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= Accelerator-driven production of tritium (mid-90’s)
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= Near real-time PWR accident simulator for crisis management (early 2000s)
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= “Models with Multiple Levels of Fidelity, Tractability, and Computational Cost for
Nuclear Weapon Radiation Effects”

»> DOD/DTRA (2017-2021)

> Highlights:
» Development of reduced-order models for radiation transport
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Outline
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Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics

A.  Projection-based ROM for LWR neutronics

B. Projection-based ROM for Molten Salt Reactor Applications
i, Methods
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4. Reduced-Order Models for Transport

5. Summary and Outlook
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102 Evolution of processor speeds
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Evolution of processor speeds

Instruction-level parallelism:
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Architectural technique that allows the overlap

of individual machine operations (add, mult,

load, store, ...)

Multiple operations will execute simultaneously | count still rising
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Evolution of processor speeds

Instruction-level parallelism:
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of individual machine operations (add, mult,
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Evolution of processor speeds

Instruction-level parallelism:
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106 Evolution of processor speeds

Instruction-level parallelism:
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107 Moore’s law: ~straight line on semilog scale

5 . . . .
Moore’s Law: The number of transistors on microchips doubles every two years [SUgilte
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data

This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Perspective

The CRAY-2
Series of Computer Systems

2010; 800 MHz ; 1.6
GFLOPS

Ly = P

2015; 1,000 MHz ; 3
GFLOPS
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U.S. Presidential Information Technology Advisory Committee (PITAC)

= Computational science is a rapidly growing e e ——
multidisciplinary field that uses advanced JUNE 2005
computing capabilities to understand and
solve complex problems.

COMPUTATIONAL SCIENCE:

. . ENSURING AMERICA’S
= Requires advances in hardware and

COMPETITIVENESS
software.

PRESIDENT’S

INFORMATION TECHNOLOGY

imu

ADVISORY COMMITTEE
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High Performance Scientific Computing

Introduction to HPSC

S What is High Performance
Scientific Computing?

Multi-process

What is
Computing Scaling g

Challenge
Overvievy of application takes too
computational long to run
landscape
Application doesn't fit
in memory of single machine
Scientific
Simulations

Application doesn't fit
Examples

&
takes too long

Data Analysics and
Knowledge Extraction

ParaView

Parallel Visualization Application
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HPC for Scientific computing (SC)

phenomenon, process efc.

Verification > l modelling

(Am | solving the

equations correctly?) mathematical model

Validation — l numerical treatment

(Am | solving the correct : ith

equations?) numerical algorithm

Uncertainty Quantification l |mplementat|on

(What is the goal of my - -

simulation? What are the simulation code

Qol's?) l visualization
L= results to interpret
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FastMath: Frameworks, Algorithms and Scalable Technologies
_  forMathematics

i

Applied mathematics algorithms, tools, and software for
HPC applications

— P ETS T O Portable, Extensible Toolkit for Scientific Computation
— C “" Toolkit for Advanced Optimization

PETSc
Matrices
Compressed Blocked Compressed  Block
Vectors Sparse Row Sparse Row Diagonal Dense Others
(AL)) (BALJ) (BDIAG)

Linear Solvers

GMRES CG CGS BIiCGSTAB  TFQMR  Richardson  Chebychev  Others

Preconditioners
Additive Block Jacobi ILU 1CC Others
Schwartz Jacobi
Non-linear Solvers Time Steppers

Line Search Trusted Region  Others Euler Backward cLepada Tunc Others
Euler Stepping
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FastMath: Frameworks, Algorithms and Scalable Technologies

Applied mathematics algorithms, tools, and software for
HPC applications

— P ETS T O Portable, Extensible Toolkit for Scientific Computation
— C “" Toolkit for Advanced Optimization

PETSc
Matrices
. ||Compressed Blocked Compressed  Block
Vectors Sparse Row Sparse Row Diagonal Dense Others
(AL)) (BALJ) (BDIAG)

Linear Solvers

GMRES CG  CGS BiCGSTAB  TFQMR  Richardson  Chebychev — Others

ARGONNE TRAINING PROGRAM'ON EXTREME-SCALE'-COMPUTING'

Preconditioners
Additive Block Jacobi ILU IcC Others
Schwartz Jacobi
Non-linear Solvers Time Steppers
Sl A E = .+ Backward Pseudo Time .
Line Search Trusted Region Others Euler Euler Stoppitg Others
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114 Example-1: Computational fluid dynamics

Lumped Parameter. _,
System Codes 4

-
=

Increased
Costs
buispop
pasealou|

RANS
LES
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Nuclear Energy

Example-1: Computational fluid dynamics

Nek5000: Open Source Spectral
Element Code

Spectral Element Discretization:
High accuracy at low cost

— Highlyrespected code in Fluid Dynamics
Community. > 300 registered users. Europe
and United States mostly.

