Neural Network Potentials to explore the Crystal Structure Landscape

Stefano de Gironcoli Scuola Internazionale Superiore di Studi Avanzati Trieste-Italy

Emine Kucukbenli, Boston U (MA, USA)

Ruggero Lot, SISSA Trieste (I)

Franco Pellegrini, SISSA Trieste (I)

Yusuf Shaidu, Berkeley (CA, USA)

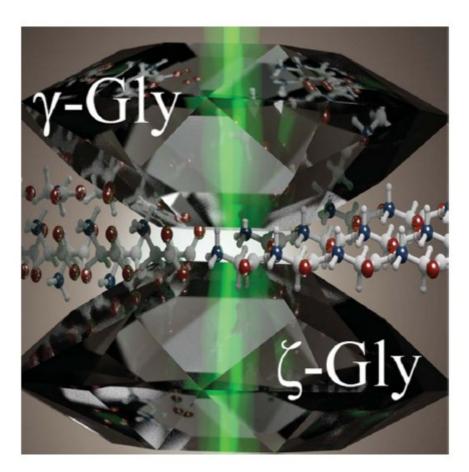
PANNA Properties from Artificial Neural Network Architectures

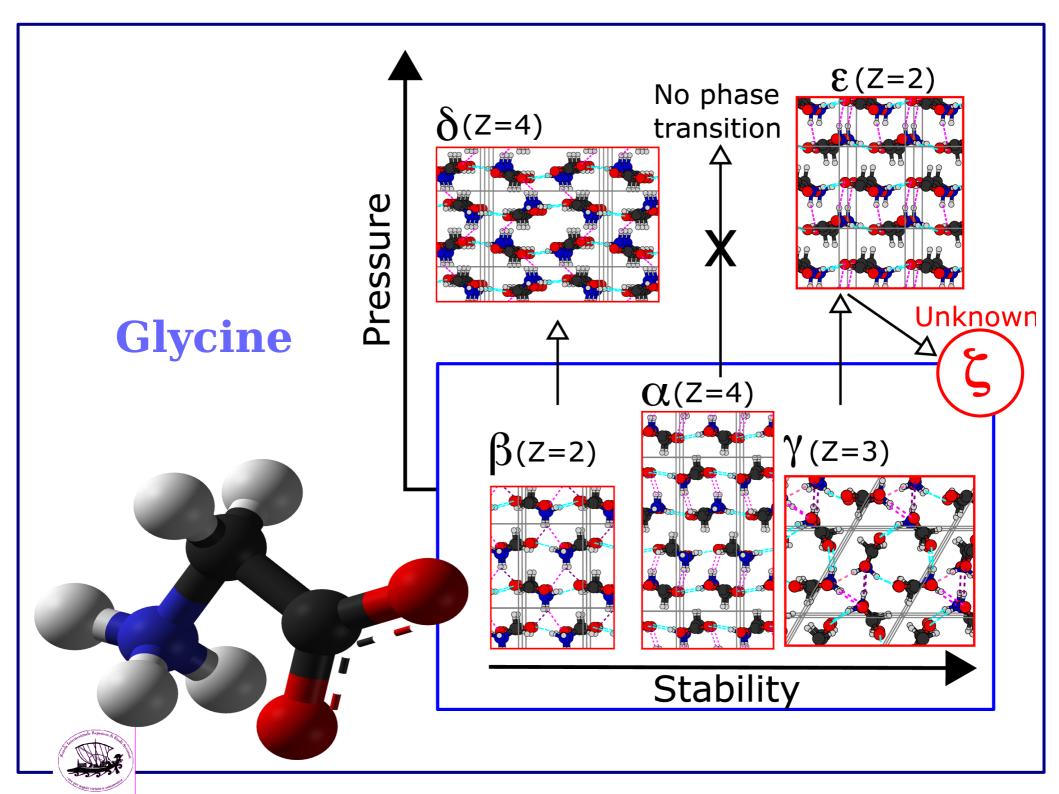
https://gitlab.com/pannadevs/panna

CSP is a formidable task

- CSP problem: Name a chemical or stoichiometric formula; find the (local) minima of the free energy landscape under given thermodynamic conditions (often at certain T,P)
- "What is the most stable structure of glycine at ambient conditions?" "What is the carbon structure that is stable at very high pressures"
- Challenges:
 - A very vast space of possibilities.
 - Free energy landscape is very expensive to obtain accurately

ζ-Glycine: Insight into the mechanism of a polymorphic phase transition



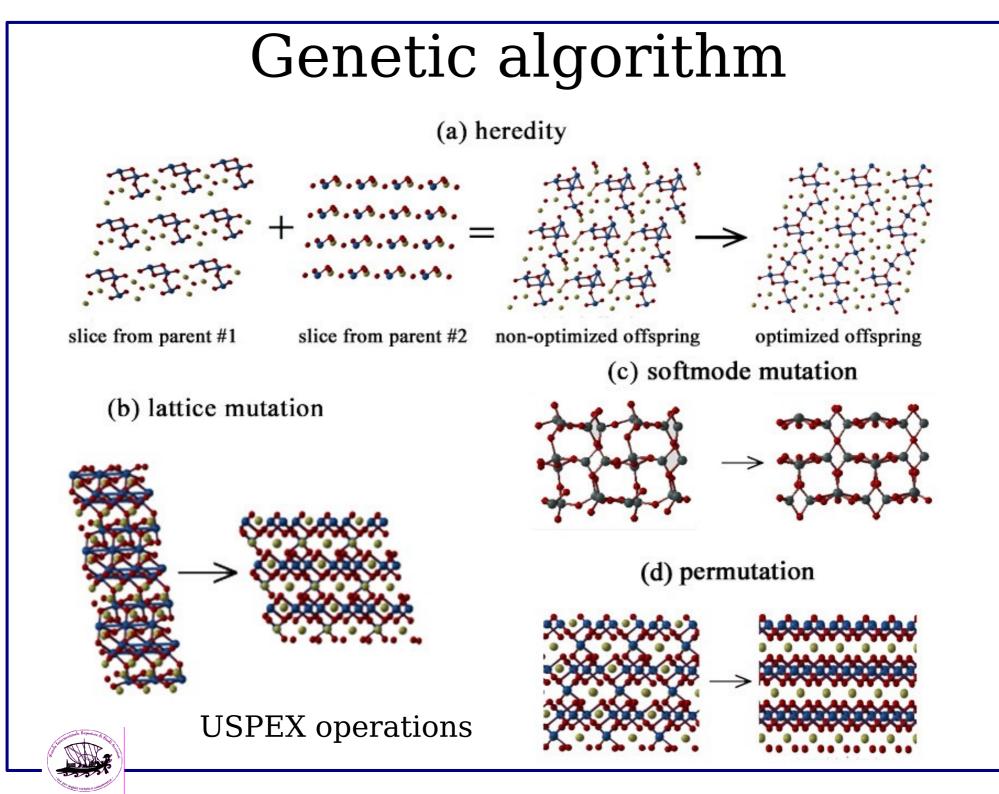


How to tackle CSP?

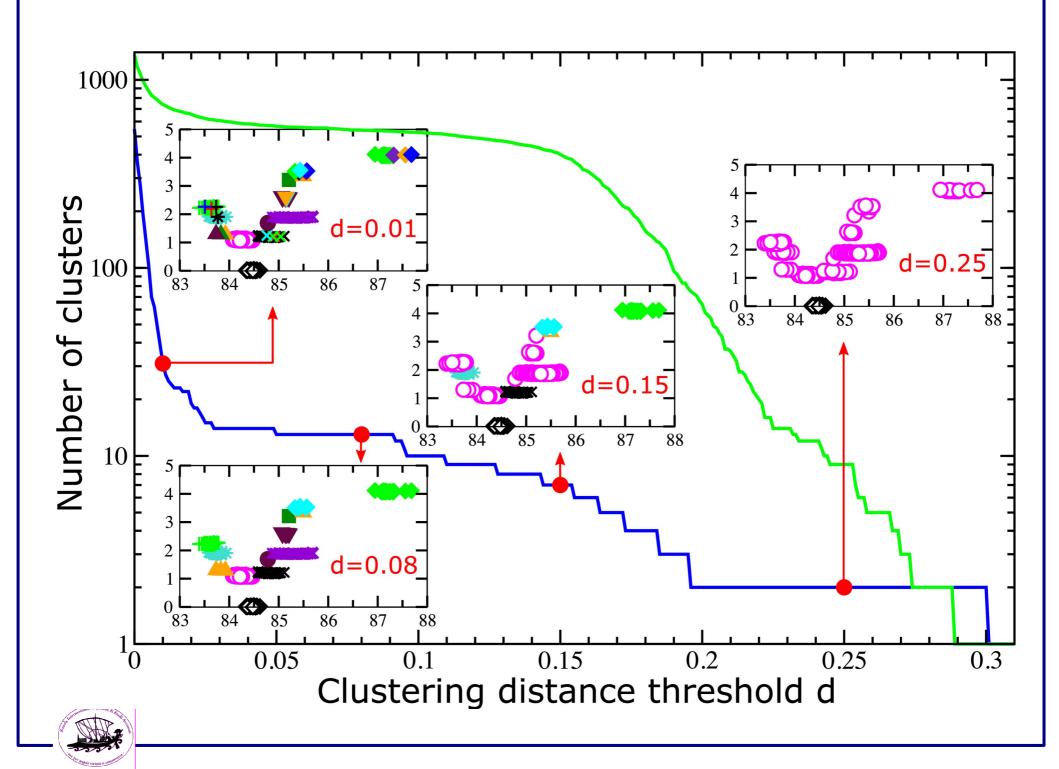
Explore: Use smart algorithms to explore as much of the landscape as possible

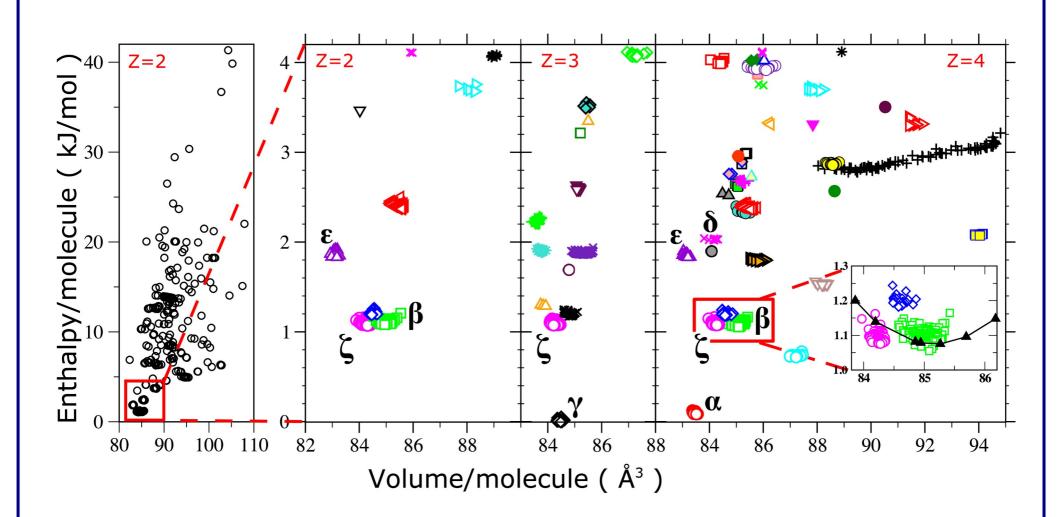
Molecular dynamics / Monte Carlo walkers

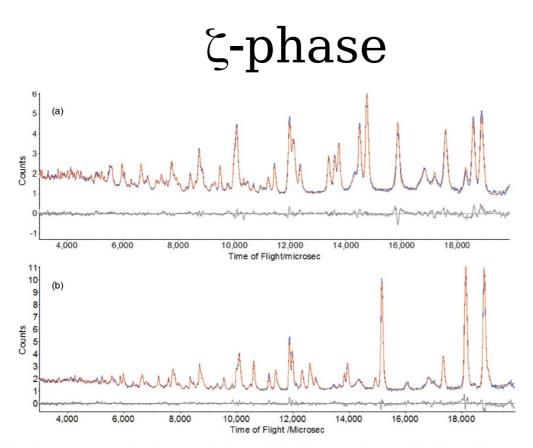
- Simulated annealing
- Metadynamics
- Basin hopping
- Minima hopping
- Genetic algorithm



+ vdWDF + clustering







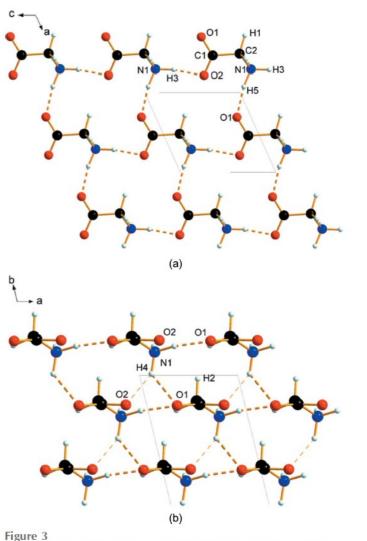


Figure 2

(a) Rietveld fit of the neutron powder diffraction pattern of ζ -glycine at 100 K (blue = observed, red = calculated). In addition to the peaks ζ -glycine, the pattern also shows the presence of residual ε - and a trace of γ -glycine. Other peaks arise from the sample environment, namely the pressure marker and the Al₂O₃ and ZrO₂ components of the anvils of the pressure cell. (b) Rietveld fit of the neutron powder diffraction patter β -glycine (contaminated with ζ - and a trace of γ -glycine) at 290 K. A 1 Å d spacing approximates to 4837 µs in time-of-flight.

