted fields like computer vision,
speech recognition and language modeling. In this talk I will explain why we at Microsoft
research think AI is going to disrupt molecular sciences, and in particular computational
chemistry and physics. I will discuss the research areas that we are currently exploring
in Cambridge UK and in our new lab in Amsterdam the Netherlands, ranging from drug
discovery and material generation to computational catalysis.
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Alchemical machine learning for high entropy alloys

Lopanitsyna Nataliya1

1 Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

High entropy alloys (HEAs) are a class of metallic materials composed of five or more
principal elements[1]. Interest in HEAs has grown over the last decades due to their excep-
tional structural and mechanical properties. HEAs are particularly challenging for atom-
istic modeling. Conventional empirical forcefields are usually inaccurate for their complex
compositions, but first-principles simulations are very demanding, limiting the sampling of
disorder, and the time and length scales that are reachable.

Machine-learning models have emerged as a promising alternative, with the ability to
deliver the accuracy of first principle methods with lower computational resources. However,
the complexity of machine learning models grows rapidly with the number of different
elements due to the unfavourable scaling of their associated feature space sizes, limiting
the chemical diversity of the systems tackled thus far. The exponential increase in feature
dimensionality poses two distinct challenges. The former is that memory and computational
requirements to evaluate full feature vectors grows out of control with the chemical diversity.
The latter is that problems with high dimensionality require large descriptive datasets to
achieve transferability and low validation errors due to the interpolative nature of machine-
learning models.

To address these points, first, we propose a PyTorch-based chemical embedding compres-
sion scheme to reduce the dimensionality of the feature space required for multi-component
systems based on Willat et al framework[2]. Second, we demonstrate generated training set
and the associated energy and forces computed at the ab initio level, including BCC and
FCC phases. Finally, to showcase the effectiveness of our approach, we present a benchmark
on the elpasolites dataset[3] and an application to our proposed HEA dataset, including
phase stability prediction.

[1] Yeh, J.W., et al. "Nanostructured high entropy alloys with multiple principal el-
ements: novel alloy design concepts and outcomes." Advanced engineering materials 6.5
(2004): 299-303.

[2] Willatt, Michael J., Félix Musil, and Michele Ceriotti. "Feature optimization for
atomistic machine learning yields a data-driven construction of the periodic table of the
elements." Physical Chemistry Chemical Physics 20.47 (2018): 29661-29668.

[3] Faber, Felix A., et al. "Machine learning energies of 2 million elpasolite (ABC2D6)
crystals." Physical review letters 117.13 (2016): 135502.
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The phase diagram of iron up to Earth’s inner core conditions

Zhi Li 1

1 ICTP, Trieste, Italy

The primary chemical composition of Earth’s inner core is known to be iron. However,
it is still debated how the atoms in the solid iron are arranged. The possible candidates
include body-centered cubic (bcc), hexagonal-close-packed (hcp), and face-centered cubic
(fcc) structures. Here we developed a deep learning interatomic potential that allows at-
taining ab initio accuracy but with scaling that cannot be accessed by density functional
theory. By coupling molecular dynamics simulation with the thermodynamic integration
method to evaluate the Gibbs free energy, we construct the solid iron phase diagram up
to 700 GPa. We also determine the physical properties like thermal conductivity of these
phases at Earth’s inner core conditions. Our results will provide new insight into explaining
the seismic observations associated with the inner core, such as seismic anisotropy, strong
attenuation, and low shear wave velocity.
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Machine Learning techniques in Heterogeneous Catalysis

Nuria Lopez 1

1 Institute of Chemical Research of Catalonia, Tarragona, Spain

In the presentation I will review some of the uses of machine learning in Heterogeneous
Catalysis that we have been developing in our group. First we will focuss on the determi-
nation of descriptors for complex reactivity and how these descriptors can be mapped into
the traditional methodologies. Second I will use these as feed for performance equations,
able at presenting genaral forms for the reactivity of metals through hybrid data (mixing
experiments and theory). The last part of the talk will be devoted to "smart characteri-
zation techniques", in them using deep learning methodologies the most complex images
from microscopes can be analyzed.
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09:00 - 09:40 Zachary Ulissi
Continued progress towards generalizable machine learning models in com-
putational catalysis