— Open source.

— Portable:runs on a laptopaswellas a
supercomputer.

Particularly well suited to LES and

DNS of turbulent heat and flow transfer

—  Incompressible and Low-Mach, combustion,
MHD, conjugate heattransfer, moving meshes,
RANS, two-phase, CHT, buoyancy, adjoints, ...

— Newfeatures in progress: compressible flow
(GE), LBM, AMR, other meshing options.

Exceptional scaling
— 1999 Gordon Bell Prize.
— recently run with > 106 MPI processes.
— R&D100awardsin2016.

High order method

Local Polynomial Nodal Basis: Lagrange
polynomials on Gauss-Lobatto-Legendre (GLL)
guadrature points. for stability ( not uniformly
distributed points ). Implies a 2 level mesh.
Exponential convergence (100x reduction in error
for 2x increase in resolution).

Fast operatorevaluation.

Example of the "2-level”
mesh typical of Nek5000

2D basis function,

N=10

EEEEEEEEEENEAM

mmmmmamm




116 Example-1: Computational fluid dynamics

ENERGY User case: Using higher-
resolution approaches to inform
e lower-resolution methods - 1

For complex W/Upuix
geometries CFD- ol

grade data is often bt

1

not available. i . .
* RANS approaches can e e— NRG3- L '"Assvi%%’;
benefit from . 28 1 _'gg';?tz_ rendering and
comparison with 0.4 - lowRe colorcuts
DNS/LES 2 == == ANL-lowRe ot
International 5 | s S ‘
collaboration (INERI) 6 02 04 06 .08 .
centered on wire- 7 pin Assembly: streamwise velocity on diagonal
1.50E-01 - ANL
wrappers. 1.00E-01 ¥~ ——Ghent Univ.

* Comparison between
commercial codes and 5.00E-02 -
Nek5000 0.00E+00 -

* Results are being used
in the design of
advanced reactorsin  -1.00E-01 -

Europe -1.50E-01 -

AEEERIEEER
[SFR] 7 pin Assembly: Average Cross-flow :FEE:E:E: N EAM

12 mmmsvmmmooamaswu.mmmg

=4

—=NRG-1

0
-5.00E-02 -




117 Example-2: MOOSE, a Multiphysics HPC platform

¥ it ‘\ / ”RELAP-7

i

Bumup I} Temperature
0.000 0.014 0.029 540 565 590
(I _ . K
0007 0022 1me=4869Days .5 g7

https://mooseframework.org/

()

AT
R
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118 Example-3: Massively parallel radiation transport

TEXAS A&M UNIVERSITY

neutron, thermal radiation, gamma, electron

Department of
= steady-state, time-dependent, criticality, adjoint, etc. . Nuclear Engineering
= advanced solution techniques a2 2018

NATIONAL DEBT OF UNITED STATES

discretization in space/angle/energy

> Larg_est problem we have done: 20.8 Trillion unknowns S 20,502,740,304,41 1

-
pustitians PDT Parallel-efficiency History
1.1 1.5 M processes
E E 1.0 - “ (Mira ANL)
g i 0.9 — !
] - 0.8 _—
u ’ 0.7 \
T E 0.5
| §0.4 | =0=2012-1221,BG/Q «=2014-0610, BG/Q
03 2014-1113, BG/Q 2015-0712, BG/Q
0.2 || ==2015-0826, 2t/c, BG/Q «@=2014-1113, 3grp, BG/Q
01 2016-0406, BG/Q =m=2016-0406, 3grp, 2t/c, BG/Q
0.0 | | | | | v
8 64 512 4096 32768 262144 2097152
processes
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119 Example-4: Reactor containment

t=2600s 0_ 15— 39 (m)

Gas distribution and pressurization inside the containment during an SB-LOCA
(Julich, Germany, Kelm et al.).

