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About Me
• Joined MIT in 2008

• Professor and Associate Department Head of Nuclear Science and Engineering

• Founded the Computational Reactor Physics Group
 Major highlights:

 OpenMC, an open source Monte Carlo code (lead developer Paul Romano)
 OpenMOC, an open source Method of Characteristic transport code
 BEAVRS benchmark, full core PWR with first 2 cycles of flux core mapping data
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Our goal
• One of our primary goals has been the 

development of high-fidelity neutron 
transport methods for full core nuclear 
reactor simulations
 Leverage high performance 

computing
 Improve data representation
 Reduce memory footprint
 Develop novel algorithms for 

improved efficiency
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Many of the roadblocks and bottlenecks identified for improving 
performance were tied to nuclear data 



Outline

• Part I: Nuclear data for high-fidelity Monte Carlo simulations
 Nuclear Data Requirements
 Nuclear Data Options
 Limitations and Opportunities

• Part II: Generating high-fidelity nuclear data for deterministic calculations
 Transport cross-section
 Equivalence Factors
 Limitations and Opportunities
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Assumptions
• When preparing this talk, I had to assume some level of knowledge, I thus 

assumed that most of you knew something about
 Nuclear cross-sections
 Neutron slowing down
 Criticality
 Multigroup cross-sections
 Transport equation
 Diffusion equation
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Part I: Nuclear data for high-fidelity Monte Carlo 
simulations
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The Big Picture

Oak Ridge National Laboratory, CASL News Release, 2014.



Beyond LWRs

Microreactor

Pebble Bed Reactor

Molten Salt Reactor



Current state-of-the-art
• Current methodologies rely on many-levels of approximation that have been extensively 

validated against experiments and operating nuclear fleet
 Currently licensed methods are highly accurate for the current fleet of reactors
 Most experiments were performed in the 60’s and 70’s

• New reactors promise much higher levels of heterogeneities.
• Experimental facilities in nuclear are increasingly costly and require very long lead times.

High-fidelity simulations are necessary to reduce the need for costly experiments for 
future nuclear reactor technologies



Why do we need high-fidelity Monte Carlo?
• Monte Carlo methods “faithfully” track neutrons 

through their lifetime
 High-fidelity representation of the nuclear data
 High-fidelity representation of the geometry
 High-fidelity representation of the fission and 

scattering source distribution
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Nuclide sampling

Collision sampling

Path sampling

10 orders of magnitude in Energy

ATR Geometry in OpenMC



Multiphysics applications
• High-fidelity simulations beyond benchmarking 

require at the very least thermohydraulic 
feedback
 Example of 3D 1/4 PWR between OpenMC

and subchannel
 Power distribution shifts radially and axially 

based on temperature feedback
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Harper, PhD-thesis 2020



Data Requirements (LWR Example)
• Our goal is to predict the power in every single fuel pellet as a function of time

 PWR has ~20,000,000 fuel pellets

 Every pellet has a different average temperature

 Every pellet has a unique temperature profile

 Fuel transmutes over its lifetime (each pellet resides ~5 years in the core)
 We must track ~6 different reactions that can occur in the fuel.
 We must follow ~300 nuclides being consumed and produced in the fuel.

Each event requires accessing 100’s of GBs of nuclear data!
Each time step requires ~3-5TB of data to be stored!

Detailed knowledge enables better fuel utilization, improves 
understanding of safety margins that can lead to a reduction of 

conservatism and improves predictability of the system. 



Current status – Nuclear Data in MC
• Most Monte Carlo codes rely on pre-

processed data stored in large tables to 
capture
 Energy dependence
 Angular dependence
 Temperature
 Probabilistic nature of the URR
 Energy-angle correlation of the thermal 

range
• These data structures can become quite 

prohibitive for multi-physics calculations
 On the order of 1GB per temperature point
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Our approach to bring the physics closer to the simulation and reduce the 
reliance on massive random access table lookups.



Temperature dependence of Resolved Resonance Range
• Monte Carlo simulations are commonly used as reference calculations at fixed 

temperatures

• Cross sections are pre-generated at fixed temperatures using the BROADR 
(SIGMA1 algorithm) module of NJOY

• Nuclear data is commonly represented (in the resonance range) using models 
representative of the R-matrix theory (SLBW, MLBW, RM, …)
 Requires only a few parameters per resonance (E0,Γ, Γn, Γf …)
 However, SIGMA1 requires a linearization of the data to perform the 

convolution integral
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Nuclear Data Reconstruction
• Every isotope has its own energy grid for each temperature

 Requires a binary search over 1000’s – 100,000’s of points

• Simple algorithmic fixes
 Unionized grid over all temperatures and isotopes

 Global or local (cell-based)
 Serpent has an option for a global unionized grid

 Hash table to accelerate search
 MCNP6 and OpenMC use a hash table

Total σt(E1) σt(E2) σt(E3) σt(E4) …

Capture σγ(E1) σγ(E2) σγ(E3) σγ(E4) …

Scattering σn(E1) σn(E2) σn(E3) σn(E4) …

Isotope 1 E1 E2 E3 E4 …

E

Total σt(E1) σt(E2) σt(E3) σt(E4) …

Capture σγ(E1) σγ(E2) σγ(E3) σγ(E4) …

Scattering σn(E1) σn(E2) σn(E3) σn(E4) …

Isotope 2 E1 E2 E3 E4 …

E

The further you reach for data, the 
slower your code becomes!



