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Application 1: How can experimental observables constrain 
theoretical models? 
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FA S T  M A P P I N G  T O  T H E O R E T I C A L  PA R A M E T E R S

Bayesian Neural Networks 

Training — Bayesian inference 

Can we make predictions with 
accurate error estimates? 

pMSSM parameters  total 
SUSY cross section

→
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https://arxiv.org/abs/2009.14393

https://alpha-davidson.github.io/TensorBNN

B.S. Kronheim, M.P. Kuchera, H.B. Prosper, A. Karbo, Bayesian neural networks for fast SUSY 
predictions, Physics Letters B, Volume 813, 2021, 136041, ISSN 0370-2693, https://doi.org/
10.1016/j.physletb.2020.136041.

16 million times faster  
than theory codes!
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Application 2: How can make accurate predictions for 
stochastic processes?
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