Based on OpenFOAM for CFD

Jean C. Ragusa Texas A&M Nuclear Engineering



120

Example-5: Multiphysics of molten salt reactor

Bubble
I~ separator

A Conceptual Design of the MSFR core cavity

MSFR core
|| cavity filled

7~ with the fuel

salt

Salt draining
system

Delayed Neutrons

Density and Doppler effects

Steady-state
conditions

Transient
conditions

Fuel burn-up

(CNRS, Tano)
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Example-5: Multiphysics of molten salt reactor

= Bubble
separator

- Pumps Conceptual Design of the MSFR core cavity

— HXs

| MSFR core

iy~ cavity filled
=/ with the fuel

" salt

Temperature (K)
1150.0

&

E1([0 |8

(CNRS, Tano) s T
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Outline

1. High-performance computing (HPC)

A. Some history
B. Some well-recognized software used in nuclear engineering
C. A few application examples

2. Fast Data-driven Surrogate Models

A.  Motivations for parametric Reduced-Order Modeling (ROM)
B. What is model-order reduction?
Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics

A.  Projection-based ROM for LWR neutronics

B. Projection-based ROM for Molten Salt Reactor Applications
i, Methods
. Examples (MSFR / MSRE)

4. Reduced-Order Models for Transport
5. Summary and Outlook
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Is there a need for fast yet accurate surrogate models?

> Bubble = Multiphysics of molten salt reactor

Conceptual Design of the MSFR core cavity

MSEFR core
|| cavity filled
with the fuel
~_salt

Delayed Neutrons

Density and Doppler effects

Steady-state
conditions

Transient
conditions

Fuel burn-up

Jean C. Ragusa



Is there a need for fast yet accurate surrogate models?

——) Bubble
T~ separator

=— Pumps

| MSFR core

cavity filled

) with the fuel
A — salt

&

E1([0 |8

= Multiphysics of molten salt reactor

Conceptual Design of the MSFR core cavity

Temperature (K)
1150.0
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Is there a need for fast yet accurate surrogate models?

> Bubble = Multiphysics of molten salt reactor

[T~ separator

=— Pumps

Conceptual Design of the MSFR core cavity

: | MSFR core
. cavity filled
~_ ) with the fuel
4 ~ salt

64 cores. 3 days of simulation

Pump characteristics not finalized

HX characteristics not finalized

Freeze plug characteristics not finalized

Temperature (K)

E1150.0 .
=1087.5 -
St =
C E .
—
:
S S
Fu E .
)
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Is there a need for fast yet accurate surrogate models?

Source: 1 m3

~168,000 Polyhedral cells

ROI: 1 m3 Photon Groun 1

1.0 0.5
0'00.5 0.0 —05
-0.5
1.0 ‘
0.5
0.0 | ' AT
-05] i
~1.0]
Shield and ROI
[ (FEM-unk) /cell | spatial cells | angles | groups | total unkws CPU processes | wall-clock
22 ~ 168,000 | ~ 600 42 94B 320 60 min.




Is there a need for fast yet accurate surrogate models?

Source: 1 m3

~168,000 Polyhedral cells

Sources of Uncertainty in Qols for NWrE:

© Source position (altitude, slant).

@ Source spectrum (fraction of fission spectrum + fusion spectrum, for n and ~).
© Air Humidity (in addition to air density variation wrt to z).
© Ground Composition.

© Location and orientation of Rol (Region of Interest).

~1.0

Shield and ROI

<7<FEM—unk>/ceII spatial cells | angles | groups | total unkws CPU processes | wall-clock
22 ~ 168,000 | ~ 600 42 94B 320 60 min. |

I

—




Parametric full-order models

= Full-order models:
> Little comprise on the selection of the governing laws (first-principle models, HiFi
models, few physics approximations; e.g., transport, not diffusion)
» Models resulting from the discretization of governing laws (PDEs)
> Relatively fine resolution of the phase space (3D space but also energy, angle)
» Thus costly in CPU+RAM (clusters, supercomputers)

= Parametric full-order models:

> Input data (model parameters) can change
 Design of Experiments
» Design optimization
» Uncertainty Quantification

» Thus, not a hero-calculation !

» Multi-query problems

Jean C. Ragusa Texas A&M Nuclear Engineering
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Parametric full-order models

= Full-order models:

> Little comprise on the selection of the governing laws (first-principle models, HiFi
models, few physics approximations; e.g., transport, not diffusion)

» Models resulting from the discretization of governing laws (PDEs)
> Relatively fine resolution of the phase space (3D space but also energy, angle)
» Thus costly in CPU+RAM (clusters, supercomputers)

= Parametric full-order models:

> Input data (model parameters) can change
 Design of Experiments

 Design optimization
» Uncertainty Quantification
» Thus, not a hero-calculation !