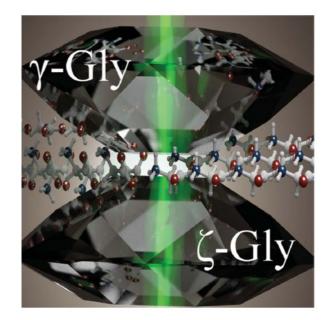
<u>E Kucukbenli, CH Pham, SdG,</u> <u>C Bull, G Flowitt-Hill, HY Playford, M Tucker, S Parsons</u> Int Union Crist J **4**, 569–574 (2017)

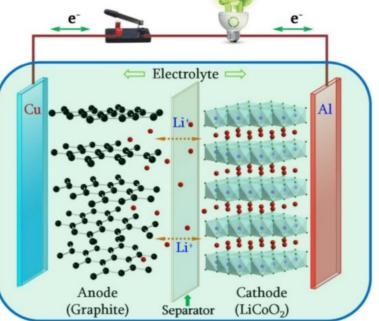
Intermolecular interactions in ζ -glycine. (*a*) Layers formed in the *ac* plane, viewed along **b**. (*b*) Stacking of the layers, viewed along **c**.

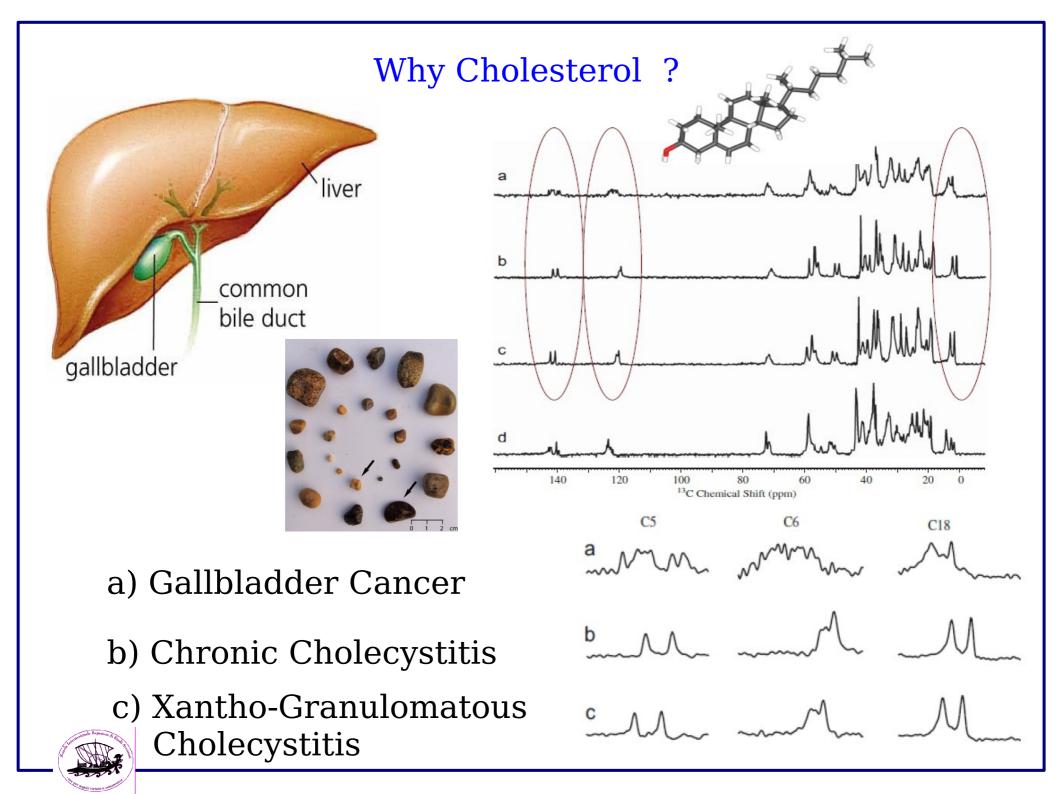
Exploring the phase space for larger molecules (ex. CLR) requires fast and accurate energetics

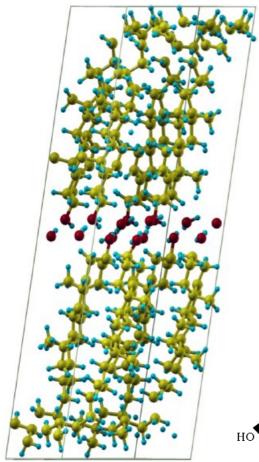
<u>Complete 13C Chemical Shift</u> <u>Assignment</u> <u>for Cholesterol Crystal</u>

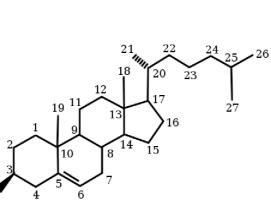
<u>ζ-Glycine: Insight into the mechanism</u> of a polymorphic phase transition











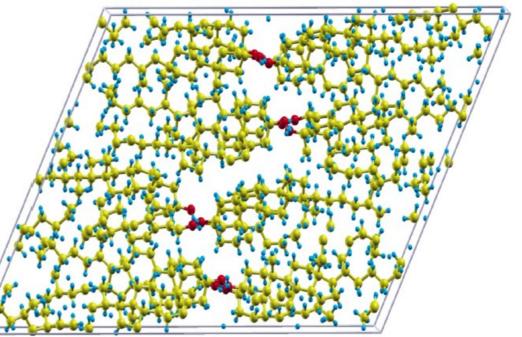
Monohydrade Cholesterol (ChM)

8 CLR +8 w molecules - 616 atoms

Low temperature Anhydrous Cholesterol (ChAl) 8 CLR mol – 592 atoms

(not shown)

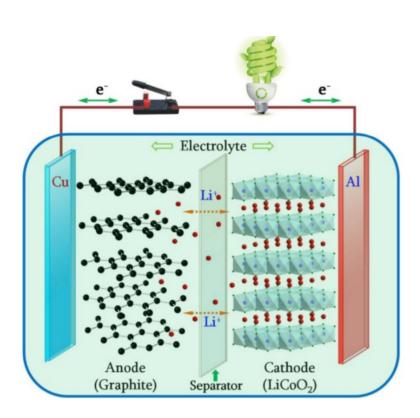
High temperature Anhydrous Cholesterol (ChAh) 16 CLR mol – 1184 atoms



<u>Lithium Interaction with</u> <u>Graphene-like Materials</u>

~10Wh

Lithium ion batteries



- Cathode: Source of lithium
- Electrolyte: Ionic conductivity
- Anode: Lithium holder
- Current collectors

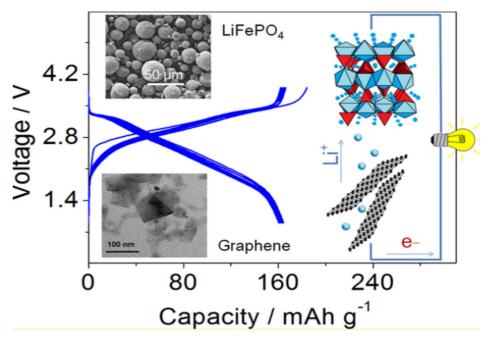
Materials Today 19(2):109-123, 2016

Capacity: The amount of Li absorbed by anode

- Stoichiometry of Li adsorbed graphite is ${\rm LiC}_6$

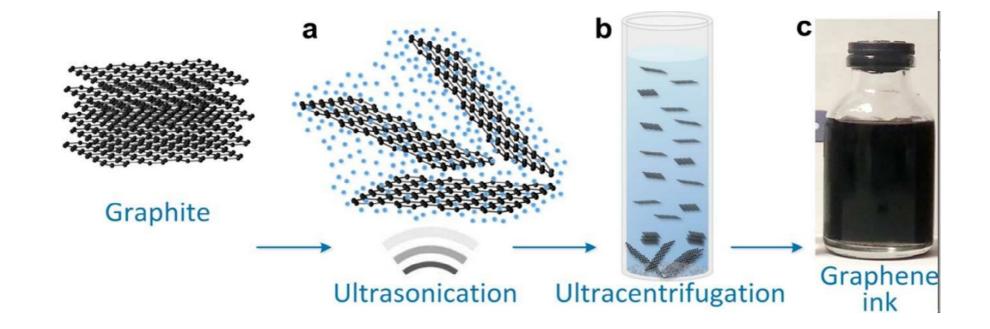
Alternative anode materials :

Graphene due to its large surface to mass ratio and good electrical conductivity.



- graphene nanoflakes as alternative anode
- Flakes ~30-100 nm lateral dimension
- Very high Li uptake: LiC₂

Hassoun et al. Nano Lett. 2014, 14, 4901-4906

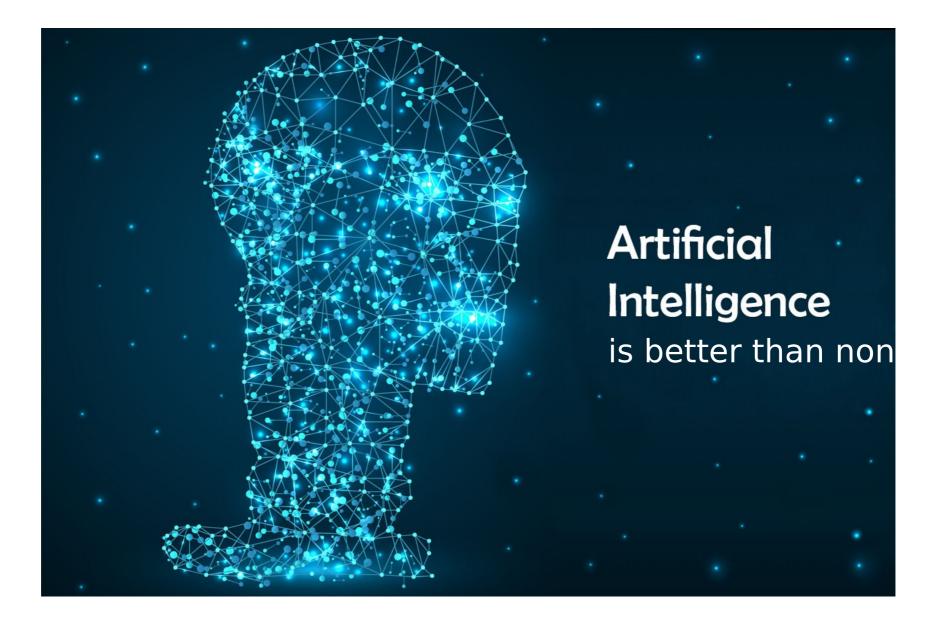


Traditionally model potentials construction requires a lot of physical intuition and are strongly dependent on the available experimental information.

Not transferable to experimentally unexplored regions.

Limited accuracy due to rigid functional form.

