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About Me

® Joined MIT in 2008
® Professor and Associate Department Head of Nuclear Science and Engineering

® Founded the Computational Reactor Physics Group
> Major highlights:

= OpenMC, an open source Monte Carlo code (lead developer Paul Romano)
= OpenMOC, an open source Method of Characteristic transport code
= BEAVRS benchmark, full core PWR with first 2 cycles of flux core mapping data

»
$O0penMC «& CRPG (( openmoc

<
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Our goal

® One of our primary goals has been the
development of high-fidelity neutron
transport methods for full core nuclear
reactor simulations

> Leverage high performance
computing

> Improve data representation

» Reduce memory footprint

> Develop novel algorithms for
improved efficiency

Many of the roadblocks and bottlenecks identified for improving

performance were tied to nuclear data
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Outline

® Part I: Nuclear data for high-fidelity Monte Carlo simulations
> Nuclear Data Requirements

> Nuclear Data Options

> Limitations and Opportunities

® Part II: Generating high-fidelity nuclear data for deterministic calculations

> Transport cross-section
> Equivalence Factors

> Limitations and Opportunities
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Assumptions

®* When preparing this talk, I had to assume some level of knowledge, I thus
assumed that most of you knew something about

> Nuclear cross-sections

> Neutron slowing down

> Criticality

» Multigroup cross-sections
> Transport equation

> Diffusion equation
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Part I: Nuclear data for high-fidelity Monte Carlo
simulations
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The Big Picture
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Oak Ridge National Laboratory, CASL News Release, 2014.
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Current state-of-the-art

* Current methodologies rely on many-levels of approximation that have been extensively
validated against experiments and operating nuclear fleet

> Currently licensed methods are highly accurate for the current fleet of reactors

» Most experiments were performed in the 60’s and 70’s

* New reactors promise much higher levels of heterogeneities.
* Experimental facilities in nuclear are increasingly costly and require very long lead times.

High-fidelity simulations are necessary to reduce the need for costly experiments for
future nuclear reactor technologies
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Why do we need high-fidelity Monte Carlo?

®* Monte Carlo methods “faithfully” track neutrons
through their lifetime

> High-fidelity representation of the nuclear data
> High-fidelity representation of the geometry

> High-fidelity representation of the fission and
scattering source distribution
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Multiphysics applications MC EoErsEes TH

neutronics

® High-fidelity simulations beyond benchmarking

require at the very least thermohydraulic
feedback

» Example of 3D 1/4 PWR between OpenMC
and subchannel

> Power distribution shifts radially and axially Harper. PhD-thesis 2020‘\/

)N )N
based on temperature feedback E(T. ) % T T o)+ AT = Tut) = 50— )

Pin average linear heat rate [kW /m]

Subchannel outlet subcooling [K] q [RW / m]

- 30 H «—— 1°* MC generation
7 fully-converged solution

20 /‘

converged surrogate solu-
tion using 1% MC generation
tallies
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T
T
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Data Requirements (LWR Example)

® Our goal 1s to predict the power 1n every single fuel pellet as a function of time
> PWR has ~20,000,000 fuel pellets
> Every pellet has a different average temperature
> Every pellet has a unique temperature profile

> Fuel transmutes over its lifetime (each pellet resides ~5 years in the core)

= We must track ~6 different reactions that can occur in the fuel.
= We must follow ~300 nuclides being consumed and produced in the fuel.

Each event requires accessing 100°s of GBs of nuclear data!
Each time step requires ~3-5TB of data to be stored!

Detailed knowledge enables better fuel utilization, improves
understanding of safety margins that can lead to a reduction of
conservatism and improves predictability of the system.
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Current status — Nuclear Data in MC

® Most Monte Carlo codes rely on pre-

processed data stored in large tables to T T T o ey
Energy Resonance Resonance :
Cap ture Region Region Region Regieh

> Energy dependence
> Angular dependence
> Temperature

Cross Section

> Probabilistic nature of the URR TR ra Wiy ol W
> Energy-angle correlation of the thermal
range ’ ~eV ~keV ~MeV
® These data structures can become quite Neutron Energy

prohibitive for multi-physics calculations
> On the order of 1GB per temperature point

Our approach to bring the physics closer to the simulation and reduce the

reliance on massive random access table lookups.
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Temperature dependence of Resolved Resonance Range

® Monte Carlo simulations are commonly used as reference calculations at fixed
temperatures

® Cross sections are pre-generated at fixed temperatures using the BROADR
(SIGMAL algorithm) module of NJOY

® Nuclear data is commonly represented (in the resonance range) using models
representative of the R-matrix theory (SLBW, MLBW, RM, ...)

> Requires only a few parameters per resonance (E,,[', ', I'¢...)