» Multi-query problems ipus.
* Initial conditions Output quantity
* Boundary conditions a a of interest (QOI)
* Model parameters

* Quantify the impact of input uncertainties on output QOI

* Propagate input uncertainty through the computational model

* Nonlinear transformation of input uncertainty

Jean C. Ragusa ror A



Taxonomy of reduced-order models

N e B g e (Purely) Machine Learning /
Physics Based Statistical Mathematical Artificial Intelligence
Have full knowledge of . ; What’s the equation
nicely behaved PDE Coefficients are Hard Here's a bunch of numbers for “is this a cat?”
* Analytic Models | |+ Empirical/Surr- ||« Regression * Neural
ogate Models . \
% | g  Principal ? Networks
* Approximate C e s Support vector

Models * Monte Carlo ’

| machin
/\ metho - s SIS achines

 High-fidelity

* Bayesian
Calibration Decomposition

Energies 2021, 14, 4235. https:/ /doi.org/10.3390/ en14144235
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Taxonomy of reduced-order models

Model Order Reduction

B MOR techniques:

e Requires data for training?

Data-driven (Scientific Machine Learning): Polynomial regression,

Polynomial Chaos Expansion, Gaussian Processes, Neural Networks,
Reduced Basis Methods, ...

Not data-driven: Balanced Truncation, Krylov Subspace methods,
Proper Generalized Decomposition...

e Requires the operators of the FOM for training?

Non-intrusive: Polynomial regression, Polynomial Chaos Expansion,
Gaussian Processes, Neural Networks, ...

Intrusive (physics based): Balanced Truncation, Krylov Subspace
methods, Reduced Basis Methods, Proper Generalized Decomposition...

Jean C. Ragusa Texas A&M Nuclear Engineering



Taxonomy of reduced-order models

Model Order Reduction

B MOR techniques:

e Requires data for training?

Data-driven (Scientific Machme Learning): Polynomial regression,
Polynomial Chaqg i2n Processes, Neural Networks,

Reduced Basis
. Reduced Order Methods
Not data-drivenge g e Eae n, Krylov Subspace methods,

Proper Generaliz Computational Reduction

Al Quarterond, Gluanduigi Rozza fdeon

e Requires the operators

ing?
Non-intrusive: ‘m Polynomial Chaos Expansion,
Gaussian Proces;s

Intrusive (physi Bl \ ’ runcation, Krylov Subspace

methods, Reduce ‘rm\ oper Generalized Decomposition...
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MOR

Model order reduction

From Wikipedia, the free encyclopedia

Model order reduction (MOR) is a technigue for reducing the computational complexity of mathematical models
in numerical simulations. As such it is closely related to the concept of metamodeling with applications in all areas

of mathematical modelling.

= Simple but powerful observation:

> very often, the trajectory of a large-scale discrete system
belongs to an affine subspace whose dimension is
significantly lower than that of the original system.

> for this reason, MOR methods search for the solution of a
set of governing equations in a subspace, thereby
offering a potential for significant CPU time reductions < o

—0.5F

: solve many times a given problem under parametric variations (UQ,

design opt.)



MOR

Model order reduction

From Wikipedia, the free encyclopedia

Model order reduction (MOR) is a technigue for reducing the computational complexity of mathematical models
in numerical simulations. As such it is closely related to the concept of metamodeling with applications in all areas

of mathematical modelling.

= Simple but powerful observation:

> very often, the trajectory of a large-scale discrete system
belongs to an affine subspace whose dimension is
significantly lower than that of the original system.

> for this reason, MOR methods search for the solution of a
set of governing « @h
offering a potenti. ¢

XXL dof —0.5F

highfidelity model Offline training phase
to lose dof

Low dof and good shape, (') = (') 0"?
Hyper-reduced order model —U0 R3]
ready for online phase ;L‘(f)

: solve many times a given problem under parametric variations (UQ,

design opt.)



Model Order Reduction: to reduce the computational complexity

e Model order reduction (MOR) is a set of techniques aimed at reducing the computational complexity of

mathematical models in numerical simulations.

e Description of reality (model) + problem input data (in) — PDEs — discretization — large-scale
model with a large number of unknowns (degrees of freedom, DoFs) N.

Full Order Model (FOM): Solve & = f(x(t),in(t)) with|z e RY

@ Model order reduction aims at lowering the computational complexity of such problems by reducing the

# of DoFs (r < N)

Reduced Order Model (ROM): Solve ¢ = f,(c(t),in(t)) |ce R" withr < N

such that
|z — Uc|| < Cr||in|| with lim C, =0
';‘ﬂ_),'r\‘r

U: reconstruction operator.

Key points:

e Full Order Model (FOM) re RN

@ Reduced Order Model (ROM) ceR" withr <N

e Reconstruction: |z & Uc |where U (size N x r) is a data-driven discovered basis.