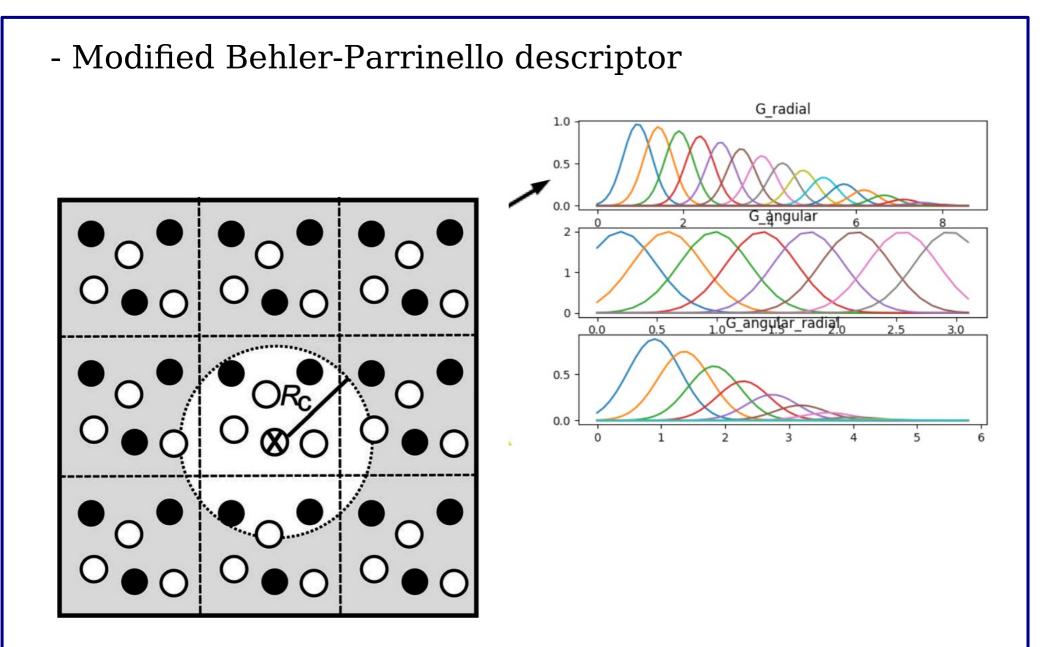
DFT is a viable option to gather accurate information but requires a systematic approach to build a potential that can incorporate its features.



Replace the expensive DFT total energy calculations (or other accurate methods) with an interatomic potentials built to reproduce DFT data in a variety of environments

$$E(c) = \sum_{\alpha} \sum_{i \in \alpha} \varepsilon_{\alpha}(\mathbf{d}_i) + \text{ long range contrib}$$

- Kernel Ridge Regression (and Gaussian Processes)
- Neural Networks
- local environment descriptors



Symmetry Functions

The radial part

$$G^{R} = \sum_{j \neq i} e^{-\eta (R_{ij} - R_s)^2} f_c(R_{ij})$$

The angular part

$$G^{A} = 2^{1-\xi} \sum_{jk \neq i} (1 + \cos(\theta_{ijk} - \theta_{s}))^{\xi} e^{-\eta(\frac{R_{ij} + R_{ik}}{2} - R_{s})^{2}} f_{c}(R_{ij}) f_{c}(R_{ik})$$
$$f_{c}(R) = \frac{1}{2} (1 + \cos(\frac{\pi R}{R_{c}}))$$

J. Behler and M. Parrinello, Phys. Rev. Lett. **98**, 146401 (2007) J.S.Smith, O.Isayev and A.E.Roitberg, Chem. Sci., 2017, **8**, 3192-3203

Representation

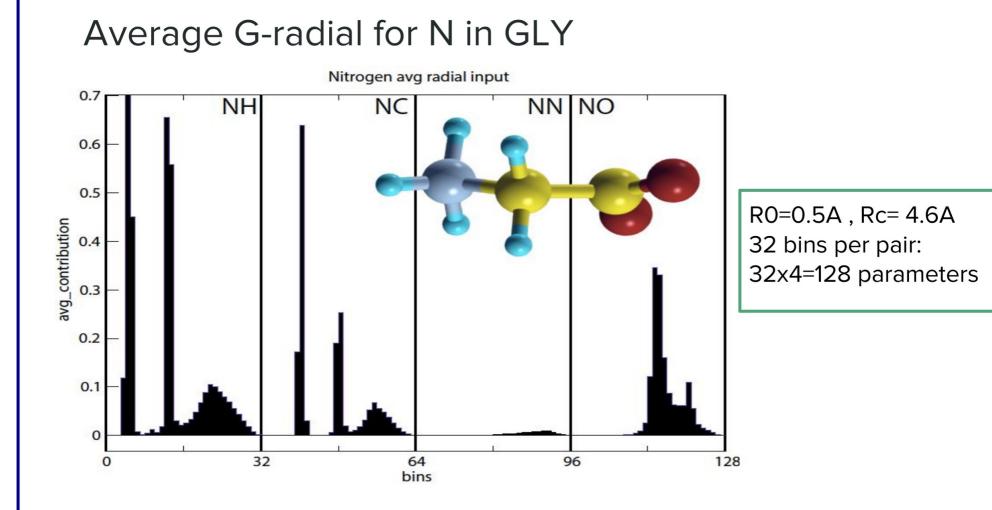
$$G_{m,s;i}^R = \sum_{i \neq j}^{\text{All atoms kind s}} e^{-\eta(r_{ij}-R_m)^2} f_c(r_{ij})$$

$$f_c(r_{ij}) = \begin{cases} 0.5 \left[\cos\left(\frac{\pi r_{ij}}{R_c}\right) + 1 \right] & \text{if } r_{ij} \le R_c \\ 0 & \text{if } r_{ij} \ge R_c \end{cases}$$

R0=0.5A , Rc= 4.6A 32 bins per pair: 32x4=128 parameters

J. Behler and M. Parrinello, PRL, 98.14 (2007).

Smith et al, Chem Sci 8 3192 (2017) DOI: 10.1039/c6sc05720a

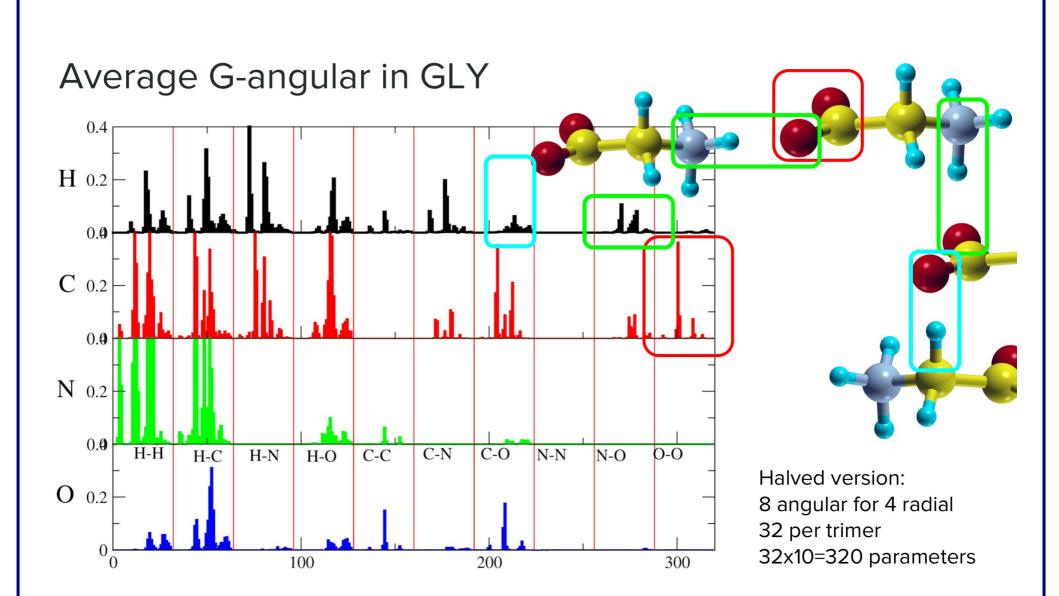


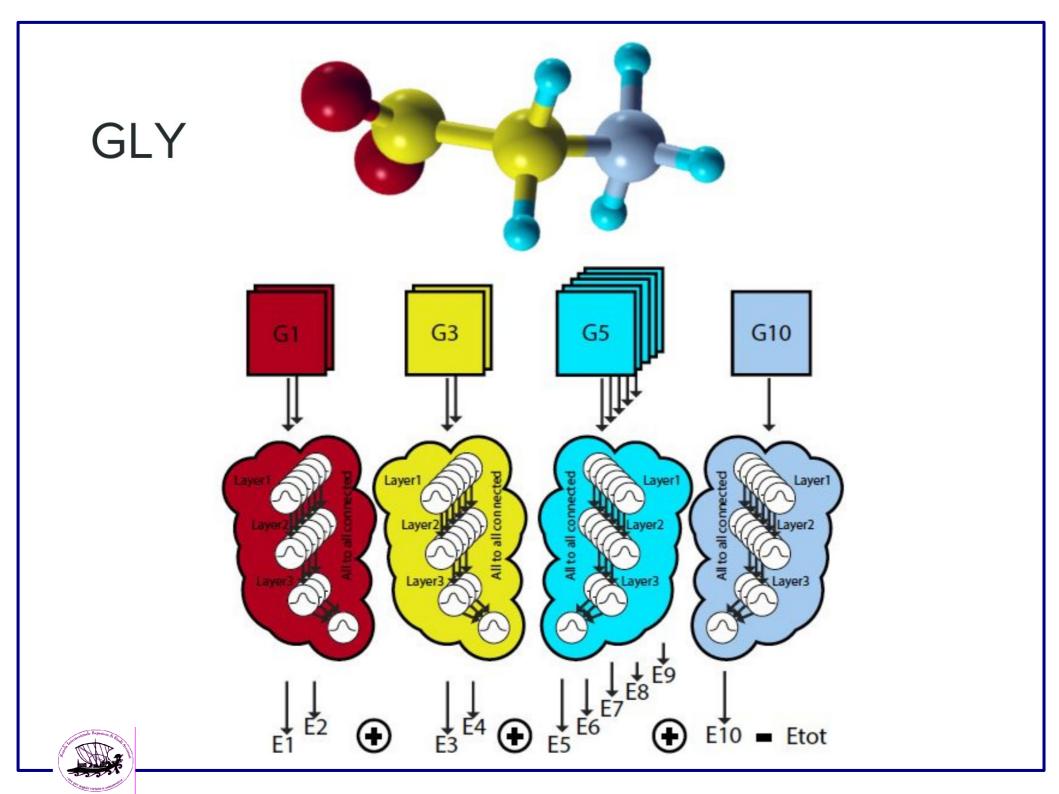
Representation

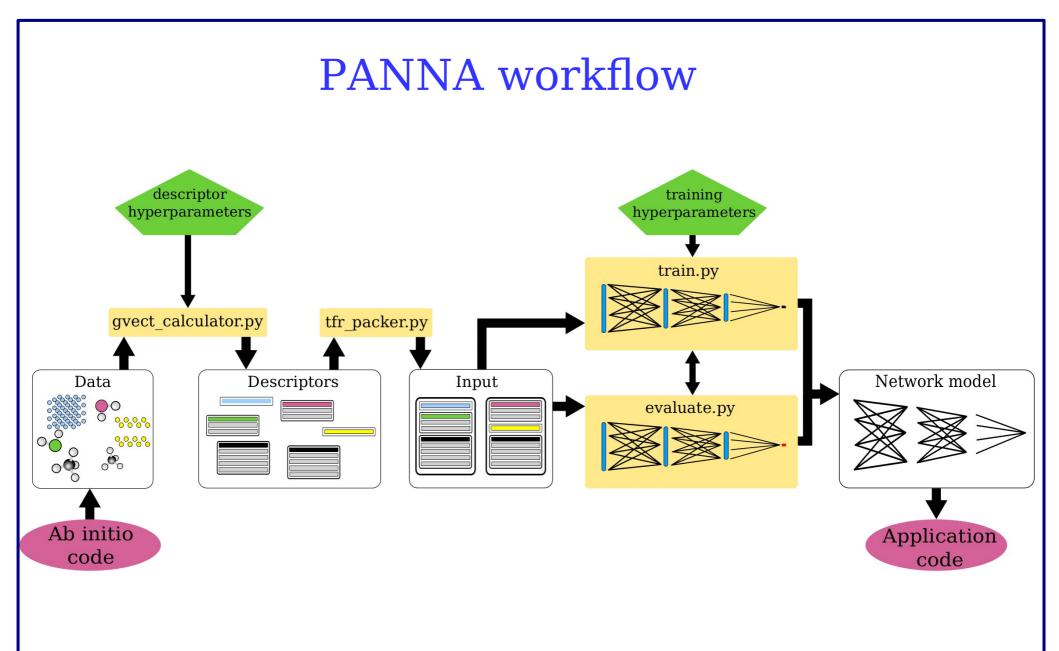
$$\begin{aligned} G_{n,m,s;i}^{A} = & 2^{1-\xi} \sum_{j,k \neq i}^{\text{All atom of kind s}} (1 + \lambda \cos(\Theta_{ijk} - \Theta_n))^{\xi} \\ & e^{-\eta \left(\frac{r_{ij}+r_{ik}}{2} - R_m\right)^2} f_c(r_{ij}) f_c(r_{ik}) \end{aligned}$$