09:40 - 10:00 Jarno Laakso
Compositional Engineering of Perovskites for Solar Energy Applications
with Machine Learning

10:00 - 10:20 Jonathan Schmidt
Machine Learning Thermodynamic Stability of Materials

10:20 - 11:20 Panel discussion and coffee
11:20 - 11:40 Jigyasa Nigam

Equivariant representations for machine learning molecular Hamiltonians

11:40 - 12:20 Johannes Margraf
Predicting Molecular Properties through Machine Learned Energy Func-
tionals

12:20 - 12:40 Closing remarks and prize announcement
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Continued progress towards generalizable machine learning
models in computational catalysis

Zachary Ulissi 1

1 Carnegie Mellon, Pitsburg, United States of America

Machine learning accelerated catalyst discovery efforts have seen much progress in the
last few years. Datasets of computational calculations have improved, models to connect
surface structure with electronic structure or adsorption energies have gotten more sophis-
ticated, and active learning exploration strategies are becoming routine in discovery efforts.
However, there are several large challenges that remain: to date, models have had trouble
generalizing to new materials or reaction intermediates and applying these methods requires
significant training. To address these challenges, I will briefly introduce the Open Catalyst
Project and the Open Catalyst 2020 dataset, a collaborative project with Facebook AI Re-
search to span surface composition, structure, and chemistry and enable a new generation
of deep machine learning models for catalysis. I will then discuss initial results for state-of-
the-art deep graph convolutional models and significant recent progress from others in the
community, including academic and industrial AI labs. Innovation in these models is likely
to improve models in related materials science areas. Finally, I will discuss current efforts
and open challenges for deep graph networks and beyond in computational catalysis, and
how to use the models/datasets or contribute new methods to the open leaderboard.
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Compositional Engineering of Perovskites for Solar Energy
Applications with Machine Learning

Jarno Laakso 1

1 Aalto University, Helsinki, Finland

Perovskites solar cells are a promising, emergent green energy technology. They have
shown high power conversion efficiencies, rivaling traditional silicon based solar cells, but
their commercialization has been hindered by toxicity and lack of stability. Studies of mixed
perovskite materials have demonstrated that compositional engineering can effectively mit-
igate these problems [1], but the complexity of the perovskite materials space inhibits the
search for a highly efficient, non-toxic, and stable solar cell material. We here facilitate this
task with a machine learning (ML) accelerated computational approach.We developed a ML
model that utilizes the many-body tensor representation for the perovskite atomic structure
and kernel ridge regression to learn from density functional theory calculations. We trained
the model on CsPb(Cl/Br)3 perovskite data with randomized Cl-Br configurations and
structural variations, and used it to quickly predict energies, atomic forces, and stresses.
We then employed the ML model in MC sampling combined with structural relaxations to
gain access to low energy structures and compute the convex hull for CsPb(Cl/Br)3. This
data-driven approach offers a pathway to the study of more complex perovskites and other
alloy materials with quantum mechanical accuracy.
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Machine Learning Thermodynamic Stability of Materials

Jonathan Schmidt 1

1 Martin-Luther University Halle-Wittenberg, Germany

In recent years machine learning methods have greatly accelerated the theoretical discov-
ery of new stable materials. Models for the prediction of material properties have evolved
from simple elemental descriptors and decision tree models, over convolutional networks
to graph neural networks. Graph neural networks for crystal structures typically use the
atomic positions and the atomic species as input. Unfortunately, this information is not
available when predicting new materials, for which the precise geometrical information
is unknown. Crystal-graph attention networks replace these precise bond distances with
embeddings of graph distances. This allows for the application in high-throughput stud-
ies based on both compositions and crystal structure prototypes without using relaxed
structures as input. With these techniques we have already scanned hundreds of ternary
prototypes spanning a space of more than 200M compounds and identified thousands of
theoretically stable materials.
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Equivariant representations for machine learning molecular
Hamiltonians

