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Short bio

● Studied physics at TU Vienna
● PhD in nuclear data evaluation 2015
● Postdoc at CEA Saclay (2015-2018) and 

Uppsala University (2018-2019)
● Since 2020 nuclear physicist at Nuclear 

Data Section of the IAEA dealing with 
nuclear data library projects, method 
and code development
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Challenge #1: Mars rover

A self-driving vehicle should follow a predefined path on Mars  

Assumptions: 
Vehicle approximately aware of initial position and knows 
approximately speed and direction of movement at any 
point in time afterwards.

Task:
Determine current position by x0 = xold + v*Δt and adjust 
speed and direction to stay on desired trajectory

Problem:
Uncertainty about position puts the rover at risk to fall into 
a deep crater and get damaged

ghost car
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Truth-Estimate divergence

Link to movie

http://www.nucleardata.com/storage/presentations/PHENIICS_fest_2017/movies/kalman_robot_error_increase.mp4


5

Make use of GPS 

Link to movie

http://www.nucleardata.com/storage/presentations/PHENIICS_fest_2017/movies/kalman_robot_gps.mp4
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Challenge #2: Face reconstruction

Taken from the A&T face dataset
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Probabilities of various nuclear interactions 
involving the atomic nuclei, e.g., cross sections.

Relevant for:

● Reactor physics
● Radiation dosimetry
● Radiation protection
● Radioactive waste management
● Astrophysics
● Nuclear medicine
● Fusion research
● ...

Nuclear data

n

elastic

non-elastic

Target isotope
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Challenge #3: Nuclear data evaluation
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Two formulas for (at least) three 
applications
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Outline

Why those equations? Where do they come from?

Application of these formulas to different inference problems

On the way, we will encounter two data science methods
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Jaynes Robot

Hypotheses
H1: It rained
H2: It did not rain

Observations
O1: The ground is wet
O2: The ground is dry

Which hypothesis is true?
Edwin Thompson Jaynes

1922-1998
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Consistency with Aristotelian logic

Hypothesis

Observation

True

True
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Consistency with common sense

Hypothesis

Observation

True

More 
plausible
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Desiderata

(I) Degrees of Plausibility are represented by real numbers

(II) Qualitative Correspondence with common sense

(IIIa) If a conclusion can be reasoned out in more than one way, then 
every possible way must lead to the same result.

(from E.T. Jaynes, Probability Theory: The Logic of Science)

Richard Threlkeld Cox
1898-1991
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Desiderata / Cox theorem

(I) Degrees of Plausibility are represented by real numbers

(II) Qualitative Correspondence with common sense

(IIIa) If a conclusion can be reasoned out in more than one way, then 
every possible way must lead to the same result.

(from E.T. Jaynes, Probability Theory: The Logic of Science)

Richard Threlkeld Cox
1898-1991

Computation rules of probability theory follow

e.g., product rule
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The statistical split

Ronald Fisher

Egon Pearson

*) MFO - Mathematisches Forschungsinstitut Oberwolfach
https://opc.mfo.de/detail?photo_id=3044
CC-BY-SA 2.0 de

Jerzy Neyman *
Pierre-Simon Laplace

Thomas Bayes

Frequentist statistics Bayesian statistics

https://opc.mfo.de/detail?photo_id=3044
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Bayesian update formula

H hypothesis (e.g., “It rained”)
O observation (e.g., “Floor wet”)

P(H) probability of hypothesis to be true

P(O|H) probability to make observation O 
given hypothesis H is true

P(H|O) probability of hypothesis H
given we observed O

Thomas Bayes
1701-1761 Pierre Simon Laplace

1749-1827
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Multivariate normal distribution

x
y
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Covariance matrix

A covariance matrix captures linear relationships and uncertainties

Variance / uncertainty squared covariance
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Putting everything together
(at the example of linear regression)
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Putting everything together
(prior knowledge “P(H)”)
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Putting everything together
(likelihood “P(O|H)”)
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Putting everything together
(likelihood “P(O|H)”)

Counting statistics
→ Poisson distribution
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Putting everything together
(likelihood “P(O|H)”)
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Generalized Least Squares (GLS)
in a nutshell

Prior

Likelihood

Bayesian update

Posterior

“GLS formulas”
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And the result?
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Important insight about models

“All models are wrong but some are useful”

- George E. P. Box

Ice cream or pizza?