R0=0.5A , Rc= 3.1A 8 angular bin for each 8 radial bin 64 bins per trimer: 64x10=640 parameters

Smith et al, Chem Sci (2016) DOI: 10.1039/c6sc05720a



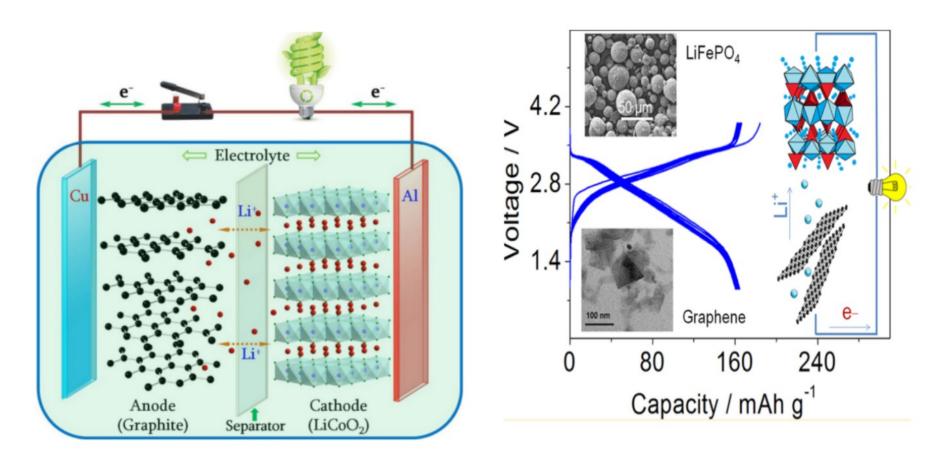




R Lot, F Pellegrini, Y Shaidu, E Kucukbenli, arXiv:1907.03055

https://gitlab.com/pannadevs/panna

Lithium ion batteries

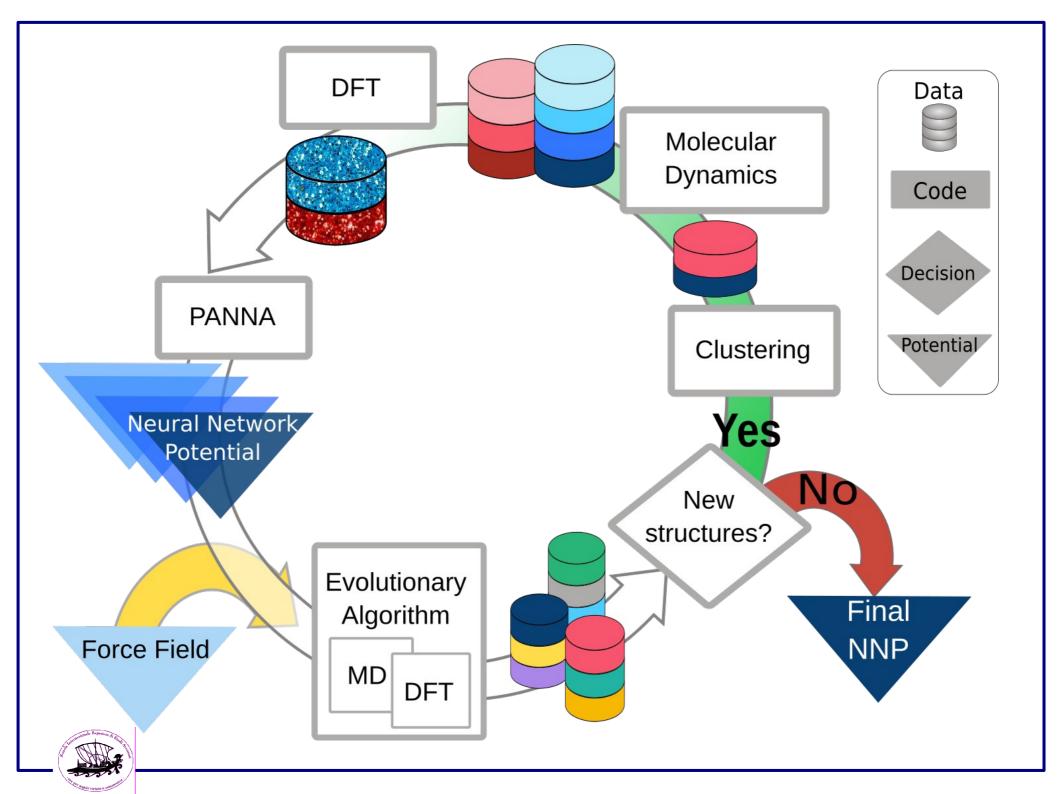


• graphite: LiC₆

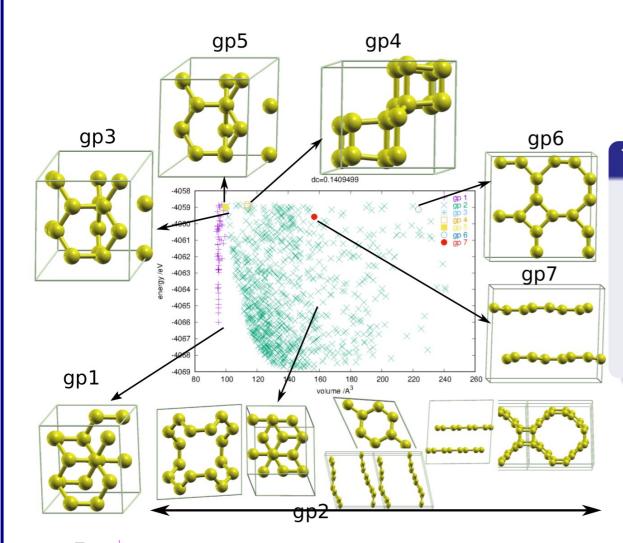
Today 19(2):109-123, 2016

• graphene: LiC₂

Hassoun et al. Nano Lett. 2014, 14, 4901-4906



Carbon Systems



$$D = \frac{1}{2} \left(1 - \frac{\mathbf{F_1} * \mathbf{F_2}}{|\mathbf{F_1}||\mathbf{F_2}|} \right)$$

Training Parameters

- Architectures: 144:64:32:1
- Activation function: gaussian:gaussian:linear

• minimized quantity:

$$Loss = E_{Loss} + \beta F_{Loss}$$

Carbon Systems: training and validation

40 40 training training validation validation 35 35 35 Energy RMSE (meV/atom) 57 05 05 Energy RMSE (meV/atom) GT 02 CZ 05 (meV/atom) 30 25 RMSE (20 Energy 15 10 10 10 5 5 80000 100000 120000 100000 20000 40000 60000 20000 40000 80000 100000 120000 200000 300000 0 0 60000 steps steps steps 0.50 0.50 0.50 training 0.45 validation 0.45 0.45 0.40 0.40 0.40 Force RMSE (eV/Å) Force RMSE (eV/Å) Force RMSE (eV/Å) 0.35 0.35 0.35 lettelles, todat 0.30 0.30 0.30 0.25 0.25 0.25 0.20 0.20 0.20 training 0.15 0.15 0.15 validation 0.10 0.10 0.10 ò 40000 100000 120000 100000 20000 60000 80000 100000 120000 20000 40000 60000 80000 0 200000 300000