Model Order Reduction: to reduce the computational complexity

e Model order reduction (MOR) is a set of techniques aimed at reducing the computational complexity of

mathematical models in numerical simulations.

e Description of reality (model) + problem input data (in) — PDEs — discretization — large-scale
model with a large number of unknowns (degrees of freedom, DoFs) N.

Full Order Model (FOM): Solve & = f(x(t),in(t)) with|z e RY

@ Model order reduction aims at lowering the computational complexity of such problems by reducing the
# of DoFs (r < N)

Reduced Order Model (ROM): Solve ¢ = f,(c(t),in(t)) |ce R" withr < N

such that
|z — Uc|| < Cr||in|| with lim C, =0
';‘ﬂ_).'r\‘r

U reconstruction operator.

A

Need to determine the
expansion coefficients ¢
e Full Order Model (FOM) e RN (as functions of the input
parameters)

@ Reduced Order Model (ROM) ceR" withr <N

e Reconstruction: |z & Uc |where U (size N x r) is a data-driven discovered basis.




Data-driven sub-space discovery

discretize

olonpal
1aplo-|]apoN

&
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Data-driven sub-space discovery

[Ph ysical system ] + [a (p)

Original image

=N —

Image with 3 SVD function(s)

Jean C. Ragusa |

]l modeling

Image with 1 SVD function(s)

Image with 10 SVD function(s)

Image with 2 SVD function(s)
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Data-driven sub-space discovery
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Data-driven sub-space discovery

Physical system | + | Data(p) || modeling

1.0 1.0

0.8 0.8

2 GeN-ROM - Model-Order Reduction tool for OpenFOAM -
File Help

Effe: multiplication factor

Sigma_r_1 Field to plot: [T

Sigma_r_2 a« ‘%‘ ”% '1" Q E

Sigma_r_3

D4

Sigma_r_4
D5
Sigma r 5
D_6 -
Sigma_r_&
nuSigma_f_1
ROM Load,

keff = 0.969448

nuSigma_f 2
nuSigma
nuSigma_f

nuSigma

nuSigma

e Q.
Jean C. Ragusa



Flow chart

Data-driven ROM: a flow-chart

Offline/Training phase
(expensive)

Identifying the Problem
(Governing laws and domain)

\

Creating
Full-Order Model (FOM)

l

Learning about the
system using the FOM

!

Building Reduced
Operators

Online/Evaluation phase
(cheap)

Evaluating Quantities of
Interest (Qol)

1

Solving ROM

T

Assembling
Reduced-Order Model
(ROM)
from reduced operators

T

Generating a ROM is only viable if the Training phase can be justified!

Jean C. Ragusa
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Many simulations with parametric variations

0.

©

o.

o

. - tBD-stc. -
!
=
<X
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Many simulations with parametric variations

ONINNAA/SOKTANAND
P VAl
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations

10
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0.0
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations

NNNATITHRALS
W A»“A}‘«»
y tava %

0.0

Common features among the family of solutions

0.4 0.6 0.8 1.0
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Many simulations with parametric variations
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Many simulations with parametric variations
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Many simulations with parametric variations

0.0

Common features among the family of solutions

0.4 0.6 0.8 1.0
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162 Discovered subspace from training data

0.2
0.0 wL
0.0

 Obtained via Singular Value \ ==
Decomposition of the
snapshots (learned data) \
* Reduction comes from the AN
low number of modes N
needed \

0 100 200 300 400 500
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of AMERICAN
= lenu 2 AM MATHEMATICAL
SOCIETY

FEATU RE COLUMN Monthly essays on mathematical topics

We Recommend a Singular Value Decomposition

August 2009.

In this article, we will offer a geometric explanation of singular value decompositions and look at some of the applications of them.

Not teaching SVD in
UG linear algebra? A

David Austir
=7 Mailtoa friend@ Print this article Grand Valley State Universit
david at merganser.math.gvsu.edu s[=

big mistake in the

21t century Introduction

The topic of this article, the singular value decomposition, is one that should be a part of the standard mathematics
undergraduate curriculum but all too often slips between the cracks. Besides being rather intuitive, these decompositions
are incredibly useful. For instance, Netflix, the online movie rental company, is currently offering a $1 million prize for
anyone who can improve the accuracy of its movie recommendation system by 10%. Surprisingly, this seemingly modest
problem turns out to be guite challenging, and the groups involved are now using rather sophisticated techniques. At the

heart of all of them is the singular value decomposition.