Reality

Image credit:
DavidMCEddy at en.wikipedia

CC BY-SA 3.0

https://creativecommons.org/licenses/by-sa/3.0/


28

How to deal with a deficient model (or 
to come up with a good one)?

But what if it is too difficult to find a good analytic function?
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Surrogate approach

E1 E2 E3 ...

Assumptions:
● Access to a good physics model
● Ability to perform hundreds to thousands of model 

calculations using different parameter values in 
good time

● Each model calculation yields predictions on a 
dense mesh and we can use linear interpolation 
between mesh points
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Surrogate approach
basic idea

aV

v1

is linked to 

replaced by

ϭ1
ϭ2
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Surrogate approach
construction of Msur

1) draw ensemble                                 from prior distribution

2) use nuclear model to calculate 

3) estimate multivariate normal distribution in observation space

Generalized Least Squares formulas
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Application to nuclear data evaluation
face reconstruction

We have a sample of model predictions faces
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Representation of faces
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All the matrices in their glory details

Observation

Improved estimate

Prior belief
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Example result

Observation (5%) Prediction Original
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Ok, let’s do also nuclear data 
evaluation with this approach

Here is the sample of faces 
model predictions

(measured xs  = intensities of available pixels)
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But what if...

E1 E2 E3 ...

… we don’t have a good physics model nor a comprehensive database

… we don’t know a good analytic function to be used as model
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Idea: Use a function to construct 
covariance matrices

X1 X2 X3 ...
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Covariance function

Specify a function that yields the covariance 
between function values f(x1) and f(x2) for any 
possible pair x1 and x2. This function is called a 
covariance function.

Specify another function μ(x) that yields the 
center value of the process at location x. This 
function is called a mean function.
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Different covariance functions and the 
prior knowledge they induce

Play video

videos/gp_prior_animation.mp4
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Gaussian process regression

Powerful concept 
Directly parametrize covariance matrix and 
work implicitly with an infinite number of 
parameters/basis functions! 

Sample from prior (δ=λ=1) Posterior uncertainty
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Computational mesh and 
experimental mesh

Introduce computational mesh U and experimental mesh V
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A few covariance matrices
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Applying the GLS formulas

Make the following assignments:

Use GLS formulas:
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GPs constrained with observations

The posterior covariance matrix encodes more than just uncertainties!
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GPs constrained with observations

Play video

videos/gp_posterior_animation.mp4
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Comparison to neural networks

GP processes artificial neural networks

… are methods for classification and regression
… are universal function approximators 

…  scale better to large data sets
…  are able to capture non-local features
…  are difficult to interpret

… are statistical methods from the ground up (uncertainties)
… facilitate the incorporation of prior assumptions

Both approaches … 

Neural networks … 

GP processes … 

… interface well with existing nuclear data evaluation methods
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Summary

● Two formulas for inference for at least three applications (GLS)
● Presented an argument to motivate the use of Bayesian statistics
● Employed the multivariate normal distribution
● Generalized Least Squares method applied in different ways
● Finally, we talked about Gaussian process regression which can be 

regarded as special case of Bayesian GLS if we discretize the 
function (or vice-versa)
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Bonus: Mars rover

Task: An automated vehicle should follow a predefined path on Mars  

Hypothetical approach: 
a) Vehicle is aware of initial position and its speed and 
direction of movement at any point in time afterwards.
b) Determine current position by x0 = xold + v*Δt
c) Adjust speed and direction to stay on desired trajectory 

Problems:
Neither initial position nor speed nor direction are 
perfectly known. This introduces uncertainty about the 
current position.

State and error propagation:
ghost car
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Update equations

Observation

Improved estimate

Prior belief
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Using a laser guidance system

Observation

Improved estimate

Prior belief



52

Using a laser guidance system

Link to movie

http://www.nucleardata.com/storage/presentations/PHENIICS_fest_2017/movies/kalman_robot_gps_laser.mp4
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References

● E. T. Jaynes “Probability Theory: The Logic of Science” (first 
chapters available online for free)

● C. E. Rasmussen & C. K. I Williams, “Gaussian processes for 
Machine Learning”, http://www.gaussianprocess.org/gpml/

● GitHub repository with the scripts and videos of this presentation: 
https://github.com/gschnabel/compnuc-workshop-2022

http://www.gaussianprocess.org/gpml/
https://github.com/gschnabel/compnuc-workshop-2022
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