Jigyasa Nigam 1

1 EPFL, Lausanne, Switzerland

Most of the widely used machine learning schemes that have been successful in predicting
chemical and material properties rely on a mathematical representation of atomic configura-
tions that reflects the physical symmetries and locality of learning targets. A class of these
structural descriptions is built as a hierarchy of correlations of atom centered densities[1]
and is subsequently used to model corresponding atomic properties, or atomic contributions
to a global observable. However, many quantum mechanical quantities, such as the effective
single-particle Hamiltonian written on an atomic-orbital basis, are associated with multiple
atom-centers, rendering the atom-centered approach inadequate to describe the additional
degrees of freedom. We recently proposed an N-center representation[2] that extends the
atom-centered framework to the case of such targets. Devising this family of multicenter
and high-correlation order representations opens avenues for new classes of machine learn-
ing models that are fully equivariant and thus incorporate molecular symmetries, and that
can serve to assist electronic structure calculations.

[1] J. Nigam, S. Pozdnyakov, M. Ceriotti, JCP 153,121101, 2020
[2] J. Nigam, M. Willatt, M. Ceriotti, JCP 156, 014115, 2022
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Predicting Molecular Properties through Machine Learned
Energy Functionals

Jhoannes Margraf 1

1 Fritz-Haber-Institut der MPG, Berlin, Germany

My recent work focuses on using machine learning (ML) to understand chemical phe-
nomena (such as the nature of complex reaction networks)(1) and predict the properties of
new molecules and materials(2). A major driver of this work is the desire to build accurate,
data-efficient models, which do not require enormous reference datasets for training. This
is because I want to be able to apply these methods to any problem of chemical interest,
not just to those for which "big data" happens to be available. This is achieved by using
strong physical priors, e.g. in the form of baseline models or by tightly integrating ML and
electronic structure theory(3,4). In addition to being data-efficient, the latter approach also
expands the applicability of ML in chemistry, by providing access to electronic properties
and energies on an equal footing.

[1] Stocker, S.; Csányi, G.; Reuter, K.; Margraf, J.T. Nat. Commun. 2020, 11, 5505.
[2] Wengert, S.; Csányi, G.; Reuter, K.; Margraf, J.T. Chem. Sci. 2021, 12, 4536-4546.
[3] Margraf, J. T.; Reuter, K. Nat. Commun. 2021, 12, 344.
[4] Staacke, C.; Wengert, S.; Kunkel, C.; Csányi, G.; Reuter, K.; Margraf, J.T. Mach.