Options in the Resolved Resonance Range
• SIGMA1

 Linearize data and solve Solbrig kernel analytically over an 
energy band

 Some are exploring off-loading this operation to GPU

• Stochastic Mixing
 Randomly sample between bounding temperatures to mimic 

interpolation

 Requires temperature spacings on the order of 10-50K for 
good accuracy

• Kernel Reconstruction
 Reconstruct the Solbrig kernel effect using ~10 temperatures 

from which to randomly sample.  Weights are determined 
analytically through an error minimization process.
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Ducru et al, JCP, 2017



Options in the Resolved Resonance Range
• Gauss-Hermite Quadrature

 Replace convolution integral by a Gauss-Hermite quadrature

• Polynomial fitting (e.g. MCNP)
 High order fit across many temperatures

• Target Motion Sampling (e.g. SERPENT)
 Sample target velocity at collision site and apply rejection sampling

• Windowed Multipole (e.g. OpenMC)
 Transform the resonance parameters to an equivalent representation 

in complex space and perform convolution integral analytically

 For performance benefits, broadening only performed over a 
surrounding energy window
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Viitanen et al, NSE, 2012



Multipole Formalism
• Developed by R.Hwang in 1987

 Recognized that R-matrix formulation yielded a meromorphic 
function on which a partial fraction decomposition could be 
performed

 (E,Γ) real parameters are transformed into (p,r) complex 
parameters

 And the convolution integral yields
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Resonance Parameters
• Energy at peak
• Reduced Width for each reaction

Γ1

Γ2

Γ3
Γ4

E1 E2 E3 E4

Poles and Residues

Josey and Ducru, JCP, 2016



Windowed multipole method
• Key observation was made that Doppler broadening effects 

are local
 Far away resonances contribute to the local cross section 

but they exhibit little to no temperature dependence

• Windowed multipole method creates a system of inner 
windows and pointers to minimize the number of Faddeeva
function evaluations
 Far away resonances are fitted to a low order polynomial 
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Temperature effects 
are very local

Josey and Ducru, JCP, 2016



Faddeeva function

• Recently developed a low order rational approximation 
highly accurate in range of interest
 8th order approximation
 No branching (i.e. no if-else statements)
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Forget et al, PHYSOR 2022



Options in the Resolved Resonance Range

• SIGMA1

• Stochastic Mixing

• Kernel Reconstruction

• Gauss-Hermite Quadrature

• Polynomial fitting

• Target Motion Sampling

• Windowed Multipole
 Additionally, WMP allows for arbitrary order 

analytical derivatives in T (Ducru et al, 2022)
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Method Memory* Efficiency*
Single Temp. ACE 1 1
Stochastic Mixing / Interpolation ~100 ~1.5-2
Kernel Reconstruction ~10 ~2
Gauss-Hermite Quadrature ~1 ~10-15
Polynomial Fitting ~20 ~1.1-1.3
Target Motion Sampling ~2 ~4-10
Windowed Multipole ~0.5-0.7 ~1.0-1.1

* Estimated by the lecturer (lower is better)



Opportunities
• Exposing the codes to more physics facilitates the integration of UQ methodologies 

with direct feedback on evaluations
 Can we embed nuclear data uncertainty in a Monte Carlo simulations?
 Can we provide valuable feedback to evaluators on where larger source of 

uncertainties are coming from?

• Neural network representations of complex data structures
 Can advancements in data sciences provide a new path to data representation that can 

be both accurate and efficient?

• Modern computing architecture
 Can we leverage power of GPU architectures to enable large steady-state and 

transient simulations?
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Normalizing Flows for Thermal Scattering

• Normalizing flows map a simple distribution function through a series of 
transformations to a complex distributions function
 Complex distributions is represented as a spline where the coefficients and 

transformation are learned.
 The process can be inverted such that one can randomly sample a point from the 

simple distribution and map this sample to the complex distribution.
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https://siboehm.com/articles/19/normalizing-flow-network

This was applied to thermal neutron scattering!



Results looked promising!
• A normal distribution in beta and alpha was 

mapped to the true thermal scattering kernel 
using 3 flows (i.e. 3 transformations)
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Forget, Alhajri, ANE, 2022



But performance was another story!
• The neural net to store the spline coefficients and 

transformations was quite small.
 ~400 kB

• However, every query to sample an outgoing 
energy and angle requires accessing a large part 
of the memory.
 Neural nets perform well when multiple 

samples are needed
 Traditional MC algorithms follow neutrons 

from birth to death in a sequential manner, thus 
only 1 sample is needed at each collision
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Still potential for GPU-based algorithms that prefer Event based MC!



Summary - Stochastic
• High fidelity Monte Carlo simulations require large amounts of nuclear data, 

especially in coupled simulations where temperature must be accounted for
 Many techniques exist that can accurately capture the temperature effects in the 

resolved resonance range

• Random access of nuclear data can hinder performance on modern computing 
architectures

• By default, most general Monte Carlo simulations tools still neglect some 
important temperature phenomena
 Resonance upscattering
 Thermal scattering
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Questions?
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