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 That’s me (on GitHub       )

 That’s me ( in real life)

▪ Accelerator-driven production of tritium (mid-90’s)

+

▪ Near real-time PWR accident simulator for crisis management (early 2000’s)

Reactor physics and Applied Math Department

▪ 2004-present: Nuclear engineering, Texas A&M U.

Computational radiation transport, Multiphysics, and 

Predictive science  https://multiphysics.engr.tamu.edu/

https://multiphysics.engr.tamu.edu/
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My research interests

▪ Radiation transport

Predictive Science Academic Alliance Program (PSAAP)

Stockpile stewardship

▪ Multiphysics software development  (Griffin, Pronghorn, RELAP)

▪ Data sciences and machine-learning

Nuclear radiation effects

Multiphysics model reduction 

http://class.tamu.edu/cert

http://class.tamu.edu/cert
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Outline

1. High-performance computing (HPC)

A. Some history

B. Some well-recognized software used in nuclear engineering

C. A few application examples

2. Fast Data-driven Surrogate Models 

A. Motivations for parametric Reduced-Order Modeling (ROM)

B. What is model-order reduction?
Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics 

A. Projection-based ROM for LWR neutronics 

B. Projection-based ROM for Molten Salt Reactor Applications
i. Methods

ii. Examples (MSFR / MSRE)

4. Reduced-Order Models for Transport

5. Summary and Outlook
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Clock speed has flattened 

Transistor count still rising 

(multi-core designs);

“Moore’s law re-interpreted”

Power consumption

(W/cc is the issue)

Parallel instructions

(Instruction-level 

parallelism or ILP)
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Moore’s law: ~straight line on semilog scale107
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Perspective 

1985 ; 244 MHz ; 1.9 

GFLOPS

2010; 800 MHz ; 1.6 

GFLOPS

2015; 1,000 MHz ; 3 

GFLOPS
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U.S. Presidential Information Technology Advisory Committee (PITAC)

▪ Computational science is a rapidly growing 
multidisciplinary field that uses advanced 
computing capabilities to understand and 
solve complex problems.

▪ Requires advances in hardware and 
software. 

T
h

e
o

ry

E
x
p

e
ri

m
e
n

ta
ti

o
n

S
im

u
la

ti
o

n



Texas A&M Nuclear Engineering 
187

6Jean C. Ragusa

Partially adapted from the Lincoln Laboratory Supercomputing Center (MIT)
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HPC for Scientific computing (SC)

Verification

(Am I solving the 

equations correctly?)

Validation

(Am I solving the correct 

equations?)

Uncertainty Quantification

(What is the goal of my 

simulation? What are the 

QoI’s?)
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FastMath: Frameworks, Algorithms and Scalable Technologies 

for Mathematics
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Example-1: Computational fluid dynamics114
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Example-2: MOOSE, a Multiphysics HPC platform117

https://mooseframework.org/

https://mooseframework.org/
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Example-3: Massively parallel radiation transport

▪ neutron, thermal radiation, gamma, electron

▪ steady-state, time-dependent, criticality, adjoint, etc.

▪ advanced solution techniques

▪ discretization in space/angle/energy

➢ Largest problem we have done: 20.8 Trillion unknowns 
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Example-4: Reactor containment

Gas distribution and pressurization inside the containment during an SB-LOCA 
(Julich, Germany, Kelm et al.). 

Based on OpenFOAM for CFD

119
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Example-5: Multiphysics of molten salt reactor
120

Conceptual Design of the MSFR core cavity 

Two-phase flow

Neutronics
Thermal-

hydraulics
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Density and Doppler effects
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flow

Thermal 

radiation heat

transfer

Phase 

change

Steady-state 

conditions

Transient 

conditions

Fuel burn-up

Fluid structure 
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Thermal 
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(CNRS, Tano) 
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Is there a need for fast yet accurate surrogate models?

▪ Multiphysics of molten salt reactor
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Is there a need for fast yet accurate surrogate models?