A singular value decomposition provides a convenient way for breaking a matrix, which perhaps contains some data we
are interested in, into simpler, meaningful pieces. In this article, we will offer a geometric explanation of singular value
decompositions and lock at some of the applications of them.

The geometry of linear transformations

Let us begin by locking at some simple matrices, namely those with two rows and two columns. Our first example is the

diagonal matrix

I| NUCLEAR ENGINEERING
AlM TEXAS A&M UNIVERSITY



Full-Order Model: an example

* Consider a neutron diffusion problem

V. .DVO+ 3,0 =0

* Discretize and obtain a linear system

* The linear system can be very large (size n is BIG)
* This is what we call the Full-Order Model (which we wish to reduce)

 Parameters ?? Let’s say you do not know D and X in each region of

the problem y

X TEXAS A&M ENGINEERING Al|M | NUCLEAR ENGINEERING
5 EXPERIMENT STATION . TEXAS A&ZM UNIVERSITY




Physics-based model reduction: an example

 Assume the flux is expanded as a known spatial shape (basis) and a
parametric amplitude | g (= = — (7 o( i
( ”U,) (’/( ) (u) A single unknown

* Plug expansion in the linear system: number 2

-m

e Galerkin-project using known basis function:

I A c=q
—Lp I l

reduced matrix of size

165
‘ TEXAS A&M ENGINEERING A|M | NUCLEAR ENGINEERING
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Building improved reduced-order models

* Question : i
o Why not seek a solution with several basis function® = Z pi(r) ¢i(H)
=1
[ |
"

¢ mp O

 The projection step is then:

N _
I o
(’O » . = B - Solve
A, = T Ap forc
s [ I ¢
_(p I
reduced matrix of size r x r 11!
Goal: r<<n

166
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Why use more basis functions?

 We can capture variations in the solutions by using more basis
functions

TEEE |

o For instance, if a set of input parameters is uncertain, we can explore how
the solution varies

- reduction of parameterized full-order models

—> uncertainty quantification
— design optimization

o Parameter examples:
* Cross-section variations
* Geometrical variations

* Heat removal rate

167
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How to choose these basis functions ?

 Method of Snapshots

o Used in CFD for turbulence modeling for a long time
o Recently started to be popular for particle transport, reactor kinetics, ...

* Process:

o Explore the input space (e.g., Latin Hypercube Sampling)

o Generate full-order model solutions (snapshots) and perform Singular
Value Decomposition (SVD, aka, Principal Component A*alysis)

______ { \

— Data matrix —
of snapshots

cC

super important

o Finally, based on the magnitude of the singular values, down-select the
dominant modes
* Think of “image compression” for physical solutions

168
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How to choose these basis functions ?

 Method of Snapshots

o Used in CFD for turbulence modeling for a long time
o Recently started to be popular for particle transport, reactor kinetics, ...

* Process:

o Explore the input space (e.g., Latin Hypercube Sampling)

o Generate full-order model solutions (snapshots) and perform Singular
Value Decomposition (SVD, aka, Principal Component A*alysis)

______ { \

Data matrix —
of snapshots

Useful modes

super important

o Finally, based on the magnitude of the singular values, down-select the
dominant modes
* Think of “image compression” for physical solutions

169
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Demonstration of SVD with image compression

e 1200 x 1600 pixels (RGB array)
* Do we need 1600 vectors to have a representative picture ?

Image with 2 SVD function(s)

Original image Image with 1 SVD function(s)

I| NUCLEAR ENGINEERING
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Demonstration of SVD with image compression

e 1200 x 1600 pixels (RGB array)
* Do we need 1600 vectors to have a representative picture ?

Image with 1 SVD function(s) Image with 2 SVD function(s)

Original image

Singular Value Decay

102 4

10—1 4

L b

1074 1

, |

) SVD function(s)

Image with 3 SVD function(s

I| NUCLEAR ENGINEERING
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Projection-hased ROM: some math ...

= First, the parametric full-order system (FOM):

Training phase - Creating a Full-Order Model (FOM)

Discretization in space

do(t; p)

Mp— — + A(t: p)0(t; p) + F(O(t; ).t ) = S(t; ),

Together with appropriate initial and boundary conditions (on I')
- 0 discretized solution field

Mp € RV*N mass matrix

A(t; i) € RNV>*N discretized linear operator

F(0.t; 1) € RN nonlinear function

S(t; ) € RN source term

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-based ROM: learning about the FOM

Training phase - Learning about the System

Approximating of the solution
The reduced-basis approximation of 8 can be expressed as:

O(t; ) ~ O(t; p) = Z@b (t;p) =w'c”,

Generation of the basis vectors

B Method of snapshots is used to collect information about the system — N
instances of @ is saved into a snapshot matrix:

Ry, = [9(”1 1'1) ..... B(MN SIN )] RNXNS,

B The basis functions of the reduced subspace can be obtained by computing the
constrained Singular Value Decomposition (SVD) of Ry:

Ry =w’A’ VY,
with enforcing W™ MpW = [I. This is equivalent to Proper Orthogonal
Decomposition (POD) for discrete systems.