2nd iteration

steps

3rd iteration

training

400000

training

400000

steps

validation

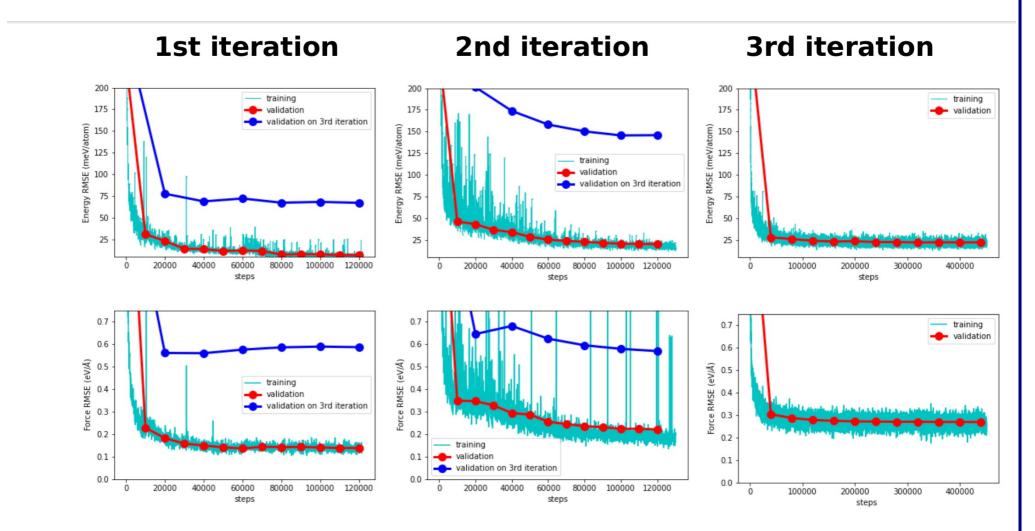
validation

• 20 % of the data set is set aside for validation

steps

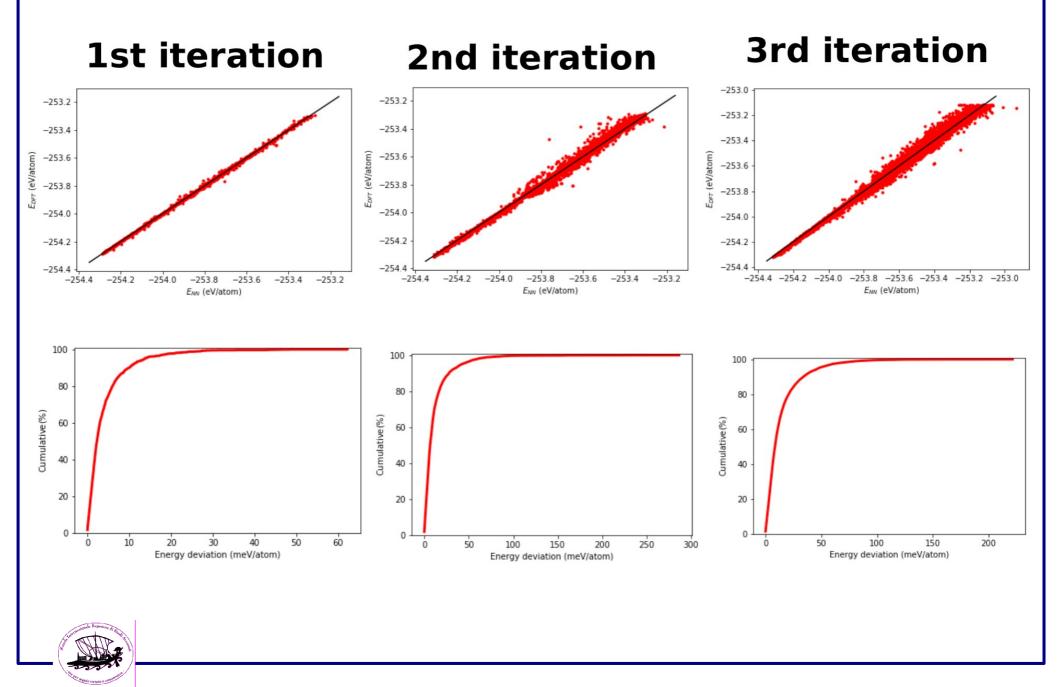
1st iteration

Carbon Systems: training and validation

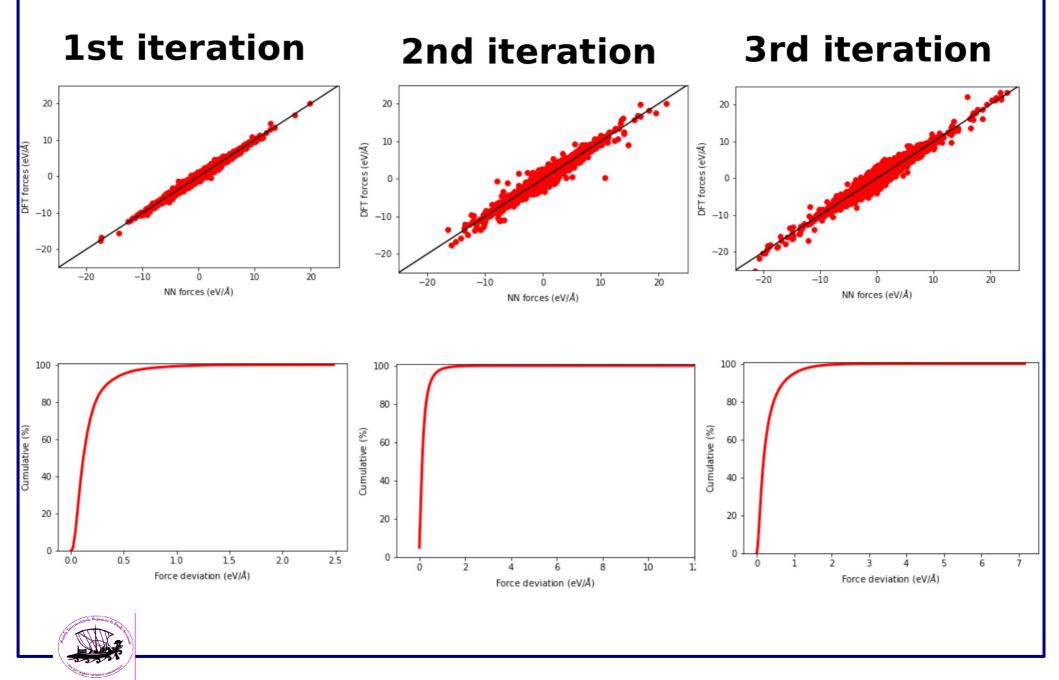


• 20 % of the data set is set aside for validation

Error distribution: energies



Error distribution: forces



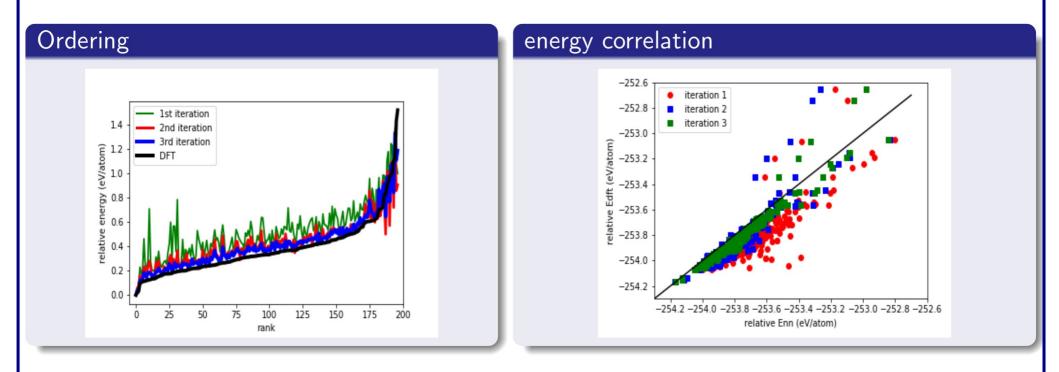
Effect of diversity on training and validation RMSE

Validate Train	T error	All D	<i>D</i> < 0.15	<i>D</i> < 0.10	D < 0.05	<i>D</i> ₁₂ < 0.05
All D	22.070	22.131	20.938	15.161	7.659	7.302
<i>D</i> < 0.15	18.066	80.424	18.422	13.342	5.949	17.567
<i>D</i> < 0.10	8.563	162.327	52.178	9.369	4.391	76.260
D < 0.05	2.633	879.207	452.598	89.022	2.585	650.075
<i>D</i> ₁₂ < 0.05	2.574	174.257	88.311	51.972	2.739	2.627

Validate Train	All D	D < 0.15	<i>D</i> < 0.10	D < 0.05	<i>D</i> ₁₂ < 0.05
All D	0.2696	0.2717	0.1974	0.0829	0.0785
<i>D</i> < 0.15	0.5969	0.2523	0.1789	0.0766	0.1873
<i>D</i> < 0.15	0.9571	0.4410	0.1472	0.0617	0.3112
<i>D</i> < 0.15	3.2641	2.0028	0.7243	0.0529	0.8699
$D_{12} < 0.05$	0.9641	0.8934	0.5440	0.0529	0.0504

Energy ordering of test structures

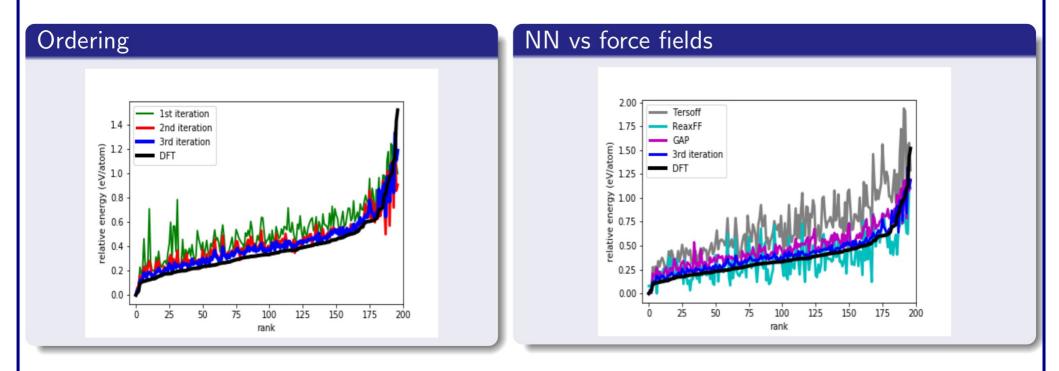
• 197 different sp³ C structures³



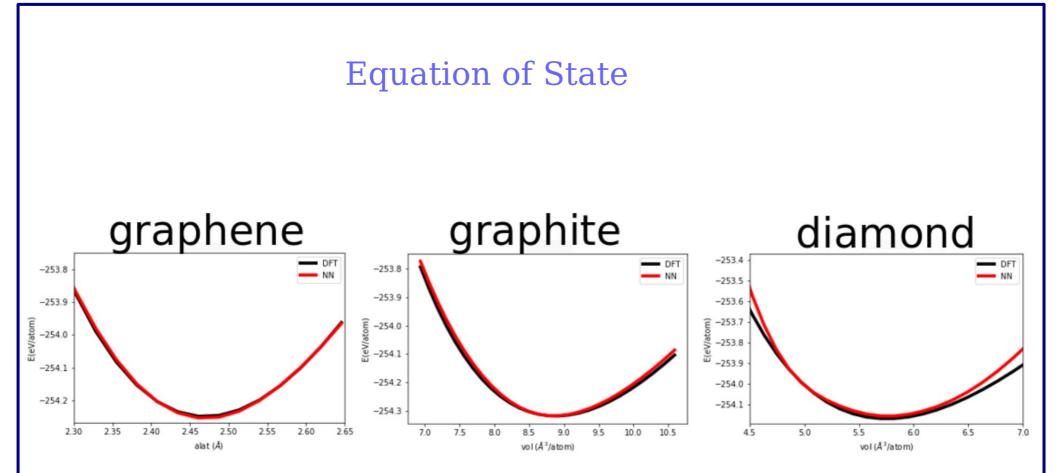
³V.L. Deringer, G. Csanyi and D.M.Proserpio, Chem. Phys. Chem. 2017,**18**, 873–877

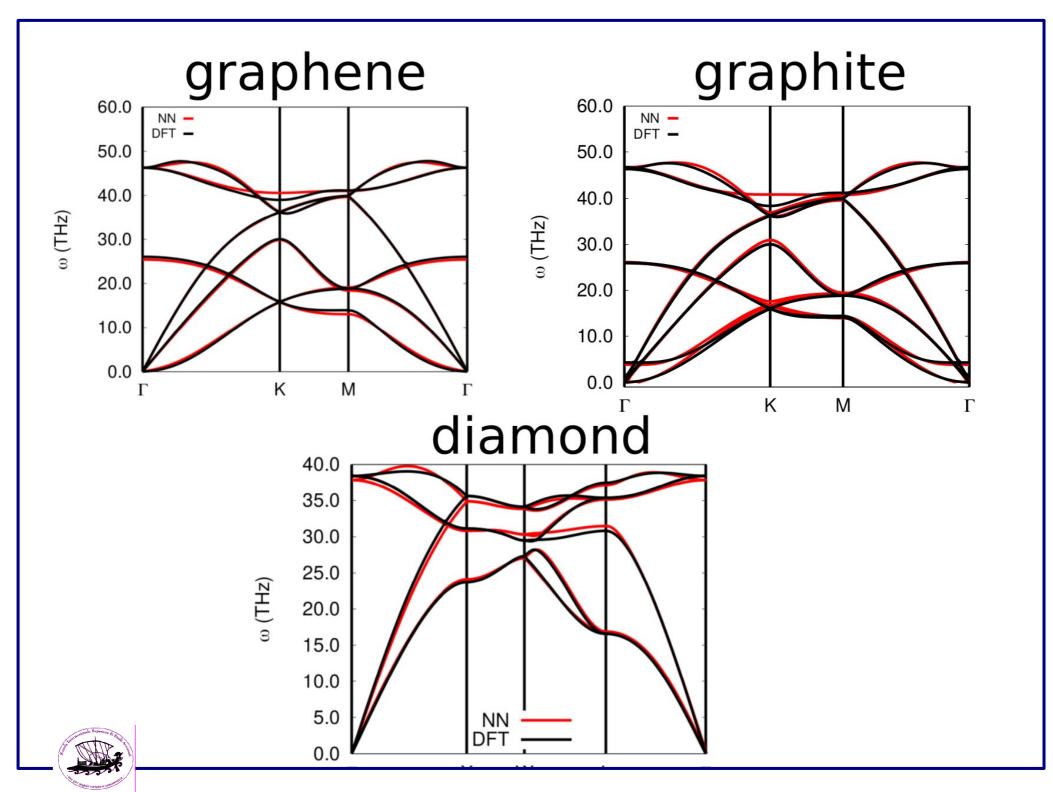
Energy ordering of test structures

• 197 different sp³ C structures⁴



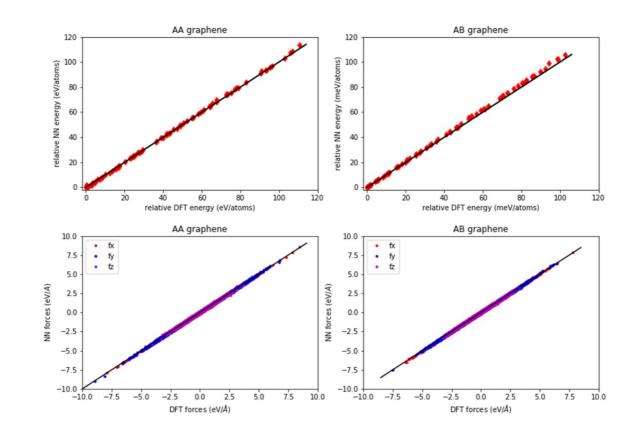
⁴V.L. Deringer, G. Csanyi and D.M.Proserpio, Chem. Phys. Chem. 2017,18, 873–877





Bilayer Graphene

- configurations generated potential via NVT MD in which the system was heated up from 300 K to 1000K using Nose-Hoover thermostat chain over a period of 1ns.
- Excellent agreement with DFT

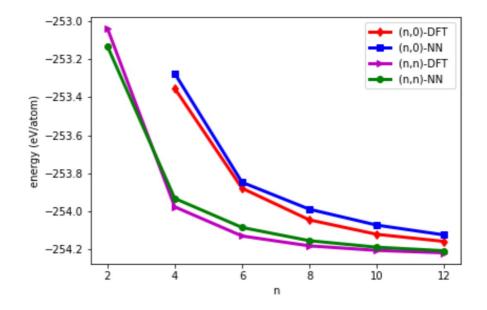


Carbon Nanotubes

Zigzag nanotube designated by (n, 0) and Armchair nanotube designated by (n, n).
 specifies the diameter of the tube as

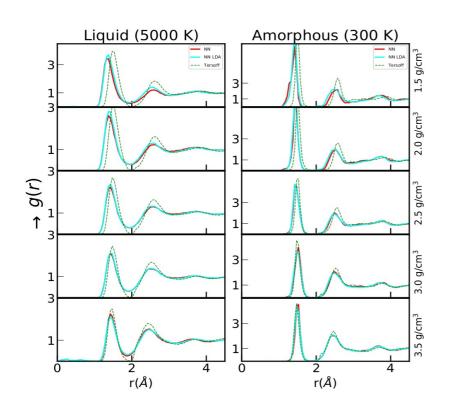
 $d(n,m) = rac{a}{\pi} \sqrt{n^2 + nm + m^2}$, a is the lattice parameter

