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teach statistical methods in 40’
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Statistics?
Descriptive statistics: characterize the data
Statistical inference: draw conclusions from the data

Point estimation, regression, correlation, parameter fitting, 
hypothesis testing, reliability testing, signal processing, 
Monte Carlo calculations…
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Basic concepts, methods and tools 
to compare data distributions

Practical examples and exercises
Suggestions for further reading

Validate simulation/calculations w.r.t. experiment
Evaluate compatibility between experimental data sets
etc.

often complemented 
by graphics
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qualitative visual appraisal of figures 
indicators (%) devoid of statistical relevance

Satisfactory agreement

Good agreement
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A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at
the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1

collected at
√

s = 7 TeV in 2011 and 5.8 fb−1 at
√

s = 8 TeV in 2012. Individual searches in the channels
H → Z Z (∗) → 4", H → γ γ and H → W W (∗) → eνµν in the 8 TeV data are combined with previously
published results of searches for H → Z Z (∗) , W W (∗), bb̄ and τ+τ− in the 7 TeV data and results from
improved analyses of the H → Z Z (∗) → 4" and H → γ γ channels in the 7 TeV data. Clear evidence for
the production of a neutral boson with a measured mass of 126.0±0.4 (stat)±0.4 (sys) GeV is presented.
This observation, which has a significance of 5.9 standard deviations, corresponding to a background
fluctuation probability of 1.7 × 10−9, is compatible with the production and decay of the Standard Model
Higgs boson.
 2012 CERN. Published by Elsevier B.V.

1. Introduction

The Standard Model (SM) of particle physics [1–4] has been
tested by many experiments over the last four decades and has
been shown to successfully describe high energy particle interac-
tions. However, the mechanism that breaks electroweak symmetry
in the SM has not been verified experimentally. This mechanism
[5–10], which gives mass to massive elementary particles, implies
the existence of a scalar particle, the SM Higgs boson. The search
for the Higgs boson, the only elementary particle in the SM that
has not yet been observed, is one of the highlights of the Large
Hadron Collider [11] (LHC) physics programme.

Indirect limits on the SM Higgs boson mass of mH < 158 GeV
at 95% confidence level (CL) have been set using global fits to pre-
cision electroweak results [12]. Direct searches at LEP [13], the
Tevatron [14–16] and the LHC [17,18] have previously excluded, at
95% CL, a SM Higgs boson with mass below 600 GeV, apart from
some mass regions between 116 GeV and 127 GeV.

Both the ATLAS and CMS Collaborations reported excesses of
events in their 2011 datasets of proton–proton (pp) collisions at
centre-of-mass energy

√
s = 7 TeV at the LHC, which were compat-

ible with SM Higgs boson production and decay in the mass region
124–126 GeV, with significances of 2.9 and 3.1 standard deviations
(σ ), respectively [17,18]. The CDF and DØ experiments at the Teva-
tron have also recently reported a broad excess in the mass region

! © CERN for the benefit of the ATLAS Collaboration.
! E-mail address: atlas.publications@cern.ch.

120–135 GeV; using the existing LHC constraints, the observed lo-
cal significances for mH = 125 GeV are 2.7σ for CDF [14], 1.1σ for
DØ [15] and 2.8σ for their combination [16].

The previous ATLAS searches in 4.6–4.8 fb−1 of data at
√

s =
7 TeV are combined here with new searches for H → Z Z (∗) → 4",1

H → γ γ and H → W W (∗) → eνµν in the 5.8–5.9 fb−1 of pp col-
lision data taken at

√
s = 8 TeV between April and June 2012.

The data were recorded with instantaneous luminosities up to
6.8 × 1033 cm−2 s−1; they are therefore affected by multiple pp
collisions occurring in the same or neighbouring bunch crossings
(pile-up). In the 7 TeV data, the average number of interactions per
bunch crossing was approximately 10; the average increased to ap-
proximately 20 in the 8 TeV data. The reconstruction, identification
and isolation criteria used for electrons and photons in the 8 TeV
data are improved, making the H → Z Z (∗) → 4" and H → γ γ
searches more robust against the increased pile-up. These analy-
ses were re-optimised with simulation and frozen before looking
at the 8 TeV data.

In the H → W W (∗) → "ν"ν channel, the increased pile-up de-
teriorates the event missing transverse momentum, Emiss

T , resolu-
tion, which results in significantly larger Drell–Yan background in
the same-flavour final states. Since the eµ channel provides most
of the sensitivity of the search, only this final state is used in
the analysis of the 8 TeV data. The kinematic region in which a
SM Higgs boson with a mass between 110 GeV and 140 GeV is

1 The symbol " stands for electron or muon.

0370-2693/  2012 CERN. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2012.08.020

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

Physics Letters B 716 (2012) 30–61

Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Observation of a new boson at a mass of 125 GeV with the CMS experiment at
the LHC !

.CMS Collaboration !

CERN, Switzerland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many
contributions to the achievement of this observation.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2012
Received in revised form 9 August 2012
Accepted 11 August 2012
Available online 18 August 2012
Editor: W.-D. Schlatter

Keywords:
CMS
Physics
Higgs

Results are presented from searches for the standard model Higgs boson in proton–proton collisions
at

√
s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples

corresponding to integrated luminosities of up to 5.1 fb−1 at 7 TeV and 5.3 fb−1 at 8 TeV. The search
is performed in five decay modes: γ γ , ZZ, W+W−, τ+τ−, and bb. An excess of events is observed above
the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV,
signalling the production of a new particle. The expected significance for a standard model Higgs boson
of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the
best mass resolution, γ γ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4(stat.)± 0.5(syst.) GeV.
The decay to two photons indicates that the new particle is a boson with spin different from one.

 2012 CERN. Published by Elsevier B.V.

1. Introduction

The standard model (SM) of elementary particles provides a re-
markably accurate description of results from many accelerator and
non-accelerator based experiments. The SM comprises quarks and
leptons as the building blocks of matter, and describes their in-
teractions through the exchange of force carriers: the photon for
electromagnetic interactions, the W and Z bosons for weak inter-
actions, and the gluons for strong interactions. The electromagnetic
and weak interactions are unified in the electroweak theory. Al-
though the predictions of the SM have been extensively confirmed,
the question of how the W and Z gauge bosons acquire mass
whilst the photon remains massless is still open.

