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(g misworkshop

What to expect

=  Overview of the modelling capabilities of OpenFOAM and lessons learnt
= Acrash introduction to OpenFOAM

= Acrash introduction to GeN-Foam

What not to expect
= A full course on the use of OpenFOAM
= A full course on the use of OFFBEAT, GeN-Foam, or other OpenFOAM solvers

Objectives

= Understanding of modelling capabilities and pros & cons

= How to approach OpenFOAM-based tools

= References/keywords/best practices for autonomous learning of GeN-Foam (and other nuclear
solvers)
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(g misworkshop

+ More slides than | can actually present!
« Objective to have consistent and readable material for you to keep
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G OpenFOAM

O What is OpenFOAM?
v" Distributed as CFD toolbox
v" ~10k to 20k estimated users worldwide

Open\VFOAM

The Open Source CFD Toolbox
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G OpenFOAM

O What is OpenFOAM? OpeI’IVFOAIVI

v

<N X

AN

Distributed as CFD toolbox
~10k to 20k estimated users worldwide
OpenFOAM = Open Field Operation And Manipulation

Essentially a large, well organized, HPC-scalable, C++ library for the finite-volume
discretization and solution of PDEs, and including several functionalities like ODE
solvers, projection algorithms, and mesh search algorithms

Object-oriented, with a high-level “fail-safe” API

The Open Source CFD Toolbox

].aQi
——_A(Dip) =S

fvm::ddt (IV, flux 1])- fvm::laplacian(D,flux 1])= S
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G Disclaimer

Most of the following is content taken from

Q Carlo Fiorina, Ivor Clifford, Stephan Kelm, Stefano Lorenzi, 2022. “On the development of multi-
physics tools for nuclear reactor analysis based on OpenFOAM ©®: state of the art, lessons learned
and perspectives”. Nuclear Engineering and Design 387, 111604.
https://www.sciencedirect.com/science/article/pii/S0029549321005562
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G Use of OpenFOAM for multi-physics
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First coordinated and
persistent developments
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(s HTR modelling (PBMR -> 1. Clifford)

ROM reconstructed
solution for a fuel
element
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(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics

ROM reconstructed
solution for a fuel
element

T_reconstruct

Herrse” Full-core coarse-mesh

I;H2o thermal-hydraulics
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(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics
v Available CFD RANS

ROM reconstructed
solution for a fuel
element
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(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics
v Available CFD RANS plus source terms

ROM reconstructed
solution for a fuel
element
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G Porous-medium thermal-hydraulics: goveming equations

The coarse-mesh governing equations (Navier-Stokes and enthalpy) are:

ﬁ ((xiﬂi) + V- ((1‘-;1[-,;,().5) = _P'ﬁ—}j

Ot
0
pT (ipivg) + V- (piu; @ u;) =
@ Vp+ V- (ioq:) + @ipig — Suisj
0
pT (cipih;) + V- (au;pih;) =

0
V (kTG - VT;) A g P Faipii - 8 + QGingi — Shyisj
ol

These reduce to traditional CFD approaches in clear fluid regions and a
system-code-like approach in 1-D regions (multiple scales).
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G Porous-medium thermal-hydraulics: goveming equations

Carlo Fiorina

fvm: :ddt(fixedRho , UDarcy)
(1/alpha)*fvm: :div(phiDarcy, UDarcy)
fvm: :laplacian(fixedRho *nuEff, UDarcy)
fvc: :div

(

)
fum: :Sp((1.8/3.8)*tr(Kds), UDarcy) + (dev(Kds) & UDarcy)

rho_*nuEff & dev2(T(fvc::grad(UDarcy)))

alpha*fvc::reconstruct
(
(
- ghf *fvc::snGrad(fixedRho *rhok )

- fvc::snGrad(p_rgh )
Y*mesh_.magST()




(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics
v Available CFD RANS plus source terms

ROM reconstructed
solution for a fuel
element

95178 Full-core coarse-mesh
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(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics
v Available CFD RANS plus source terms
v Modified discretization to account for
discontinuous pressure

ROM reconstructed
solution for a fuel
element
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(s HTR modelling (PBMR -> 1. Clifford)

Q Porous-medium thermal-hydraulics

v
v

Available CFD RANS plus source terms
Modified discretization to account for
discontinuous pressure

O ROM reconstructed multi-scale temperature

v

v
v
v

Available ROM library
Multi-mesh
Mesh-to-mesh projections
Built-in ODE solvers

ROM reconstructed
solution for a fuel
element

Treconstuet -y ll-core coarse-mesh

';1120 thermal-hydraulics
1080
-1040
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G MSR modelling (M. Aufiero -> PoliMi + CNRS / GeN-Foam)

A Available CFD solvers
Q Arbitrary geometries

Carlo Fiorina
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G MSR modelling (M. Aufiero -> PoliMi + CNRS / GeN-Foam)

A Available CFD solvers
Q Arbitrary geometries
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A Streamlined implementation of diffusion and DNP equations
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G MSR modelling (M. Aufiero -> PoliMi + CNRS / GeN-Foam)