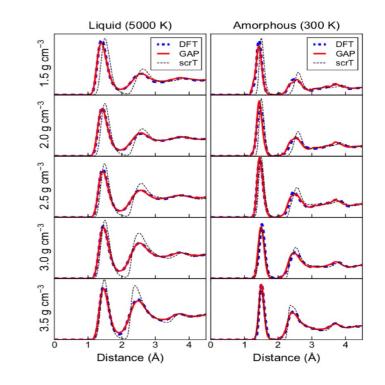
- Trends excellently captured
- Good agreement with DFT



Amorphous Carbon: radial distribution function

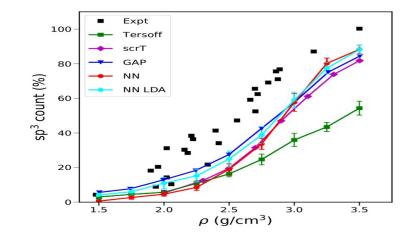
a) Our result



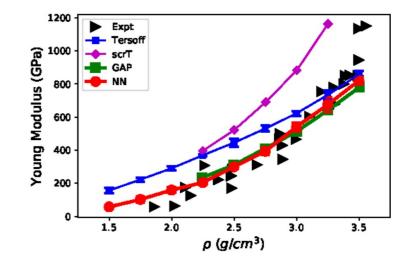


V.L. Deringer and G.Csányi, PRB 95, 094203, (2017) 2

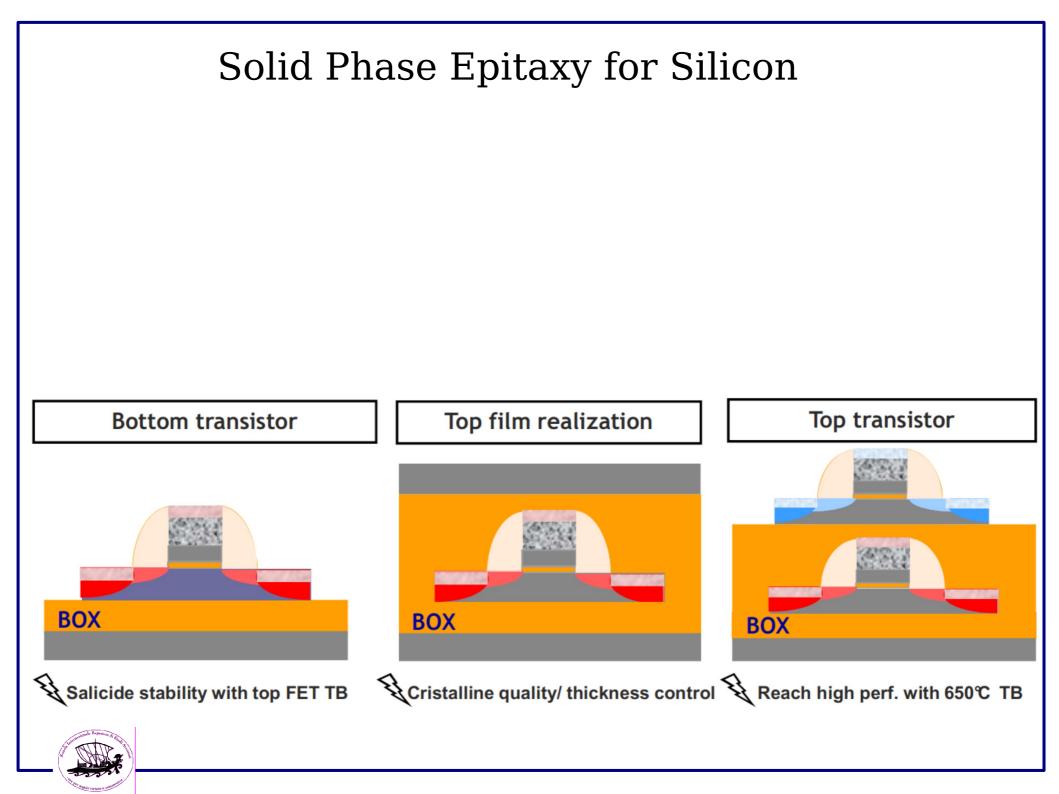
Amorphous Carbon: sp3 fraction and Young Modulus



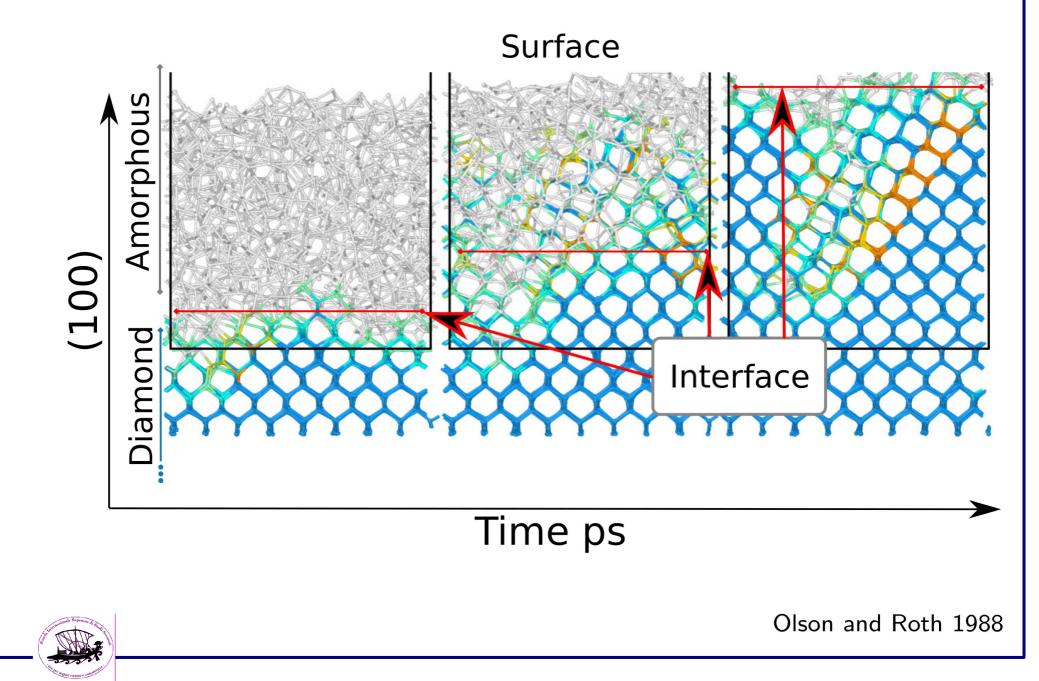
- J. Schwan et al. Journal of Applied Physics 79, 1416 (1996)
- V.L. Deringer and G.Csányi, PRB 95, 094203, (2017)



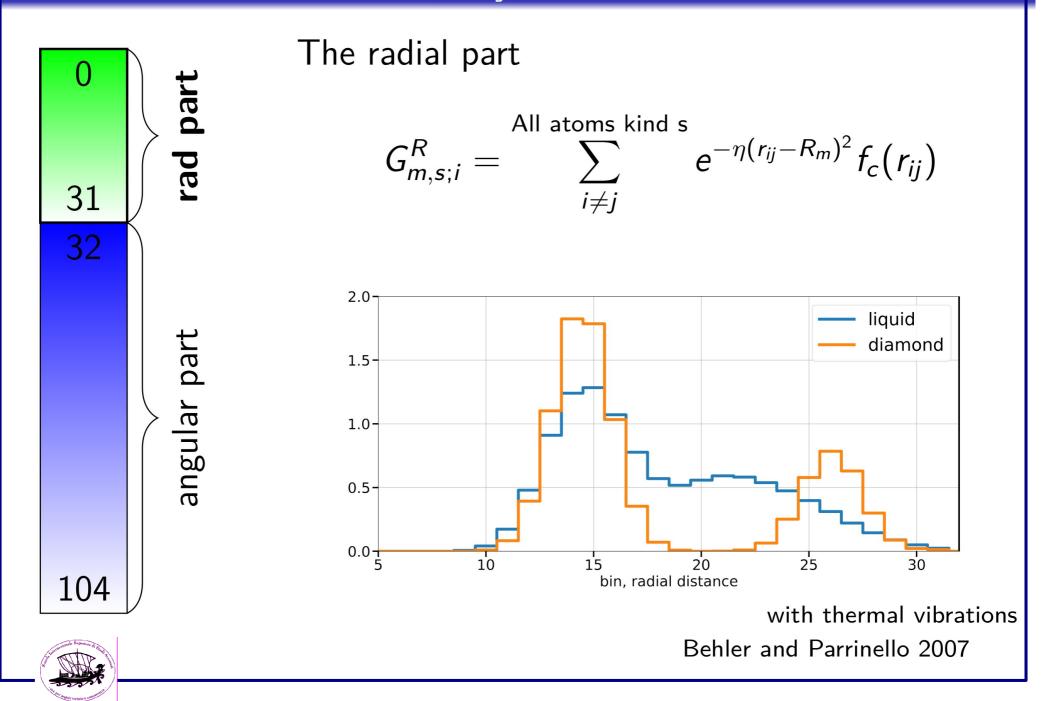
- B.Schultrich et al. Diamond and Related Materials 5 (1996) 914-918
- B.Schultrich et al. Surface and Coatings Technology 98 (1998) 1097-1101



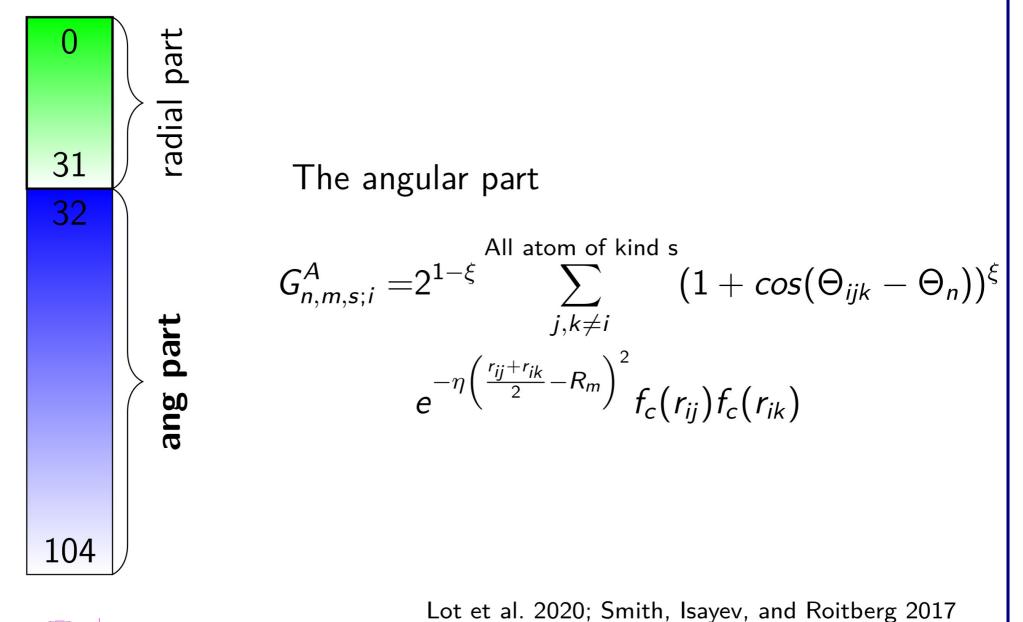
Problem statement



The input: $\mathbf{G}_i(\{\mathbf{x}_j\}|_{d(\mathbf{x}_i,\mathbf{x}_j) < r_{cut}})$