Nearly fifty years ago it was proposed [1–6] that spontaneous
symmetry breaking in gauge theories could be achieved through
the introduction of a scalar field. Applying this mechanism to the
electroweak theory [7–9] through a complex scalar doublet field
leads to the generation of the W and Z masses, and to the predic-
tion of the existence of the SM Higgs boson (H). The scalar field
also gives mass to the fundamental fermions through the Yukawa
interaction. The mass mH of the SM Higgs boson is not predicted
by theory. However, general considerations [10–13] suggest that

! © CERN for the benefit of the CMS Collaboration.
! E-mail address: cms-publication-committee-chair@cern.ch.

mH should be smaller than ∼1 TeV, while precision electroweak
measurements imply that mH < 152 GeV at 95% confidence level
(CL) [14]. Over the past twenty years, direct searches for the Higgs
boson have been carried out at the LEP collider, leading to a lower
bound of mH > 114.4 GeV at 95% CL [15], and at the Tevatron
proton–antiproton collider, excluding the mass range 162–166 GeV
at 95% CL [16] and detecting an excess of events, recently reported
in [17–19], in the range 120–135 GeV.

The discovery or exclusion of the SM Higgs boson is one of the
primary scientific goals of the Large Hadron Collider (LHC) [20].
Previous direct searches at the LHC were based on data from
proton–proton collisions corresponding to an integrated luminos-
ity of 5 fb−1 collected at a centre-of-mass energy

√
s = 7 TeV.

The CMS experiment excluded at 95% CL a range of masses from
127 to 600 GeV [21]. The ATLAS experiment excluded at 95%
CL the ranges 111.4–116.6, 119.4–122.1 and 129.2–541 GeV [22].
Within the remaining allowed mass region, an excess of events
near 125 GeV was reported by both experiments. In 2012 the
proton–proton centre-of-mass energy was increased to 8 TeV and
by the end of June an additional integrated luminosity of more
than 5 fb−1 had been recorded by each of these experiments,
thereby enhancing significantly the sensitivity of the search for the
Higgs boson.

This Letter reports the results of a search for the SM Higgs bo-
son using samples collected by the CMS experiment, comprising
data recorded at

√
s = 7 and 8 TeV. The search is performed in

0370-2693  2012 CERN. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2012.08.021

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

…unlike in fundamental physics literature 

Comparison of data distributions in the literature mainly rests on

The result is often expressed as the authors’ personal opinion
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Outline of the lecture
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Concepts

Refresher of basic statistical 
definitions
Hypothesis testing: concepts
Goodness-of-fit testing
Location-scale tests
Testing categorical data
Suggested reading

Practical

Overview of statistical software 
packages
Brief introduction to R
Application examples (demo)

If you install R on your PC/Mac, 
you can run the examples yourself

Maria Grazia Pia, INFN Genova



Hypothesis testing
Statistical hypothesis testing is the conceptual and 
mathematical framework that supports data comparison
It is a domain of inferential statistics
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Statistical 
hypothesis 

A claim or assertion about the 
probability function of one or more 

random variables

A statement about the populations 
from which one or more samples 

are drawn

or

e.g. its shape or parameter values
Maria Grazia Pia, INFN Genova



Random variable refresher
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Random 
variable

Rolling a die: since prior to a throw, its outcome can not be predicted with 
complete certainty, the number of observed dots is called a random variable

Sample 
space 

The collection of integer numbers between 1 and 6

Discrete
random variable

Can only take on a finite number of values
Each possible outcome xi of the experiment has a probability Pi: P(X = xi) = Pi
The sum of all Pi for all conceivable outcomes must be equal to one, ∑ Pi = 1 

Continuous
random variable

Can have a continuum of values within any finite interval 
P (x ≤ X ≤ x+dx) is the probability of getting a value in the interval [x, x+dx]

Probability 
density 
function 

f(x) dx = P (x ≤ X ≤ x+dx)for the continuous random variable X:The requirement that all probabilities should add up to one is now formulated by
∫

Ω
f(x) dx = 1, (2.4)

where the integration goes over all possible outcomes x defining the sample space Ω.

2.3 Calculus of probabilities

We shall now introduce some useful concepts and state some basic rules for
calculation of probabilities according to set theory.

2.3.1 Definitions

The concept of a set is used to denote a collection of objects with some common
properties. An object that belongs to a set A is said to be an element of A. If every
element of the set B is also an element of the set A we say that B is a subset of A.

Let A be an arbitrary set of elements in the sample space Ω. The complement
Ā is then defined as the set of all elements in Ω that do not belong to the set A.

The union A ∪ B of two sets A and B is defined as the set of elements that
belong to A or B, or both.

The intersection A ∩ B is defined as the set of elements that belong to both
sets A and B.

Two sets A and B are said to be exhaustive if any element of Ω belongs to the
union A ∪ B,

A ∪ B = Ω . (exhaustive sets) (2.5)

Two sets A and B are mutually exclusive if they have no elements in common,
that is

A ∩ B = 0. (exclusive sets) (2.6)

According to these definitions the set A and its, complement Ā are two exclu-
sive and exhaustive sets.

A convenient way of visualizing the concepts introduced above, and also of
illustrating the algebra of sets, is by means of Venn diagrams.

9

where the integration goes over all possible outcomes x
defining the sample space W

Maria Grazia Pia, INFN Genova



Null and alternative hypothesis
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The hypothesis under testNull hypothesis H0

Alternative hypothesis H1
The conclusion reached if the 

null hypothesis is rejected

A test of a statistical hypothesis is a rule that enables one 
to make a decision whether or not H0 should be rejected on 

the basis of the observed value of a test statistic

The conceptual framework of hypothesis testing is based on 
rejecting the null hypothesis

The null hypothesis is not “accepted”: it is either rejected or not rejected
Not rejected could mean that there is not sufficient evidence for rejecting the hypothesis 

The probability distribution of the test statistic when H0 holds is referred to as the null distribution of the test statistic

Maria Grazia Pia, INFN Genova
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Suppose, for instance, that we have measured the proper decay time of a sample of 
X0 hyperons and from these measurements estimated the X0 mean lifetime. 