> However, SIGMAL requires a linearization of the data to perform the
convolution integral

vo(v,T) = /dV|v — V|ao(|v — V|)P(V.T)

I
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Nuclear Data Reconstruction

® Every 1sotope has its own energy grid for each temperature
> Requires a binary search over 1000’s — 100,000’s of points

E E
Isotope 2 E, E, ii—bE:,‘ii—bE‘l Bulk Memory | Many GBs, 100+ cycle latency
Total O (E;) |0 (Ey) | 0. (E3) jo. (Ey) .. L3 Cache 12 MB, ~20 cycle latency
Capture o,(E;) |o,(E;) Joy (E3) \oy (E,) .. L2 Cache 256 kB, ~10 cycle latency
Scattering o, (E;) |o,(E;) Yo, (E;) Yo, (E,) .. T Cacho 64 kB, 4 cycle latency
® Simple algorithmic fixes
» Unionized grid over all temperatures and 1sotopes .

= Global or local (cell-based)
= Serpent has an option for a global unionized grid
> Hash table to accelerate search

= MCNP6 and OpenMC use a hash table

The further you reach for data, the
slower your code becomes!
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Options in the Resolved Resonance Range

* SIGMALI

> Linearize data and solve Solbrig kernel analytically over an

Doppler broadening interpolation performance on 2%¥U

energy band 10t AN —_ k‘ernel rec.

== lin-lin
- log-log 1
- curve-fit

> Some are exploring off-loading this operation to GPU 00

101}

® Stochastic Mixing

> Randomly sample between bounding temperatures to mimic & = |

interpolation 103 |

> Requires temperature spacings on the order of 10-50K for 10+

Maximum L, interpolation relative error

good accuracy

105 L N
® Kernel Reconstruction 08—
. . Number of reference temperatures points N
> Reconstruct the Solbrig kernel effect using ~10 temperatures Ducru et al. JCP 2017

from which to randomly sample. Weights are determined
analytically through an error minimization process.
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Options in the Resolved Resonance Range

° G -H 1t drat h ’ -
auss-Hermite Quadrature — / dzeZf(2) ~ S wif (z)
J —no k=1

> Replace convolution integral by a Gauss-Hermite quadrature

* Polynomial fitting (¢.g. MCNP) — o (I.E,) ~ Z\: g +§:b9 T
=1

: i /2
> High order fit across many temperatures i=1 T

® Target Motion Sampling (e.g. SERPENT)

N M = = =hajorant
» Sample target velocity at collision site and apply rejection sampling ™| ™~ —Rel
if ) — Coolant
* Windowed Multipole (e.g. OpenMC) g we — Modeator
_ﬁ — L II'I_"_I
» Transform the resonance parameters to an equivalent representation ? |
in complex space and perform convolution integral analytically 5
= 1
> For performance benefits, broadening only performed over a =
surrounding energy window 0~

1g-u 10 - 1= 10— In-? 10!
Meutron energy (MaV)

Viitanen et al, NSE, 2012
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Multipole Formalism L —— 5

2505 Resonance Parameters ]
1 1 Energy at peak
* Developed by R.Hwang in 1987 wf] Reduﬁ;d Width for each reaction |

» Recognized that R-matrix formulation yielded a meromorphic

function on which a partial fraction decomposition could be
performed

> (E,I') real parameters are transformed into (p,7) complex
parameters

u 2 : : .Sﬁ [ p u ] 1000 Multipole Representation of the first resonances of U-238

"
500, =

> And the convolution 1ntegral yields

o(u,T)= CD% [U(u To)] =

R[u]

1}
10

O rj pj u -.'J[]”_.
" Polés and Residues

Josey and Ducru, JCP, 2016
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Windowed multipole method

* Key observation was made that Doppler broadening effects
are local

> Far away resonances contribute to the local cross section
but they exhibit little to no temperature dependence

* Windowed multipole method creates a system of inner

windows and pointers to minimize the number of Faddeeva
function evaluations

> Far away resonances are fitted to a low order polynomial

N

)= 3 Re[ =+ 3wy

JEW(E)

a, barn

Absorption XS, SLBW

10*

T
——300K
| —— 10000K|

102‘

100}

Te ture effe

are very local
10 : '
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Energy, eV

| Select Inner Windows |
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[ Add Oute;g Windows To Each Inr:er Window |

i
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< ~— - >
Curve Fit Explicit Resonance Evaluation' Curve Fit
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Josey and Ducru, JCP, 2016
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Faddeeva function

N
E) == Y R[iaW @)+ 3 an(VE)
jew(E) n>-2
Z = \/E—_\/gpf ¢ = IZ’—AZ— W(z) = e Zerfc(—iz)

i

1/2

-T2
1/4

1/8

® Recently developed a low order rational approximation
highly accurate in range of interest