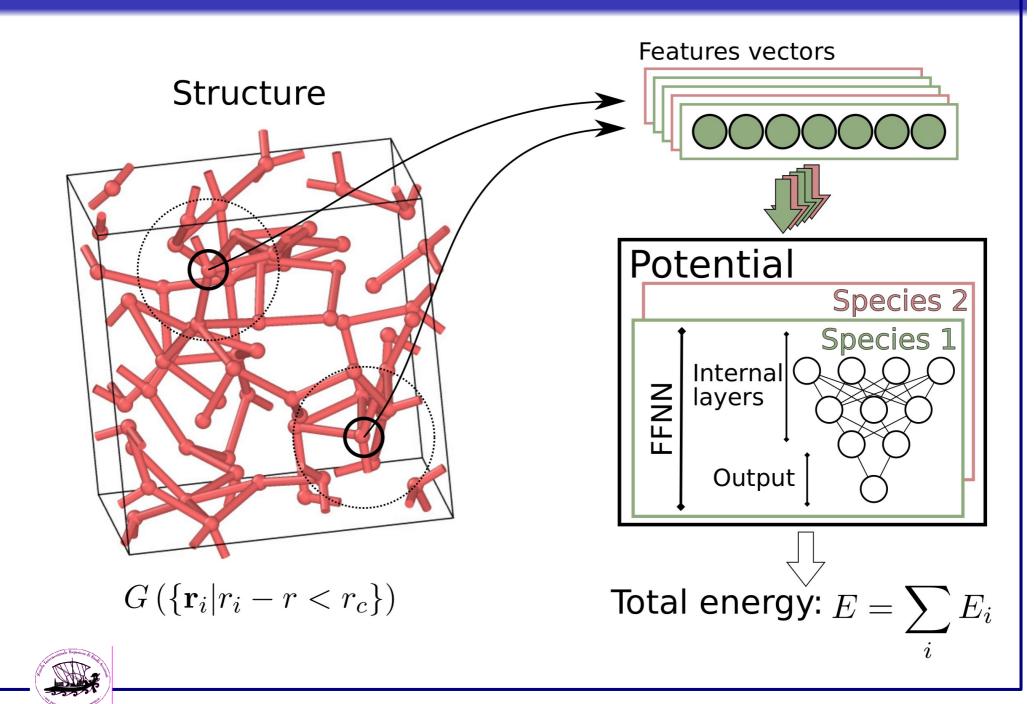


The input: Descriptor

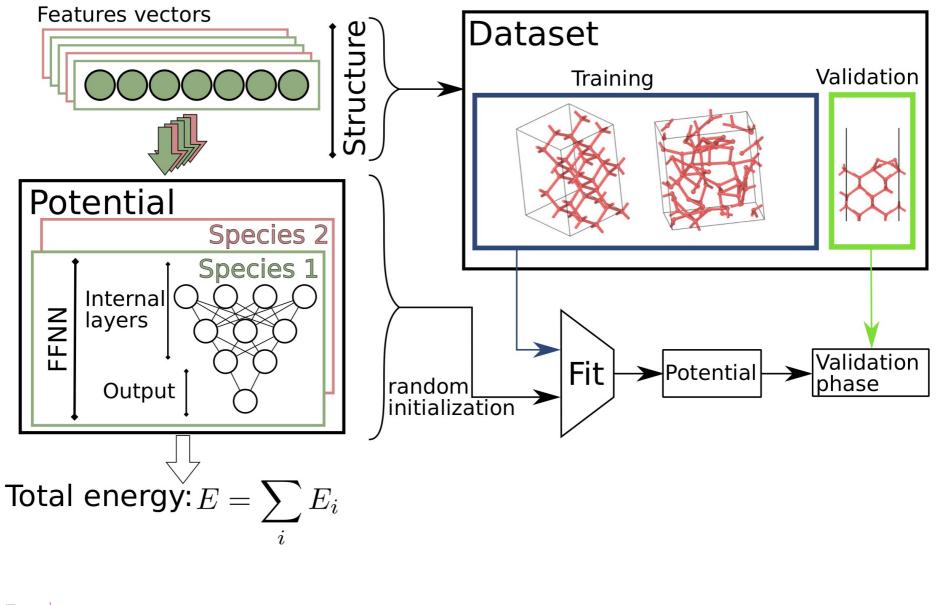


Turner and Supering of State

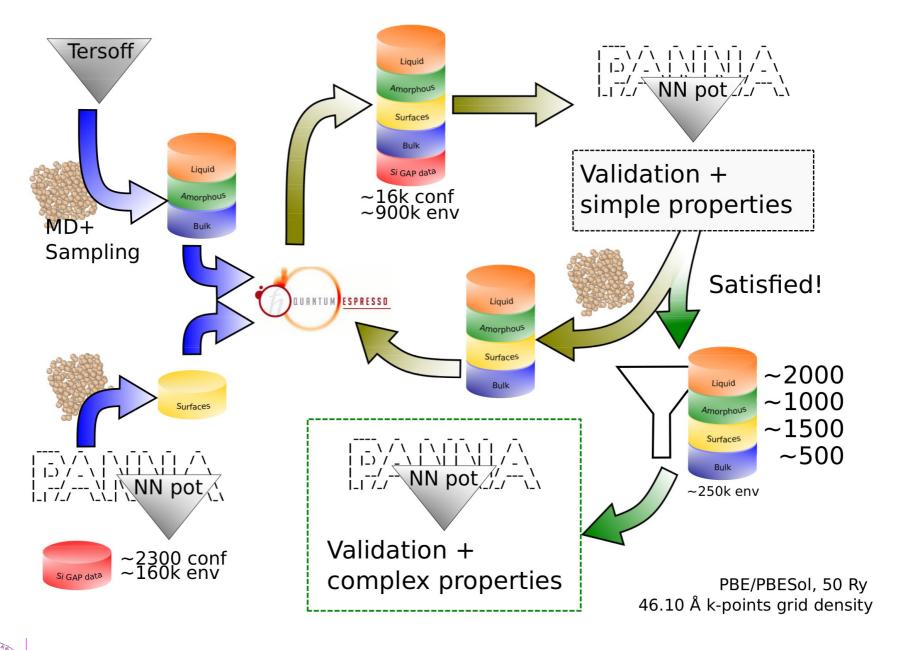
From a FFNN to a potential



The fitting phase

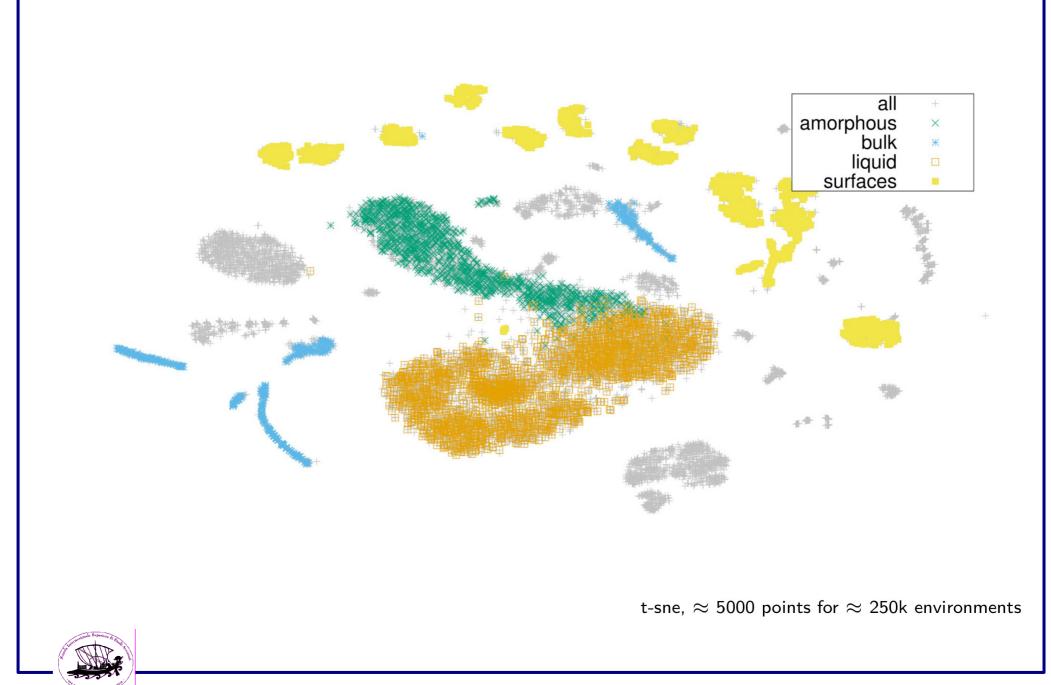


Work workflow

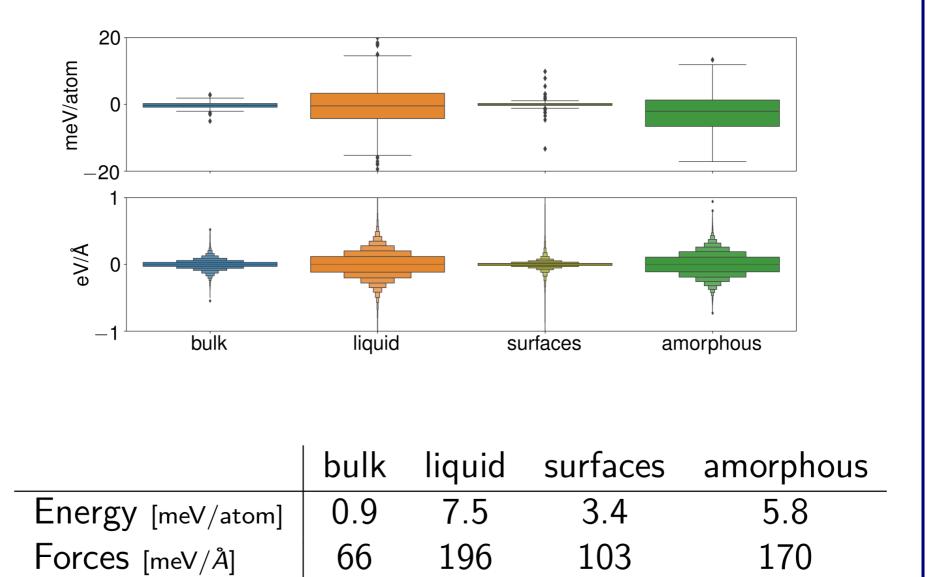


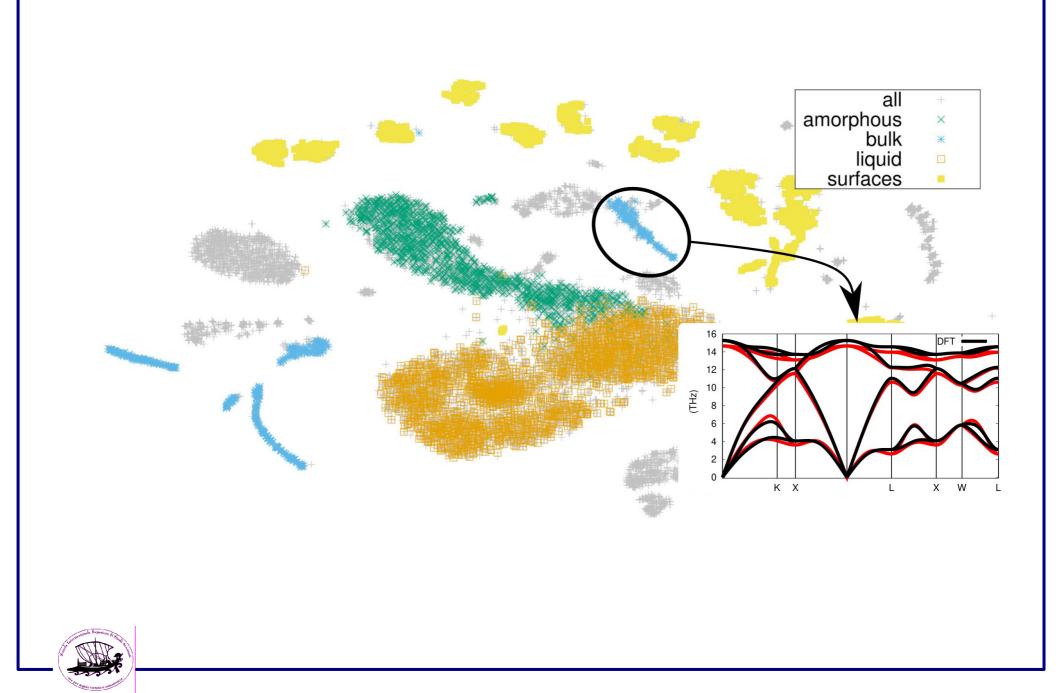
Shaidu et al. 2021; Artrith and Urban 2016; Bartók et al. 2018