Does this estimate agree with the prediction that the X0 lives twice as long as the X−?
In other words, do the observations disprove the validity of the physics model?

t0:  the mean lifetime of the X0 as implied by the model
t:   the mean lifetime indicated by our experiment

We want to test if t is equal to t0 within the experimental errors:

H0:   t = t0 is the null hypothesis
H1:   t ≠ t0 is the alternative hypothesis

Let

Maria Grazia Pia, INFN Genova



Simple and composite hypothesis

10

Simple if the statement completely specifies the population

Composite otherwise

Suppose that we have two hypotheses completely specified 
by two different values of a parameter q entering a p.d.f. f(x|q)

(x can be a directly observable quantity or a statistic)

H1: q = q1

H0: q = q0
Completely specified Simple hypothesis

H1: q > q1 Not completely specified Composite hypothesis

Maria Grazia Pia, INFN Genova



Statistic
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A function of one or more random variables that does 
not depend on any unknown parameter Statistic

The function itself is independent of the sample 
distribution, i.e. the function can be stated before 
realization of the data

Function 
of a 

sample

Statistic The function 
The value of the function on a given sample

A statistic is an observable random variable

Maria Grazia Pia, INFN Genova



Critical region
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Assuming the null hypothesis H0 to be true, we can find a 
region R in the sample space W for the observation x such that the 
probability that x belongs to R is equal to any preassigned numerical value

If the observed value xobs of the test statistic 
falls in R (i.e. xobs exceeds xc), we shall reject H0

implication is that if the observed value xobs falls in R (i.e. xobs exceeds xc in Fig. 14.1)
we shall reject H0, otherwise we shall accept it.

Figure 14.1: Illustration of critical region R (rejection region) and
acceptance region W − R for the test statistic x.

The preassigned probability ot that the observation x will belong to the region
R is called the significance, or the size of the test, and determines the significance level
at 100 α%.

From this definition there is obviously a probability α that the observed
value xobs will fall into R also when H0 is true. Therefore, in 100 α% of all deci-
sions H0 will be rejected when it should, in fact, have been accepted. The mistake we
do by rejecting H0 when it is true is called a Type I error, or an error of the first kind.
Since we want to commit such an error as rarely as possible a low numerical value
should be taken for α.

There is, however, another possible mistake which can occur, namely that
we accept H0 as true when it is, in fact, false. This is called a Type II error, or an
error of the second kind; the probability of its occurrence β depends on the alternative
hypothesis H1. With reference to the illustrations in Fig. 14.2 we can in an obvious

404The preassigned probability a that the observation x will belong to the 
region R is called the significance of the test

The region R is called the region of rejection 
or the critical region for H0

A result is “significant” if the probability that it could have arisen by chance from the null hypothesis is small

The significance level is defined as 100 a %
Maria Grazia Pia, INFN Genova



Errors
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notation state the above definitions as follows,

Prob(Type I error) = α =
∫

R

f(x|θ0) dx =

∞∫

xc

f(x|θ0) dx , (14.1)

Prob(Type II error) = β =
∫

W−R

f(x|θ1) dx =

xc∫

−∞

f(x|θ1) dx . (14.2)

Figure 14.2: Illustration of Type I error α and Type II error β.

The power of a test is defined as the probability of rejecting a hypothesis when
it is false. We have for the power of the test of the null hypothesis H0 against the

405

There is a probability a that the observed value xobs
will fall into R when H0 is true. 
Therefore, in 100α% of all decisions H0 will be 
rejected when it should not. 
The mistake we do by rejecting H0 when it is true is 
called a Type I error.
Another error can occur, that we do not reject H0 as 
true when it is false. This is called a Type II error. 
The probability of its occurrence b depends on the 
alternative hypothesis H1.

the probability of rejecting a hypothesis 
when it is false 

Power of a test 

The best test is one that 
makes both a and b as small 
as possible. 
Such a test can be found if –
and only if – the hypothesis 
and its alternative are simple. 

Rare in experimental 
physics!

Maria Grazia Pia, INFN Genova



Goodness-of-fit testing
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H1 is often left unspecified, and the power of the test not taken into account

sample values for a random variable x whose true 
probability function f (x), continuous or discrete, is not known 

A typical goodness-of-fit problem:

x1, x2, . . . , xn

f0(x) some particular specified distribution
H0 : f(x) = f0(x) hypothesis to be tested on the basis of the sample values 

We need a test statistic whose distribution, assuming H0 true, defines a 
critical region with probabilities a (rejection) and 1 − a (non-rejection) 
We may not formulate an alternative hypothesis H1, since H1 can be the 

ensemble of all conceivable hypotheses different from H0

a sum of terms, each involving the square of the deviation between observed and
predicted value in the different classes. From the construction of the test statistic this
test therefore has the defect that knowledge regarding the signs of the deviations in the
individual classes gets lost, and so does the order in which these deviations occur. The
χ2 test is, in other words, insensitive to the pattern of signs in the deviations. This
pattern evidently contains some useful information about the correspondence between
experiment and prediction, and should be possible to explore by a run test, which
appears to suggest itself as an attractive supplement to the χ2 test. In fact, since it
utilizes a limited amount of information in the observations, the run test is particularly
meaningful only when used in conjunction with a χ2 test on the same data.

Figure 14.10: Observed and hypothetical distributions, (a) comparable in shape
and location, (b) differing in location, (c) differing in shape.

For definiteness, consider the three situations sketched in Fig. 14.10. In (a)
the prediction from the hypothesis under test roughly follows the observations over the
variable range, resulting in a series of deviations between observed and hypothetical
values which alternate in sign and hence give a fairly large number of runs. If the
hypothetical distribution differs substantially from the observed in location, as in (b),
it is clear that there will be a sequence of positive signs followed by a sequence of
negative signs. Similarly, if the distributions differ mainly in shape, as in (c), the signs
will occur in sequence of negative, positive, negative. Thus in both situations (b) and
(c) the signs tend to being equal over large parts of the variable range, in contrast
to the more random pattern expected if the two distributions had greater similarity.