A Available CFD solvers
Q Arbitrary geometries

Carlo Fiorina

A Streamlined implementation of diffusion and DNP equations

fvm: :ddt(IV,flux_i])- fvm::laplacian(D,flux i])= S
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G MSR modelling (M. Aufiero -> PoliMi + CNRS / GeN-Foam)

A Available CFD solvers
Q Arbitrary geometries

Carlo Fiorina

A Streamlined implementation of diffusion and DNP equations

fvm: :ddt(IV,flux_i])- fvm::laplacian(D,flux i])= S

lambda[precI]*alphaPtr (), precStar [precI]) MSFR
urce_/keff_ *Beta[precl]

Power density
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1
08 i
06 2
102 ;
i i
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(@ MSRmodelling: advanced

a
a
a
a

Dump tanks
Available two-phase CFD solvers
Radiative heat transfer
Thermal-mechanics and moving mesh

a. Bubble extraction

Woid fraction (%)
50.0
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= 250

il!f*
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Helium
sparging

Bubble injection
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FHR modelling (UCB)

Q Discrete Element Method + coarse-mesh thermal-hydraulics + Serpent Multi-physics interface
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G GeN-Foam: Generalized Nuclear Fleld operation and manipulation

Carlo Fiorina

Q First general solver for reactor safety based on OpenFOAM

Assembly windows in a
SFR

The Argonaut reactor

alU Magnitude

by M
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Multi-physics || {i#
modelling of the | | i
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Open-source + object -> use of previous work Multi-material

U

CFD solvers Mesh deformations

U

Thermal-mechanics solvers Q

U0 0o

Multi-mesh with projection algorithms 24/36



(e OFFBEAT: OpenFoam Fuel BEhavior Tool

O Thermal-mechanics with finite volumes....

O Community contributions

O Region-coupled boundaries
O Multi-material
a

1.6a+07

sigmakg
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G HPC-oriented containment analysis - containmentFoam

Carlo Fiorina

From a general CFD tool to a nuclear-dedicated solver
Q Available solvers (incl. Monte Carlo!)

Turbulent models

Conservative formulation

d
d
Q Parallel scalability
d

ISP-37 VANAM-M3 experiment € H,0 [vol.fr]

with containmentFOAM X ua " or i v a5
|
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G Lessons leamt

One can model pretty much everything...

27
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G Lessons leamt

What’s the
effort?

What about the
license?
What is the
quality of the
result?

What
competences
do | need?

28
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G Workflow

Downsides
* No graphical user interface (

distributed with the code)

* Meshing and post-processing are performed with separate tools

* Meshing often requires proprietary tools

e Requires familiarity with Linux

e Limited documentation

Advantages
* Transparent

~— Better integrations of application and development

e Access to source code

29
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G Structure of the base library

Very complete

discretization and linear system solution
mesh-to-mesh projections

mesh deformation

mesh manipulation

ordinary differential equations

Monte Carlo methods

octree-based mesh search

methods for reduced-order modelling

built-in and third-party code coupling schemes

Object oriented

encapsulation
multi-level API

30
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G Finite volumes

Q Pros:

v

D N N NI N NN

Flexible

Scalable

Conservative

Intuitive

CFD-friendly

Good for thermal-mechanics
Ok for neutronics

Q Cons:

v

<

Still require familiarity with concepts associated with PDEs (well-posed problems, initial and
boundary conditions), geometry creation, meshing, discretization, linear solution, etc.
Require good quality meshes

Max second order in space

31
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(g Unstructured meshes N

 Complete flexibility in terms of geometry -> non-traditional reactor designs and
complex component

e Significant computational footprint

* First order, with all cell faces that are flat -> a high mesh resolution for curved surfaces

Compressible Incompressible

Time: 0.002600 (s)

volPower (w/m3)

e+l2
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G Operator-splitting

One matrix for each equation + iteration

Pros
e Easier preconditioning and optimal choice of solution method
* No need to solve all physics at each coupling/time step

Cons
* Can be hard to converge for weakly-coupled / strongly non-linear equations

33
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G Computational requirements

35
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CPU cores
* rule of thumb: 30’000 mesh cells per CPU core
* CFD

o 2D RANS-> several hundred thousand cells -> 10 CPU cores
o 3D RANS -> several hundred millions cells -> 5000 CPU cores
e coarse-mesh thermal-hydraulics and neutron diffusion
o full-core models -> few hundred thousand to few million cells -> workstations or laptops

Runtime
e Steady-state simulations on the optimal number of CPU cores: several minutes to several hours
* Long-running time-dependent problems: up to a week
* In some specific applications, such as detailed containment simulations: up to a month

Memory requirements
* Single-phase RANS CFD simulation -> order of 10 fields -> 1 GB of memory per million cells
* 3D discrete ordinates neutron transport -> several thousand solution fields -> 200 GB of memory per
million cells
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GI.Ioense

* GNU GPLv3 license
o copyleft type license: automatically affect derivative work
o favors a collaborative development with minimal work duplication
o limits investments from commercial players

36
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