» 8 order approximation

Re(z]

-f

abs

arg

Single Temperature

> No branching (i.e. no if-else statements) Particles/s Overhead

Multi Temperature
Particles/s Overhead

B - ACE 176329 - 1639681 -
w(z) = =k=0 ’ﬂ/ Original 158939  9.8% | 152927  6.8%
>0 biz 8th order 172303  2.2% | 163476  0.3%
Forget et al, PHYSOR 2022 1 Stochastic interpolation
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Options in the Resolved Resonance Range

* SIGMAI

o K IR ¢ . Stochastic Mixing / Interpolation ~100 ~1.5-2
crne cconstruction
Kernel Reconstruction ~10 ~2
® Gauss-Hermite Quadrature Gauss-Hermite Quadrature ~1 ~10-15
o T { Motion S I Target Motion Sampling ~2 ~4-10
argc ot1on dampliin
& ping Windowed Multipole ~0.5-0.7 ~1.0-1.1

* Windowed Multipole

> Additionally, WMP allows for arbitrary order
analytical derivatives in T (Ducru et al, 2022)

* Estimated by the lecturer (lower is better)
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Opportunities

* Exposing the codes to more physics facilitates the integration of UQ methodologies
with direct feedback on evaluations

» Can we embed nuclear data uncertainty in a Monte Carlo simulations?

» Can we provide valuable feedback to evaluators on where larger source of
uncertainties are coming from?

® Neural network representations of complex data structures

» Can advancements in data sciences provide a new path to data representation that can
be both accurate and efficient?

®* Modern computing architecture

> Can we leverage power of GPU architectures to enable large steady-state and
transient simulations?
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Normalizing Flows for Thermal Scattering

Base density Transformed density
.'fﬁ.-ﬁ'- | ,I"ﬂl'.
| \ y —— | |
o [\ fﬂx ( o (fﬂl (I‘)) = [
~— I."I \ I > S— . II. ',u.-* ]IIII
=¥ : \ . = NN \
/ \ Normalizing Flow ‘“-5‘: \/ \
,/' \ L
X https://siboehm.com/articles/19/normalizing-flow-network f (‘T)

® Normalizing flows map a simple distribution function through a series of
transformations to a complex distributions function

» Complex distributions 1s represented as a spline where the coefficients and
transformation are learned.

> The process can be inverted such that one can randomly sample a point from the
simple distribution and map this sample to the complex distribution.

This was applied to thermal neutron scattering!
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Results looked promising! Forget, Alhajri, ANE, 2022

Beta PDF H(H20) 293 K-E=1.0eV

® A normal distribution in beta and alpha was 012
mapped to the true thermal scattering kernel 010
using 3 flows (i.e. 3 transformations) u 008
G
= 0.06 ’F
[
Prior Distribution Distribution after 1 flow —_
0.40 N 08 M- 0.04 -
035 il [k o7 |
030 06 " I
% 025 % 05 0oz qq.b
Zo Z 04
e =0 0.00 ; ; ; : : : :
-35 =30 =25 =20 -1% =10 -5 0
010 02 -
0.05 | 01
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0.06 - Sﬁ
Distribution after 2 flows Distribution after 3 flows 0.05 z Sl
- 14 - "
10 . =
12 w004 - Sg
A o | -]
08 ¥ 10 E t
3 06 % os £ 0.03 -
5 5 g o6 0.02 4
04
. 02 0.01 4
T30 s o s 0o os 10 o0 15 -1o -05 00 05 10
Standardize Beta Standardize Beta 0.00 0 1;:' 2;:] 3;] 4;] 50 &0
(c) After 2 flows (d) After 3 flows Apha
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But performance was another story!

® The neural net to store the spline coefficients and
transformations was quite small.

> ~400 kB Table 1: Average Computational Cost per Sample
: Samples | Avg. Time per sample (ms)

®* However, every query to sample an outgoing 1 G
energy and angle requires accessing a large part 10 2.8
of the memory. o0 0.63
. 100 0.38
> Neural nets perform well when multiple 1000 0.12
samples are needed 10000 0.09

» Traditional MC algorithms follow neutrons
from birth to death in a sequential manner, thus
only 1 sample 1s needed at each collision

Still potential for GPU-based algorithms that prefer Event based MC!
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Summary - Stochastic

® High fidelity Monte Carlo simulations require large amounts of nuclear data,
especially 1n coupled simulations where temperature must be accounted for

> Many techniques exist that can accurately capture the temperature effects in the
resolved resonance range

®* Random access of nuclear data can hinder performance on modern computing
architectures

® By default, most general Monte Carlo simulations tools still neglect some
important temperature phenomena
> Resonance upscattering

> Thermal scattering
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Questions?
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