474

a) comparable in shape 
and location 

b) differing in location
c) differing in shape

Maria Grazia Pia, INFN Genova



p-value
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Express goodness-of-fit by giving the p-value for H0

It is the probability that, if the null hypothesis is true, 
the test statistic assumes a value at least as extreme 
as the one observed

It is NOT the probability of the hypothesis being true, given the data 

If the null hypothesis is true, 
the p-value is flat between 0 and 1

pAB = 0.992

Comparing distribution A and distribution B, distribution A and distribution C, a = 0.01

Common error

pAC = 0.357

does not authorize one to conclude that the 
agreement between A and C is worse than the 
agreement between A and B

They are not the same: for example, the probability of being pregnant, assuming you are female, 
is not the same as the probability of being female, given that you are pregnant 

Maria Grazia Pia, INFN Genova



GoF recipe
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1. We define the null hypothesis (and the alternative hypothesis)

2. We set the significance level of the test (a)
‒ A priori, as appropriate to the experimental scenario

3. We calculate the value of the test statistic
‒ According to the mathematical formulation of the test we choose

4. We compare the value of the test statistic with tabulated critical 
values

OR
4. we calculate the p-value corresponding to the test statistic and 

compare it with the pre-set a

p-value < a We reject the null hypothesis
p-value ≥ a We do not reject the null hypothesis

§ data
§ H0
§ a
§ test (test statistic)

Ingredients
:

Maria Grazia Pia, INFN Genova



Statistical software systems
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ADMB A software for non-linear statistical modeling in C++
DAP A free replacement for SAS
Fityk Nonlinear regression software 
OpenEpi A web-based, open source series of programs for use in epidemiology and statistics
SciPy Regressing, plotting, GLM, time series analysis, Non-parametric statistics, ANOVA etc.
PSPP A free software alternative to IBM SPSS Statistics
R A free implementation of the S language

Open source, free

GraphPad InStat Simple functionality
GraphPad Prism Biostatistics and nonlinear regression
MATLAB Programming language with statistical features
SAS Comprehensive statistical package
SPSS Statistical package for the social sciences
StatsDirect Statistics packages designed for biomedical and health science
SPSS Statistics Comprehensive statistics package

Proprietary

Maria Grazia Pia, INFN Genova

…and more
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is the lingua franca for statistical algorithms
§ good for statistical programming and data analysis tasks
§ used in industry and academia
§ free and open-source software
§ available on different operating systems: Linux, Windows and macOS
§ online communities and resources
§ easy at reading and writing data
§ equipped with many packages for statistics and graphics
but
§ R is slow (it is an interpreted language)
§ all the objects are in memory
§ vector programming with R is hard to learn
nevertheless
§ Rcpp addresses some of these problems

Maria Grazia Pia, INFN Genova

https://www.r-project.org/ https://www.rstudio.com/

An integrated development environment (IDE) for R

https://www.r-project.org/
https://www.rstudio.com/


Goodness-of-fit tests
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c2 test
Kolmogorov-Smirnov test
Cramer-von Mises test
Anderson-Darling test

Most common tests

One-sample tests 
Compare a data distribution 
w.r.t. a function
(e.g. gaussian, exponential etc.)
Most common: tests for normality

Two-sample tests 
Compare two data distributions

No time to review them in detail
Suggested books and references in B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon, P. Viarengo, 

“New developments of the Goodness-of-Fit Statistical Toolkit”,
IEEE Trans. Nucl. Sci., vol. 51, no. 5, pp. 2056-2063, 2004

k-sample tests 

Maria Grazia Pia, INFN Genova



20

Some tests are pertinent to binned (histogram) or unbinned
distributions only, or to continuous or discrete distributions
e.g. the Kolmogorov-Smirnov test is applicable to continuous distributions

Some tests are applicable both to binned and unbinned distributions, 
but the test statistic has a slightly different formulation in either case

Pay attention to the characteristics of your data!

Binned/unbinned distributions

Non-parametric = distribution-free
In parametric tests some assumptions are made regarding some 
characteristics of the data distributions
e.g. normality, homoschedasticity etc.

These assumptions must be verified for the test to be applicable

Parametric/non-parametric tests

Maria Grazia Pia, INFN Genova



c2 test
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c2 distribution
with n dof

mean n
variance 2n

n independent variables xi are each normally 
distributed with mean µi and variance si2

becomes a matrix equation if errors are correlated

p-value = integral from c2 to ∞ 

Maria Grazia Pia, INFN Genova

O = observed
E = expected

If the data are binned (i.e. in a histogram), Pearson’s c2 applies:

(based on Poisson distribution)

Chi-Square Tests 706

Figure 10.1: ¬2 Distribution with 5 Degrees of Freedom

grouped. In the chi square tests, the null hypothesis makes a statement
concerning how many cases are to be expected in each category if this
hypothesis is correct. The chi square test is based on the diÆerence between
the observed and the expected values for each category.

The chi square statistic is defined as

¬2 =
X

i

(Oi °Ei)2

Ei

where Oi is the observed number of cases in category i, and Ei is the ex-
pected number of cases in category i. This chi square statistic is obtained
by calculating the diÆerence between the observed number of cases and the
expected number of cases in each category. This diÆerence is squared and
divided by the expected number of cases in that category. These values
are then added for all the categories, and the total is referred to as the chi
squared value.



c2/N
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c2 distribution
with n dof

mean n
variance 2n

Rule of thumb: c2/n ≈ 1

pvChi2 <- pchisq(chi2,n,lower.tail=FALSE)

OK to get a rough idea of the outcome of your test, 
inappropriate to report a scientific result

Maria Grazia Pia, INFN Genova



Experimental uncertainties

The c2 statistic involves experimental uncertainties explicitly
‒Beware of biased test outcomes because of unrealistic 

estimates of the experimental uncertainties

The null hypothesis is rejected
‒Your model does not truly fit the data

‒Or perhaps your experimental uncertainties are underestimated
‒ You may also want to check if you have any outliers

The p-value is suspiciously ≈ 1
‒You were lucky…

‒Or perhaps your experimental uncertainties are overestimated

23Maria Grazia Pia, INFN Genova



Kolmogorov-Smirnov test
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It is a test for unbinned (continuous) distributions

3.3 Univariate Unbinned Goodness of Fit Tests 49

3.3
Univariate Unbinned Goodness of Fit Tests

If we have an i.i.d. sample of size N, x1, x2, . . . , xN , we have a univariate unbinned
dataset, where we assume a continuous sampling distribution. This dataset may be
used to test hypotheses concerning the nature of the sampling distribution. We dis-
cuss several popular (and not-so-popular in physics, but worthy of consideration)
goodness of fit tests in the following sections.