Learn. Sci. Technol., in press.
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Posters
Alaukik Saxena
A materials informatics framework to discover patterns in atom probe tomography data
Alena Vishina
High-throughput and Data-mining Search for Rare-earth-free Permanent Magnets
Alfonso Gallo Bueno
Unsupervised machine learning for detection of spurious structures
Amirhossein Naghdi Dorabati
Mechanical properties of crystalline W and Mo metals by Neural network interatomic potentials
Andreas Møller Slavensky
Searches for stable nano-sized silicates clusters in the interstellar medium
Antti Pihlajamäki
Orientation Adaptive Minimal Learning Machine for Atomic Forces
Avula Venkata Siva Nikhil
Prediction of Shear Viscosity of Complex Fluids Using Machine Learning Methods: Model Per-
formance, Ranking, Interpolation, and Uncertainty Quantification
Carlo Maino
Excited State Machine Learning for Chromophores in Complex Environments
Cesare Malosso
Viscosity in water from first-principles and deep-neural-network simulations
Claudio Zeni
Exploring the robust extrapolation of high-dimensional machine learning potentials
Connor Allen
A Computationally Efficient Approach for Improving Phonon Representation in Machine Learned
Potentials
Fabio Priante
Identifying Unknown Organic Molecules in Atomic Force Microscopy Images through Deep Gen-
erative Models
Hannes Kneiding
Machine Learning Quantum Properties of Transition Metal Complexes using Graph Neural Net-
works
Hyunwook Jung
Global optimization protocol for adsorbate geometries using an on-the-fly surrogate Gaussian
Approximation Potential
Ibrahim Buba Garba
Temperature-dependent phonons from ab-initio simulations
Indranil Saha
Understanding Germanosilicate Hydrolytic (In)stability based on Germanium Distributions de-
rived using Neural Network Potentials
Iuri Macocco
An intrinsic dimension estimator for discrete-metric spaces
Jean Baptiste Fankam
Theoretical investigation of the molecular structure, vibrational spectra, thermodynamic and
nonlinear optical properties of 4, 5-dibromo-2, 7dinitro- fluorescein
Johannes Döhn
Computational Screening of Oxide Perovskites as Insertion Type Cathode Materials
Kevin Rossi
Data-driven modelling and characterization of Au nanoparticles melting
Khatereh Azizi
Unsupervised learning on solvation of molecules in water
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Kunal Ghosh
Assessing the potential of active machine learning for curating molecular datasets
Kushal Ramakrishna
Physics-informed and data-driven molecular dynamics simulations of Iron under extreme condi-
tions
Kyeonghyeon Nam
Ab Initio Thermodynamics for Surface Motifs of the M1 Selective Oxidation Catalyst
Lakshmi Shenoy
Developing a machine learning interatomic potential for simulation of fracture in irradiated alpha-
iron
Lars Leon Schaaf
Machine Learned Force Field for Oxides as Catalysts
Lauri Kurki
A scanning probe microscopy study into the hydration of an adenine self-assembled monolayer
Lea Gašparič
Towards predicting corrosion inhibitors’ performance with machine learning
Lei Zhang
Active Learning of Gaussian Approximation Potential: Application for Fracture in Iron
Lucas Lang
∆-Machine Learning with Equivariant Graph Neural Networks
Mahmoud Attia
Multiscale Modeling of lithium diffusion and NMR properties in ceramics solid electrolytes for
the new generation of solid state batteries
Mandana Safari
Correct Vibrational Properties of Polar Materials from Neural Network Interatomic Potentials
Mani Lokamani
Evolution of Single-Level-Model parameters in the Mechanically controllable Break Junctions
Manuel Kuchelmeister
Multi-fidelity machine learning to accelerate materials research
Marco Bertolini
Unsupervised Learning of Group Invariant and Equivariant Representations
Mohsen Sotoudeh
Understanding ion mobility mechanism through the descriptor and scaling relations in solid crys-
tallines
Nikolaj Rønne
Global atomistic optimisation enhanced by local surrogate model
Nejc Hodnik
Using Machine Learning to Predict Activity from Synthesis Parameters for PtCu Alloy Fuel Cell
Nanoparticulate Electrocatalysts
Niko Oinonen
Molecule graph reconstruction from Atomic Force Microscopy images with machine learning
Nore Stolte
Reactions of aqueous carbon at deep Earth pressure and temperature conditions
Ondrej Krejci
Density Functional Theory models simulating Kelvin Probe Force Microscopy with flexible tip
apices
Pablo Sánchez-Palencia Vallejo
Exploring the configurational space of spinel phase (Sn1-xGex)3N4 solid solutions with machine
learning
Riccardo Dal Molin
Development a DeePMD potential for monolayer WTe2
Romina Wild
Identifying informative distance measures in high dimensional feature spaces: Application to
COVID-19 severity prediction
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Ruggero Lot
PANNA: a comprehensive toolkit for creating neural network models for atomistic systems
Samare Rostami
Exploring the novel mixed TiO2/ZrO2 structures and interfaces from structure predictions based
on charge equilibration via neural network technique.
Sebastian Havens
Investigation of the phase behaviour of embedded atom models of metals using nested sampling
and coexistence simulations
Simone Di Cataldo
Mapping Superconductivity in High-Pressure Hydrides
Uroš Hribar
Modeling the relation between processing parameters and material properties in foamed glass
production with machine learning
Valerio Briganti
Extending spectral neighbour analysis potentials with long range physics
Wojciech Stark
Investigation of nonadiabatic effects for H2 at Cu surfaces: A unified machine-learned electronic
friction model for multiple facets
Xi Chen
Baysian Optimization Conformer Search of Molecular Adsorbates on a Gold-thiolate Cluster
Yonghyuk Lee
Ab Initio Thermodynamics for Surface Motifs of the M1 Selective Oxidation Catalyst
Yuxuan Yao
Modified active machine learning (AML) approach to explore the molecular design through the
use of surrogate models for charge injection and transport descriptors.
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