▪ Multiphysics of molten salt reactor

Conceptual Design of the MSFR core cavity 

Two-phase flow

Neutronics
Thermal-

hydraulics

Thermomechanics

Delayed Neutrons

Density and Doppler effects

Turbulence

Compressible vs 

Incompressible 

flow

Thermal 

radiation heat

transfer

Phase 

change

Steady-state 

conditions

Transient 

conditions

Fuel burn-up

Fluid structure 

interaction
Thermal 

fatigue

• 64 cores. 3 days of simulation

• Pump characteristics not finalized

• HX characteristics not finalized

• Freeze plug characteristics not finalized
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Parametric full-order models

▪ Full-order models:

➢ Little comprise on the selection of the governing laws (first-principle models, HiFi 
models, few physics approximations; e.g., transport, not diffusion)

➢ Models resulting from the discretization of governing laws (PDEs)

➢ Relatively fine resolution of the phase space (3D space but also energy, angle)

➢ Thus costly in CPU+RAM (clusters, supercomputers)

▪ Parametric full-order models:

➢ Input data (model parameters) can change
• Design of Experiments

• Design optimization

• Uncertainty Quantification

➢ Thus, not a hero-calculation !

➢Multi-query problems
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MOR

▪ Simple but powerful observation: 

➢ very often, the trajectory of a large-scale discrete system 
belongs to an affine subspace whose dimension is 
significantly lower than that of the original system. 

➢ for this reason, MOR methods search for the solution of a 
set of governing equations in a subspace, thereby 
offering a potential for significant CPU time reductions

Purpose of MOR : solve many times a given problem under parametric variations (UQ, 

design opt.)
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Model Order Reduction: to reduce the computational complexity
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Model Order Reduction: to reduce the computational complexity

Need to determine the 
expansion coefficients c
(as functions of the input 

parameters)
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Data-driven ROM: a flow-chart
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Many simulations with parametric variations

Common features among the family of solutions

Can we learn from that? → data-driven subspace discovery
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Discovered subspace from training data162

• Obtained via Singular Value 
Decomposition of the 
snapshots (learned data)

• Reduction comes from the 
low number of modes 
needed
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Not teaching SVD in 
UG linear algebra? A 

big mistake in the 
21st century



Full-Order Model: an example

• Consider a neutron diffusion problem

• Discretize and obtain a linear system

• The linear system can be very large  (size n is BIG)

• This is what we call the Full-Order Model (which we wish to reduce)

• Parameters ?? Let’s say you do not know D and S in each region of 
the problem

164



Physics-based model reduction: an example

• Assume the flux is expanded as a known spatial shape (basis) and a 
parametric amplitude

• Plug expansion in the linear system:

• Galerkin-project using known basis function:

reduced matrix of size 
1x1 

.

Solve 
for c

.

A single unknown 
number !!!      

165



Building improved reduced-order models

• Question :
o Why not seek a solution with several basis functions ? 

• The projection step is then:

.

reduced matrix of size r x r !!!
Goal: r << n

Solve 
for c

166



• We can capture variations in the solutions by using more basis 
functions
o For instance, if a set of input parameters is uncertain, we can explore how 

the solution varies 

→ reduction of parameterized full-order models

→ uncertainty quantification

→ design optimization

o Parameter examples: 

• Cross-section variations

• Geometrical variations

• Heat removal rate

• …

Why use more basis functions?

167



How to choose these basis functions ?

• Method of Snapshots
o Used in CFD for turbulence modeling for a long time

o Recently started to be popular for particle transport, reactor kinetics, … 

• Process:
o Explore the input space (e.g., Latin Hypercube Sampling)

o Generate full-order model solutions (snapshots) and perform Singular 
Value Decomposition (SVD, aka, Principal Component Analysis)

o Finally, based on the magnitude of the singular values, down-select the 
dominant modes
• Think of “image compression” for physical solutions

Data matrix 
of snapshots

…          …
U

VTS

super important

168
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Demonstration of SVD with image compression

• 1200 x 1600 pixels (RGB array)

• Do we need 1600 vectors to have a representative picture ?
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Demonstration of SVD with image compression

• 1200 x 1600 pixels (RGB array)
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Projection-based ROM: some math …  

▪ First, the parametric full-order system (FOM):
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Projection-based ROM: learning about the FOM
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Projection-based ROM: building the ROM
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Projection-based ROM: building the ROM

▪ Quadratic terms, as in Navier-Stokes eqs, for instance:



177

What about the parameter dependence of the operators?

• Often, your operator (matrix) is linear (affine) in the ``parameters’’.