3.3.1
Kolmogorov–Smirnov

Next to the chi-square and likelihood ratio tests, the Kolmogorov–Smirnov (KS) test
is perhaps most familiar among physicists. This is the most straightforward test of
the difference between two cumulative distributions. The test statistic, T, is formed
simply as the maximum difference between the two cumulative distributions being
compared.

We may set this in the general context of notions of distance between cumulative
distributions. Given any pair of cdfs F and G on a sample space, it may be possible
to define a distance or metric, !(F, G ), that returns a nonnegative number satisfy-
ing all the normal properties of a distance on a metric space. In particular we may
define the distance

!(F, G ) ! sup
x

jF(x ) " G(x )j . (3.31)

When G D FN is the empirical cdf of our dataset, and F is the H0 cdf, ! provides
the Kolmogorov–Smirnov goodness of fit statistic. For a sample of size N and null
hypothesis F, we denote the Kolmogorov statistic by KN (F ).

The distribution of KN (F ) is independent of F (exercise), for continuous F. Thus,
the distribution of the Kolmogorov–Smirnov statistic has the convenient property
that it is known and depends only on the sample size N (Figure 3.4). For small N,
the distribution may be computed according to the exact formula (Shao, 2003):

P [KN (F ) # t] D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

0 t # 1
2N

N !
NQ

iD1

2

664

min(uN!iC2, N!i
N Ct)Z

max
!

0, N!iC1
N !t

"

3

775 du1 $ $ $ du N
1

2N
< t < 1

1 t % 1 ,
(3.32)

with u NC1 ! 1. For large values of N it is more convenient to use the asymptotic
form:

lim
N!1 P [

p
N KN (F ) # t] D 1 " 2

1X

j D1

("1) j !1e!2N j 2 t2
, t > 0 . (3.33)

The test statistic is formed as the maximum difference 
between the two cumulative distributions being compared

empirical cdf
of our data set

cdf corresponding
to the null hypothesis 

Maria Grazia Pia, INFN Genova



Cramer-von Mises test

25

Formulations exist for both binned and unbinned distributions
Use the appropriate one!

(AKA Fitz-Cramer-von Mises test)

It is a variation on the Kolmogorov–Smirnov approach, 
where one replaces the supremum distance function with 

another common measure of distance: 
the average squared deviation

50 3 Goodness of Fit
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Figure 3.4 Cumulative distribution for the Kolmogorov–Smirnov statistic. From left to right,
N D 100, 10, 5.

The Kolmogorov–Smirnov test is by construction a two-sided test. However, cor-
responding one-sided tests are obtained by dropping the absolute value signs and
using either the minimum or the maximum, providing a signed measure of dis-
tance (Shao, 2003).

An obvious variation on the Kolmogorov–Smirnov approach is to replace the
supremum distance function with another common measure of distance, the aver-
age squared deviation:

C2
N (F ) D

1Z

!1
[FN (y ) ! F(y )]2dF(y ) . (3.34)

This is known as the Cramér–von Mises test. The distribution of C2
N (F ) likewise does

not depend on F.

3.3.2
Anderson–Darling

There are, of course, many test statistics one could invent based on the difference
between cumulative distributions. The Kolmogorov–Smirnov test just described is
an especially simple choice. It has the property that it tends to emphasize the region
of most rapid change in the cdf (that is, the region of the peak of the pdf), as that
is where the maximum difference under the null hypothesis is likely to occur.

The Anderson–Darling test is designed to give more weight to the tails of the dis-
tribution. It is thus particularly powerful in tests involving deviations in the tails.
For example, sampling distributions are often approximately normal in the central
region, but the tails may be significantly non-Gaussian. The Anderson–Darling test
is known to be especially powerful in detecting such cases. This could be impor-
tant in detecting signs of new physics if the signature is a few events in the tail, for
example of a pT distribution, where the KS is not especially sensitive.

test statistic
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Anderson-Darling test
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Formulations exist for both binned and unbinned distributions
Use the appropriate one!

Some distributions may be approximately normal in the central region, but the tails may be significantly 
non-Gaussian: the Anderson–Darling test is known to be especially powerful in detecting such cases

3.3 Univariate Unbinned Goodness of Fit Tests 51

The Anderson–Darling statistic is defined according to

A2
N (x) D N

1Z

!1

[FN (y ) ! F(y )]2

F(y )[1 ! F(y )]
dF(y ) , (3.35)

where FN is the empirical cdf of our dataset x D x1, . . . , xN and F is the cdf un-
der H0. Note that the Anderson–Darling statistic modifies the Cramér–von Mises
statistic with the addition of the denominator terms. These terms provide preferen-
tial weight to the regions near F D 0 and F D 1, that is, the tails of the distribution.

3.3.3
Watson

Another variation on the Cramér–von Mises approach is the Watson test (Watson,
1961):

U2
N D N

1Z

!1

8
<

:FN (x ) ! F(x ) !
1Z

!1
[FN (y ) ! F(y )]dF(y )

9
=

;

2

dF(x ) . (3.36)

Here, the difference between empirical and theoretical distributions is “corrected”
by subtracting the mean difference. Thus, this test ignores a simple shift and con-
centrates on higher order differences.

3.3.4
Neyman Smooth

Unsatisfied with the limitations of the !2 test (in particular, its inability to detect
runs, for example, successive histogram bins improbably “running” higher than
the model, as deviations from H0), Neyman (1937) devised the Neyman smooth
test2). The basic idea is to transform the data to uniformly-distributed quantities
under the null hypothesis, and then use Legendre polynomials to frame the alter-
native hypothesis as a “smooth” pdf, with degree of smoothness determined by the
order of the polynomials used. The observed moments with respect to the Legen-
dre polynomials may then be compared with the values of zero expected under the
null hypothesis. One feature of this approach is that it provides a framework to
investigate in more detail the reason for a bad fit to the model.

If the density under the null hypothesis is g(x jH0), we make the transformation
x ! u according to

u D
xZ

!1
g(x 0jH0)dx 0 . (3.37)

Under H0, u is uniformly distributed on (0, 1), with pdf f (u) D 1.