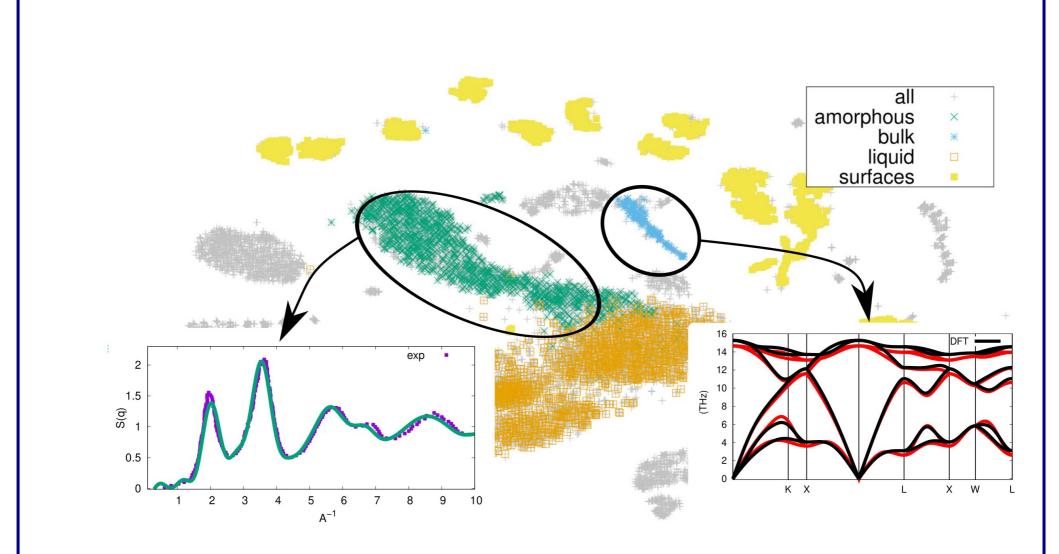
Dataset and validation

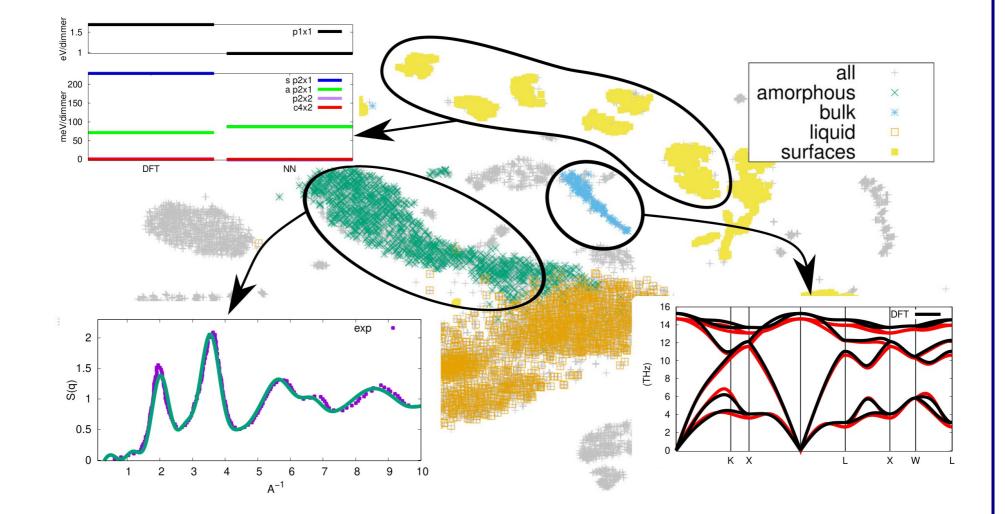


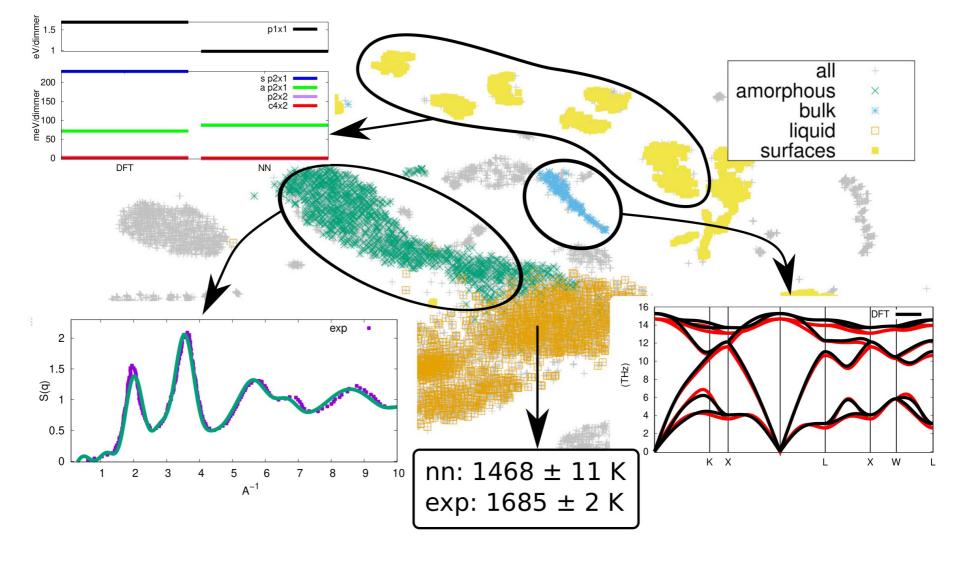
Validation on the dataset





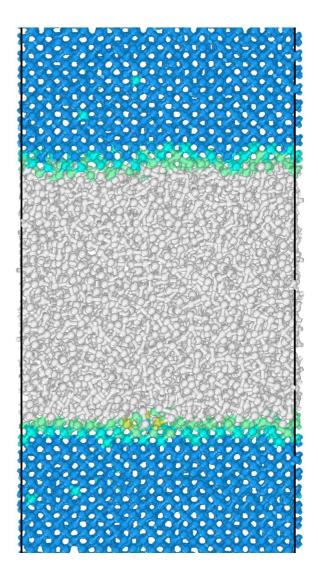




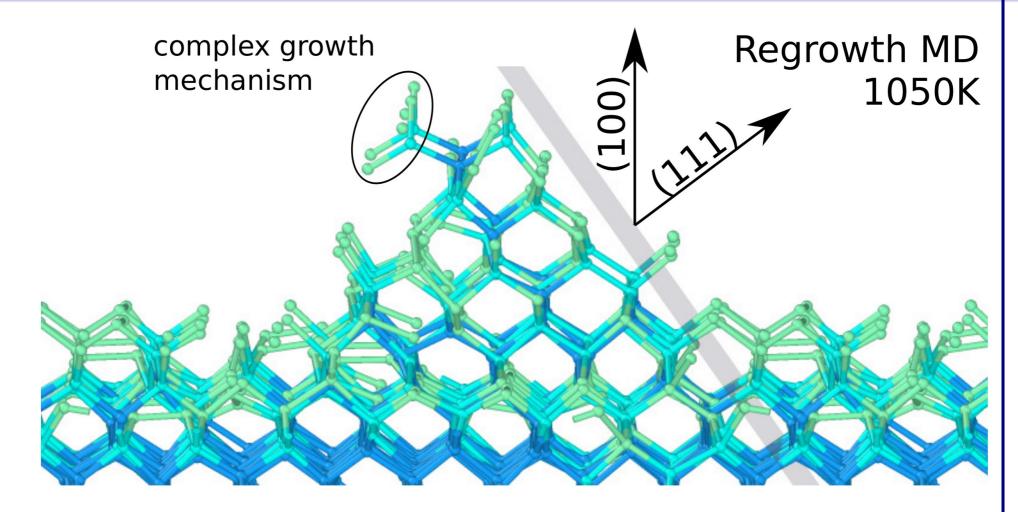


Melting temperature

NN pbe	$1468 \pm 11 { m K}$
DFT pbe	$1540\pm50{ m K}$
NN PBESol	$1194\pm28 { m K}$
GAP PBESol	$1213\pm21 { m K}$
Experiments	$1685\pm 2 { m K}$

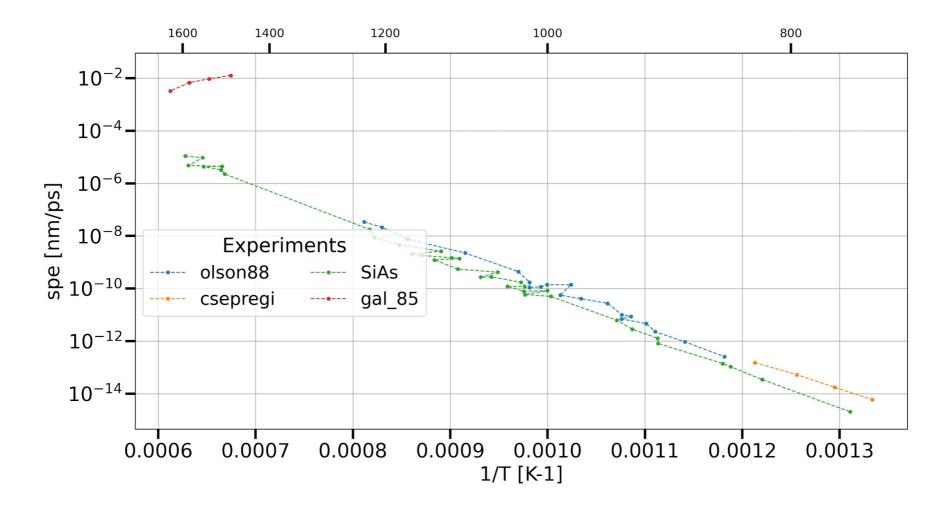


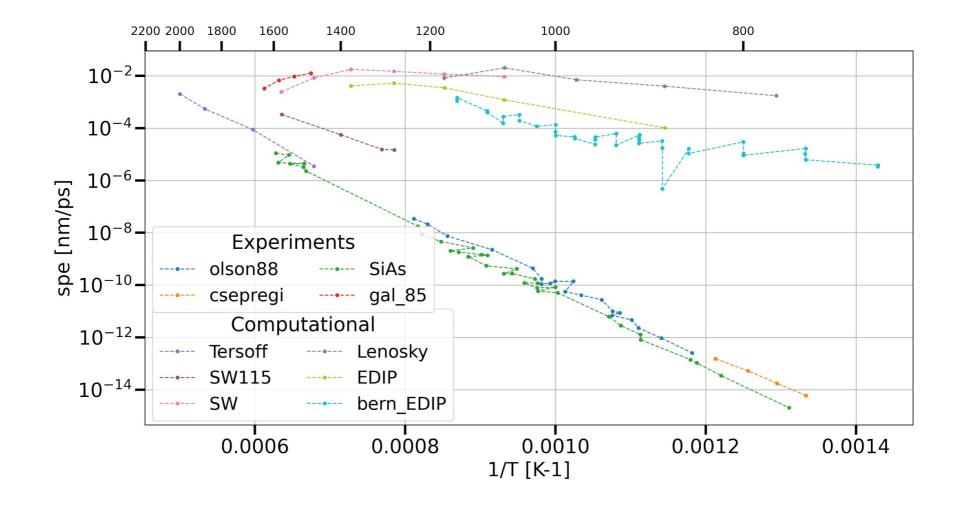
Yoo, Xantheas, and Zeng 2009; Jinnouchi, Karsai, and Kresse 2019

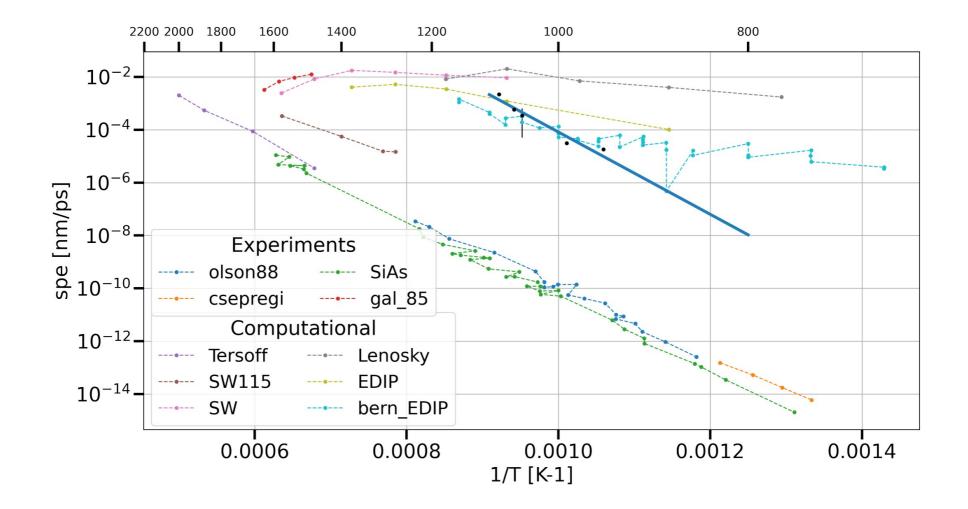


Thermally activated process:

$$v = v_0 exp(-\frac{\Delta E}{k_b T})$$







panna: 3.15 eV, experiments¹: 2.73 eV

Hson and Roth 1988.

Conclusion and outlook

- NN potentials are a valid way to model physical phenomena at the atomistic level
- As a byproduct, PBE-sol xc-functional is not suitable to study thermal related phenomena in silicon
- We are obtaining a correct energy barrier for SPE with pure ab-initio data.
- Improve the amorphous quality
- Isolate the main events for SPE
- Develop a better KMC model.

Franco Pellegrini

Stefano de Gironcoli