• So the reduced operators can be pre-computed

• Obtaining them can be a little intrusive to the FOM code but can yield 
huge speed-ups
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Projection-based ROM: Online phase of ROM
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Projection-based ROM: Online phase of ROM

not really
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Multi-group diffusion k-eigenvalue problem

Example: C5G7 benchmark: UO2 + MOX mini core

• 7 energy groups

• 7 material regions

• Uncertain parameters:

o Diffusion coefficients

o Absorption cross sections

o Scattering matrix

o Fission cross section

• Altogether 287 uncertain parameters

o Perturbed in a ± 20% interval around the mean

• Original problem size: 231,000 unknowns 

Application example-1
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Application example-1

• ROM built using 50 snapshots only

• New, group-wise reduction technique

published in [1].

• Using 21-34 modes per group

• Robust method

• Altogether 194 unknowns

• 2500 x faster than the FOM

[1] Peter German, Jean C. Ragusa, Reduced-Order Modeling of Parameterized Multi-group Diffusion 
k-Eigenvalue Problems, Annals of Nuclear Energy, 134, pp. 144-157. 

G1

G7

The first two POD modes of the scalar flux in 
group 1 and group 7
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Application example-1

• 200 test samples (not included in the training set):

o Average difference in keff :  10 pcm

o Maximum difference in keff :  98 pcm

o Average difference L2 norm: G1: 0.47%, G7: 1.48%

FOM ROM Difference

G1

G7
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Model-order reduction for advanced reactors
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Projection-based ROM for the MSR : Fluid flow
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Projection-based ROM for the MSR : Fluid flow
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Projection-based ROM for MSR: Neutronics



Texas A&M Nuclear Engineering 
187

6Jean C. Ragusa

Projection-based ROM for MSR: Neutronics
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Projection-based ROM for the MSR : Heat Transfer
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Projection-based ROM for the MSR : Heat Transfer
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MSRE ROM: some results



Texas A&M Nuclear Engineering 
187

6Jean C. Ragusa

MSRE ROM: some results
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MSRE ROM: some results
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MSRE ROM: performing UQ with ROM
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MSFR ROM: some results
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MSFR ROM: some results
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MSFR ROM: some results
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Reconstructed Flux (left) - Reconstruction Error (right)
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Reconstr. Temperature (left) – Reconstr. Error (right)
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Reconst. Velocity (left) - Reconstruction Error (right)
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Model-order Reduction: huge speed ups
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Graphical User Interface Demo
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MSFR: What do some basis functions look like?
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Brief review of linear Boltzmann transport
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Solution Techniques for LBT
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Motivations for parametric reduced-order models for 

radiation transport

▪ Multi-query problems to investigate input parameter space

▪ Boltzmann simulation models are computationally expensive and may not meet 
mission needs.

▪ → Need faster but accurate surrogate models
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Examples of target applications
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NWrE and Urban Modeling 

Discretization

• Spatial cells: 136,633

• Vertices per cell: ~19

• Energy groups: 116

• Angles: 512

• DoFs: 160 B
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Terrain Geometry

▪ Polyhedral mesh

Topographical surface map

NW source

▪ 512 angles

▪ 1 group problem

▪ ~170 M angular unknowns

▪ 78,113 nodes, 14,864 cells

▪ Sweep time 43 seconds

▪ 6 processors

▪ ParMETIS partitioning
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Projection approach (to be skipped)
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Non-intrusive ROM for Transport using Gaussian Processes

Solution (4e6) Error (2e2)
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Non-intrusive ROM for Transport using Gaussian Processes

Solution (4e6) Error (2e2)

Recall, FOM:100 B unknows. 60 min on 320 processors

Here, ROM:

- Coef evaluations: < 10 ms

- Reconstruction (~writing to disk: 4 sec)
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High-level view of Model Order Reduction with subspace learning
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High-level view of Model Order Reduction with subspace learning

Today, the reduced coordinates were obtained by a projection process

A x = b → the reduced system Ar c = br (code invasive) 

This is not the only option. Non code-invasive possibilities include 

learning the reduced coordinates with :

1. Gaussian Processes

2. Regression splines

3. Neural Networks

4. etc. … 
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What else is next in MOR?
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What else is next in MOR?
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Conclusions

▪ HPC for nucl. sci. engr. applications

▪ Intro to parametric reduced-order modeling

Data-driven subspace discovery

▪ Applications to reactor physics (LWRs & MSRs)

▪ Applications to particle transport

1 2 3 5
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Our papers about POD-ROMs for MSRs

About GeN-ROM, now published
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https://gitlab.com/peter.german/gen-rom

https://gitlab.com/peter.german/gen-rom