2) Ironically, it can be shown that Pearson’s chi-square is a type of smooth test (Rayner and Best,
1989).

It is designed to give 
more weight to the tails 
of the distribution

It is thus particularly 
powerful in tests involving 

deviations in the tails 

The test statistic modifies the Cramer–von Mises statistic with the addition of a 
weighting term, which gives preferential weight to the tails of the distribution 
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More exotic tests

Generalised Girone test
Watson test (another variation of the Cramer-von Mises test)

Weighted Kolmogorov-Smirnov and Cramer-von Mises tests
Approximated calculations
‒Useful when computational performance is an issue
‒Goodman and Tiku tests: approximated versions of Kolmogorov-Smirnov 

and Cramer-von Mises tests

27

B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon, P. Viarengo, “New developments of the Goodness-of-Fit 
Statistical Toolkit”, IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3834-3841, 2006 and references therein
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Example: test normality

28

Given a data distribution, assess if it is normally distributed
Null hypothesis: the data are normally distributed
Significance level: let’s set a = 0.01

pt1 <- cvm.test(y1)        Cramer-von Mises
pt2 <- cvm.test(y2)        test −4 −2 0 2 40.
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0.7037954

0.0018620

nortest package provides a set tests for normality, including 
Pearson chi-square test, Cramer-von Mises test and Anderson-Darling test 



Example: test normality

29

using R nortest package
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Example: Anderson-Darling test 

30

## Anderson-Darling k-sample test.
##
## Number of samples:  3
## Sample sizes:  5, 5, 5
## Number of ties: 0
##
## Mean of  Anderson-Darling  Criterion: 2
## Standard deviation of  Anderson-Darling  Criterion: 
0.91893
##
## T.AD = ( Anderson-Darling  Criterion -
mean)/sigma
##
## Null Hypothesis: All samples come from a common 
population.
##
##                   AD  T.AD  asympt. P-value
## version 1: 4.08   2.26               0.0355
## version 2: 4.08   2.27               0.0354

version 1: Continuous 
population
version 2: Discrete 
parent population

Given three data distributions, assess if they arise from a common 
(unspecified) distribution function

a = 0.01

Maria Grazia Pia, INFN Genova

kSamples package: compare k samples using the Anderson-Darling test



Which GoF test to use?

The test should be appropriate to the data and to the 
experimental scenario which it is applied to
‒ Binned/unbinned data
‒Known (reliable) experimental uncertainties
‒ Characteristics of the data: fat tails, smooth, cyclic etc.

Good practice: apply several tests to the data
‒ Is the outcome (rejection/non-rejection) consistent?
‒What could be the source of inconsistencies?

§ Unrealistic experimental uncertainties, intrinsic characteristics of the data…

31
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Tests of randomness

32

Is it sufficient to 
perform goodness-of-fit 
tests to conclude that 
the data are consistent 
with the model?
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Goodness-of-fit tests do not tell us anything about 
the possible presence of systematic effects

Tests of randomness 
are useful to identify systematic effects 
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Runs test

33

The sequence of red data is AboveAAAAAAAABelowB = 2 runs 
Experimental data appear systematically larger than reference data

randtests package runs.test
performs the Wald-Wolfowitz Runs Test

c2 test p-value = 0.848

a = 0.01

K-S test p-value = 0.997
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A. Wald, J. Wolfowitz, On a test whether two samples are from the same population, Ann. Math. Stat., vol. 11, pp. 147–162, 1940

runs test p-value = 0.008

result<-runs.test(diff, "two.sided", 0.)
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Trend tests

34

Mann-Kendall test

Cox-Stuart test

Can detect the presence of a trend 
in the data
e.g. “upward”, “downward” (one-sided)
or just “trend” (two-sided) w.r.t. randomness
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H0: randomness
H1: upward trend

Mann-Kendall test
p-value = 0.003
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H0: randomness
H1: downward trend
Mann-Kendall test

p-value = 0.002
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Correlation and GoF

35

Common error: confusing correlation with goodness-of-fit testing

A correlation coefficient provides a description of the data, 
it does not support the inference that two data samples 

are drawn from the same parent distribution 
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Correlation between red and black data

Pearson correlation coefficient  = 0.896
Kendall t = 1
Spearman r                                  = 1

c2 test p-value < 0.0001

K-S test p-value = 0.0002

a = 0.01
GoF tests reject the 
hypothesis of compatibility 
between red and black data

linear
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Example

36

Use the method
argument to 
change the way 
the association 
is measured

Pearson correlation coefficient: 0.5711816
Spearman r: 0.6
Kendall t: 0.4444444

Significance of the correlation

Let’s consider two data sets and assess their relationship

Maria Grazia Pia, INFN Genova

Do not confuse correlation with GoF!

stats package 
Correlation using Pearson's correlation 
coefficient, Kendall's t or Spearman's ρ

a = 0.01



Location-scale tests
Less common in a physics validation context

Location
‒Two-sample tests for comparison of the means
‒Two-sample permutation tests for location
‒Multi-sample case

Scale
‒Test on the ratio of two variances
‒Variability comparison
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From a physicist’s perspective

38

Assuming two Gaussian samples: 

With known s Are the means 
the same?

With the same 
(unknown) s

Are the means 
the same?

Is s the same?
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Known s

39

X and Y are randomly distributed about their true value(s) according 
to the Gaussian distribution with standard deviations sX and sY

Are they ”really” the same? Equivalent to asking whether 
X-Y is compatible with 0

X-Y has variance  V(X-Y) = sX2 + sY2

The question reduces to how many s correspond to the difference. 
A decision at a preset significance level is made according to the table of the integrated Gaussian

Example: two experimental 
measurements with detectors 
of known resolution sX and sY

Experiments A and B measure 
EA= 202±3 MeV, EB = 209±4 MeV
error =  sqrt(9+16) MeV = 5 MeV

EB - EA= 7 MeV 1.4 s
Maria Grazia Pia, INFN Genova



Unknown s

40

Two bare measurements

Averages of two samples

We can do nothing

Student’s t test

Estimate of s:

is distributed according to 
Student’s t distribution with 

Nx+Ny-2 degrees of freedom

Under the null hypothesis µ1=µ2, and if s1=s2

Pooled estimate 
of the variance
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Wilcoxon rank sum test (AKA Mann-Whitney test)

41

Non-parametric location test Assumptions
• Continuous, independent random 

variables
• Identical underlying data distributions 

within the same sample

Two populations characterized by the 
same distribution, possibly except for 
the location

Compute the ranks of all n=n1+n2 observations of the pooled sample

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

In R, the t test can be performed with a specific command
as follows:

>t.test(x1,x2,"two.sided",mu=0,
paired=FALSE,var.equal=TRUE),

where the input "two.sided", defines the alternative hy-
pothesis. The other options are "less" or "greater". The
fourth argument represents the value of the means’ difference
in H0 and the other two indicate whether samples are depen-
dent and variances are assumed equal. A different test statistic
must be considered when the samples are dependent or the
variances assumed not equal: in these cases the arguments
must be TRUE and FALSE respectively. Among the outputs
of the command, we find the observed value of the test statistic
t, the degrees of freedom df and the p-value.

B. Wilcoxon (Mann-Whitney) rank test
In order to test whether the locations of two populations

are equal or not, or whether the location of one population
is greater than that of the other, under the assumptions that
the data are realizations of continuous independent (within
and between samples) random variables and that underlying
distributions of data within the same sample are identical, a
suitable solution is the Wilcoxon rank sum test, also called
Mann-Whitney test. This is a nonparametric method because
it does not assume a specific underlying distribution, even the
normal one. Hence, as well as in the problem presented in the
previous subsection, we assume two populations characterized
by the same distribution, possibly except for the location (on
which the test is concerned). Anyway, with respect to the
z test and the t test, now we do not assume normality and
the method is valid for any underlying distribution under
the mentioned conditions. This test can also be applied to
categorical variables, because it only uses the ordinal nature
of data, by transforming observations into ranks [?].

The starting point of the rank sum test is the computation
of ranks of all the n = n1 + n2 observations of the pooled
sample. Irrespective of whether they belong to the first or
second sample, the n observations are sorted by assigning an
increasing rank from 1 to n. If no tie is present, the test statistic
is the sum of the ranks of the first sample. Formally:

W =
n1X

i=1

r(X1i).

The test statistic takes values from n1(n1 + 1)/2 to [n(n +
1) � n2(n2 + 1)]/2. In case of ties, a suitable correction
of the test statistic must be applied. Under H0, all the n!
rank assignments are equally probable and the distribution
of W can be obtained by considering all the possible rank
assignments and depends only on the sample sizes. The
quantiles of the rank sum statistic distribution with no ties
are usually tabulated for sample sizes up to 20. For larger
sample sizes or when there are ties, a normal approximation
is used. In the two-sided test, the null hypothesis of equality in
distribution is rejected in favour of the alternative hypothesis
(unequal locations) if wobs  w1�↵/2 or wobs � w↵/2, where

wobs denotes the observed value of the test statistic and wp

denotes the quantile of the null distribution of the rank sum
test statistic, such that P (W � wp) = p. In the one-sided
test, when we have an upper-tailed alternative hypothesis, H0

must be rejected if wobs � w↵; when we have a lower-tailed
alternative hypothesis, the condition for the rejection of H0 is
wobs  w1�↵.

The stats package, one of the basic R packages, includes
the command for performing the Wilcoxon sum rank test. For
the two-sided test, the command is the following:

>wilcox.test(x1,x2,"two.sided",mu=0,
paired=FALSE,exact=TRUE,correct=TRUE),

where the first five arguments have the same meaning of those
of the t.test command. The exact argument indicates
whether the exact or the approximate distribution must be
used for the computation of p-values and takes values TRUE
or FALSE. Even the correct argument is logical and
indicates whether the correction for the possible presence
of ties is necessary. The application of the command to the
cases of upper-tailed or lower-tailed one-sided test follows the
same rules described for the t test, i.e. requires the use of
the option "greater" or "less" respectively, instead of
"two-sided", in order to indicate the alternative hypoth-
esis. The output consists in the observed value of the test
statistic and the p-value.

C. Two-sample permutation test for location

A powerful nonparametric solution for the location problem
can be found in the category of permutation tests. Unlike
the sum rank test, the permutation test does not require the
existence of finite means and variances. Only the existence
of one finite location parameter is needed (median, mode
or others if not mean). Furthermore, the permutation test
does not need a correction for ties or asymptotic convergence
to a parametric distribution for large sample sizes. Finally,
since the rank transformation of data is not necessary, with
the application of permutation tests to numeric variables,
the original information of data is not partially lost, unlike
what happens with the rank tests that use only the ordinal
information.

The main assumption of permutation tests is that of ex-
changeability under the null hypothesis. Random variables
Xji, with j = 1, 2 and i = 1, 2, · · · , nj , are exchangeable
if they are identically distributed and if the dependence be-
tween any pair of variables within and between samples is
the same for all the variables. Hence, independence implies
exchangeability but the inverse implication is not true. As
a consequence, exchangeability includes cases of dependent
variables, for which the tests that assume iid random variables
cannot be applied. This is the main reason why permutation
tests are more robust and flexible than parametric competitors.

In the two-sample test for location, let us assume that
observed data are stored in a vector where the first n1 elements
are the observations of the first sample and the remaining n2

Test statistic: sum of the ranks of the first sample 
(if no ties)

The distribution of W is obtained considering all possible rank 
assignments and depends only on the sample sizes

Gaussian approximation for large samples and if ties

Kruskal-Wallis test: multi-sample generalization
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Scale comparison: F test on the ratio of variances

Two independent random samples from a 
normal distribution
Mean and variance are unknown for both 
populations

42

Under the assumption of normality of the data:
Typical scale parameter : variance 

H0:   s12 = s2
2 H1: s12 ≠ s2

2

Test statistic: ratio of two sample variances F = S1
2 / S2

2

code: var.test(x1,x2,"two.sided")
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Beware of what you want to test!

43

Two data samples, drawn 
from two gaussians:
G1: µ = 0, s = 1
G2: µ = 0, s = 5

Wilcoxon Signed Rank test
a = 0.01

c2 test 
Kolmogorov-Smirnov test

p-value > 0.01

p-value < 0.01

location

general 
alternative

Maria Grazia Pia, INFN Genova



−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

X

Y

Beware of the 
assumptions 
underlying the tests!
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Two data samples drawn from the 
same gaussian (µ = 0, s = 1)
G1: experimental data with 20% errors, 
G2: the data differ from the reference by 1-2%
According to physical intuition, these data samples are consistent

c2 test p-value > 0.01

Wilcoxon Signed Rank test p-value < 0.01
The assumption we are missing is that the distribution must be symmetric; 
in this case the differences between the two data sets are not 

Maria Grazia Pia, INFN Genova

a = 0.01



Comparing categorical data

A categorical variable has a measurement scale consisting 
of a set of categories
‒ e.g. accommodation could use categories apartment, house, castle, igloo…

Widely used in social sciences and health sciences
Quite uncommon in experimental physics analyses

Used to compare the ”validity” of different physics models, 
or to compare simulation configurations
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Contingency tables

46

Category A Category B
Obs X NAX NBX

Obs Y NAY NBY

Are the observed results of the two categories compatible 
with chance, or do they exhibit any significant difference?

Category A and B could be, for 
instance, two physics models, 
two simulation configurations, 
two detector prototypes…

Probabilities {pij} form the joint distribution of X and Y, 

marginal distributions: the row and column totals 
of the joint probabilities

pij = P(X = i,Y = j) probability that (X, Y ) falls in the cell in row i and column j 

∑pij = 1
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o, x Poisson
Gaussian

mean=2

mean=5

Pearson c2 test 
Can be applied to contingency tables 
‒ provided the number of entries in each cell 

is “sufficiently large”
‒Otherwise: Yates’ continuity correction

Similar to the application of the test
to histograms
‒Observed and expected
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Exact tests

Conditional tests
Conditions on the marginals
Usually not experimentally 
realistic
Tend to be conservative
Can be used even with small 
number of entries in cells

Fisher exact test

Unconditional tests
No conditions on marginals
Experimentally realistic
Slow computation

Barnard test and approximations

Boschloo test
Suissa-Schuster test
…

48

Several tests implemented in           packages: 
Exact2x2, Exact, Barnard…
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Example

49

M. C. Han, H. S. Kim, M. G. Pia, T. Basaglia, M. Batič, G. Hoff, C. H. Kim, and P. Saracco, “Validation of Cross 
Sections for Monte Carlo Simulation of the Photoelectric Effect”, IEEE Trans. Nucl. Sci, vol. 63, no. 2, pp. 1117-
1146, 2016

Let us consider the following contingency table extracted from 
Table IV in Han et al. paper

Each model implements a photoionization cross section
Do the Biggs and EPDL model exhibit equivalent, or 
significantly different compatibility with experiment?

Model
Experimental

Pass Fail
Biggs 33 9

EPDL 36 6

Fisher c2 Boschloo Barnard Z-pooled

0.570 0.393 0.427 0.942 0.427

p-values from tests applied to the contingency table

Function Package  
fisher.test stats

chisq.test stats

boschloo exact2x2

barnard Barnard

exact.test exact

Model
Experimental

Pass Fail

Biggs 10 4

BiggsG4 1 13

Fisher c2 Boschloo Barnard Z-pooled

0.0014 not
applicable 0.0004 0.0004 0.0004

Same analysis for the original Biggs model and 
an “improved” version implemented in Geant4

Maria Grazia Pia, INFN Genova



McNemar test for related data

50

Category A success Category A failure

Category B 
success Nsucc.A, succ.B Nfail.A, succ.B

Category B failure Nsucc.A, fail.B Nfail.A, fail.B

Table especially 
filled for 
McNemar test 

Focuses on the significance of the discordant results

Null hypothesis: the proportion of discordant results is the same in 
the two cells corresponding to “success-fail” or “fail-success” 

associated with the two categories subject to test
S. H. Kim et al.,Validation Test of Geant4 Simulation of Electron 
Backscattering, IEEE Trans. Nucl. Sci., vol. 62, no. 2, pp. 451-479, 2015

Application examples in: 
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Suggested reading
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Classical statistics books

W. J. Conover, 
Practical Nonparametric 
Statistics, 
Wiley

M. Hollander, 
Nonparametric 
Statistical Methods, 
Wiley

J. D. Gibbons, S. Chakraborti,
Nonparametric Statistical 
Inference, 
Chapman and Hall/CRC

G. Casella, R. Berger,
Statistical Inference, 
Duxbury Press
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Suggested reading
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R. J. Barlow,  Statistics: 
A Guide to the Use of 
Statistical Methods in 
the Physical Sciences, 
Wiley

G. Cowan, Statistical Data 
Analysis, Oxford Science 
Publications

P. Bevington and D. K. Robinson, 
Data Reduction and Error 
Analysis for the Physical 
Sciences, McGraw-Hill

Books written by physicists

L. Lyons, Statistics for 
Nuclear and Particle 
Physicists, CUP

F. James, Statistical Methods in 
Experimental Physics, World 
Scientific

A. G. Frodesen, O. Skjeggestad, H. 
Tofte, Probability and Statistics in 
Particle Physics, 
Universitetsforlaget
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Suggested reading

53

Statistical software tools

https://cran.r-project.org/manuals.html R documentation
(or the documentation of any other 
software system you may want to use) 

https://www.r-project.org/doc/bib/R-books.html >150 books!
Many introductory books, pick your favourite P. Dalgaard, Introductory 

Statistics with R, Springer

Plenty of online R material; be careful about the authoritativeness of the source…

Includes “Introduction to R”, 
which is a recommended reading for anybody wishing to learn R 
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Summary
Hypothesis testing
‒ Conceptual framework

Goodness-of-fit
‒One sample 

(compare with function)
‒ Two or more samples

Location
Scale
Categorical data

Statistical software 
‒Overview of available systems
‒ R

Application examples
Suggested reading
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…within 40 minutes?
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Conclusion
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Statistical methods let us compare data distributions 
objectively and quantitatively, consistent with the 
scientific method
Computational tools are available to facilitate their use, 
but beware of the assumptions and conditions for their 
applicability
Examples and exercises in a GitHub repository
https://doi.org/10.5281/zenodo.6567236

Question, feedback, discussions are welcome
Feel free to contact MGP
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A longer hands-on course at IAEA/ICTP?

https://doi.org/10.5281/zenodo.6567236