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-bhased ROM: building the ROM

Training phase - Building Reduced Operators

B Using the spatially discretized formulation in Eq. (2) and the approximation
in Eq. (3) together with a Galerkin projection (left multiplication by W% T):

8 (7}
W T Mpw P T A ) + T (WY () ) = WO TS,
(6)
B where W Mpw? =1 A"(p) = W T A(p)W? € R*" and
S"=Ww”T§ c R can be used to get
oc?(p.t
P ) () + WO TF S ) ) = ST (1)

B It is visible that at this point the only unknowns in the system are the
elements of ¢?(p.t), which means that the number of spatial unknowns is
reduced from N to rp < N.

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-based ROM: building the ROM

About the Nonlinear Term

Discrete Empirical Interpolation Method (DEIM) [2]

Discrete Empirical Interpolation Method (DEIM) is used to approximate the
"reduced" nonlinear operator as:

W T W (b)) ~ W TWF P (c? . t) (8)

- ¢"(c?,p,t) - coefficient vector for the nonlinear term
- wF _ gpatial basis built for the nonlinear term

Snapshots Basis functions Interpolation points

i o Old points

Snapshot 4
Snapshot 5

1] —

Z &

wowwm

napshot
napshot 2
napshot 3

F(o(x))

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-based ROM: building the ROM

= Quadratic terms, as in Navier-Stokes egs, for instance:

About the Nonlinear Term

Other option (for polynomial nonlinearities)

ro
wi T (w2 = (Z cfwg'le'ag(q,b,(f)W9> ¢ =c"T1c’ 9)
k=1

This is commonly used for convection terms.

|

i k

I
I

Jean C. Ragusa Texas A&M Nuclear Engineering



What about the parameter dependence of the operators?

e Often, your operator (matrix) is linear (affine) in the “parameters”.

A= Z fi(p)A,;

A= Z D, S +X M.

* So the reduced operators can be pre-computed

f’lr — E D;rn.gﬂTSmiﬁ + Em @Tﬂ[m#? — E Drr+ Zm
m m

e Obtaining them can be a little intrusive to the FOM code but can yield
huge speed-ups

I| NUCLEAR ENGINEERING
A M TEXAS A&M UNIVERSITY



Projection-bhased ROM: Online phase of ROM

Online/evaluation Phase

Assembling ROM

Operations do not scale with N — this step is fast. (Summation/multiplication
with scalar of small matrices/vectors)

Solving ROM

B Size of the system is ry x ry — Even direct solvers can be used.

B Time-dependent problems: time integration is at reduced-order level
B Nonlinear problems: fixed-point iteration is needed.

Computing Quantities of Interest (Qols)

B Reconstruct approximate & — compute the Qols. This scales with N (slow).
B In certain cases the Qol can be directly computed using c”:

point/average values can be stored for each basis function. (really fast)

Jean C. Ragusa
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Projection-bhased ROM: Online phase of ROM

Online/evaluation Phase

Assembling ROM

Operations do not scale with N — this step is fast. (Summation/multiplication
with scalar of small matrices/vectors)

Solving ROM

B Size of the system is ry x ry — Even direct solvers can be used.

B Time-dependent problems: time integration is at reduced-order level
B Nonlinear problems: fixed-point iteration is needed.

Computing Quantities of Interest (Qols)

B Reconstruct approximate 0 — compute the Qols. This scales with N
B |n certain cases the Qol can be directly computed using c’:
point/average values can be stored for each basis function. (really fast)

not really

Jean C. Ragusa
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Outline

1. High-performance computing (HPC)

A. Some history
B. Some well-recognized software used in nuclear engineering
C. A few application examples

2. Fast Data-driven Surrogate Models

A.  Motivations for parametric Reduced-Order Modeling (ROM)
B. What is model-order reduction?
Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics

A.  Projection-based ROM for LWR neutronics

B. Projection-based ROM for Molten Salt Reactor Applications
i, Methods
. Examples (MSFR / MSRE)

4. Reduced-Order Models for Transport

5. Summary and Outlook
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Application example-1

Multi-group diffusion k-eigenvalue problem

Example: C5G7 benchmark: UO, + MOX mini core

1 26
* 7 energy groups |I||:H:||H
e 7 material regions %ﬁﬁ
* Uncertain parameters: + ##ﬁg
| ]
o Diffusion coefficients Ulclle lfu‘e\ T . 4.3% MOX fuel
B Guide tube » 7.0% MOX fuel
o Absorption cross sections ® Fiss.chamber = 8.7% MOX fuel
B-B
o Scattering matrix A-A
- : ¥ Reflector ¥ |Reflector
o Fission cross section SN g~ 5
. s uo, v v
* Altogether 287 uncertain parameters A R uo,
. . ¥ Uo, v’
o Perturbed in a £ 20% interval around the mean 3
21.41_| 21.41_|_21.41

Original problem size: 231,000 unknowns

M NUCLEAR ENGINEERING
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Application example-1

I 1 G1
* ROM built using 50 snapshots only :

* New, group-wise reduction technique

published in [1].

* Using 21-34 modes per group -

e Robust method

e Altogether 194 unknowns

P
o2

N\~
™
e 2500 x faster than the FOM

The first two POD modes of the scalar flux in
group 1 and group 7

[1] Peter German, Jean C. Ragusa, Reduced-Order Modeling of Parameterized Multi-group Diffusion
k-Eigenvalue Problems, Annals of Nuclear Energy, 134, pp. 144-157.
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Application example-1

200 test samples (not included in the training set):
o Average difference in k4 : 10 pcm
o Maximum difference in k4 : 98 pcm
o Average difference L2 norm: G1: 0.47%, G7: 1.48%

FOM ROM Difference
B " I
G L7000 0.0e+00
Max: 3.4e-03
I Jin: 0.0e+00
'l?
. : 0.0e+00

Max: 2.6e-03
iNn: 0.0e+00

NUCLEAR ENGINEERING

TEXAS A&M UNIVERSITY



Model-order reduction for advanced reactors

Downcomer
T ' Some of the reduced operators

+0.8

Offline/Training phase | Online/Evaluation phase
(expensive) (cheap)
A4
z Creating Evaluating Quantities of
- Full-Order Model (FOM)| ! Interest (Qol)
) H
z 3 ! 1
E = !
ol v ! Solving ROM
= '
o E Learning about the 5 A
i ot system using the FOM
= = !
= E Assembling
§ E Y Reduced-Order Model
<) Building Reduced (ROM)
Operators from reduced operators
0 04 04 y 12 1.4 16 18 2 22 | ' T
21
122 [Pipe 2]
2.0 The reduced equation system
120
=
1 [ s pMe"? + pc"D’Tgc"D - c”‘T;c"D —nDc" + PcP +T(Bc"™ — |up,in|SE)
; z
1.6 116
= =Y (IFp2|Sp.: — Swzct”) — pBe(Ac” — TrerST) =0, (16)
k1.4 rid z=1
[Gowncome]
1o : pGc'? =0 (17)
19

M= <.¢);"D’¢;'D>D

o
)

up 1 u u
+0.6 =]k = <¢j07 ;V : (wiD ® ka)>D

Velocity Magnitude (
—-
o

ﬁh‘

i Dy = (4%, V- [Vy° + (V¥°) ]}, Py ={(${°,7V¥),
! o un o 0x(F)E,:
o2 Bi; = <1/’io”/’10>r,-,. Sped = <¢i va|("';Tz>
0.0 e D
0.2 Bottom plenum BD __ u, Ui, o 1P XY
02 S,.,- = <1/J[D, |u,~,,| >|_A Gi.j - <U', N ‘r"jD>D
0.0 104 o y
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Projection-hased ROM for the MSR : Fluid flow

The equations describe the mass and linear momentum conservation for a liquid in
a porous medium with homogenized structural elements:

V - pup =0, (10)
0 1
'(O;D - ;V -(pup @ up) =V - ((77 + 1) {VUD + (VUD)TD —Vp
+ A/'Fp + Af’Ffr + '\/’pgﬁe(T - Tref) 3 (11)

v - porosity (fraction of fluid in the structure)

up = vu - Reynolds-averaged Darcy velocity vector field

¢ - turbulent viscosity (only used for turbulent flows)

- F, - volumetric linear momentum sources (e.g pump)

- F4 - volumetric linear momentum sources and sinks (e.g. flow resistance)

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-hased ROM for the MSR : Fluid flow

Fluid Dynamics

The equations describe the mass and linear momentum conservation for a liquid in
a porous medium with homogenized structural elements:

V - pup =0, (10)
0 1
gL;D - ;V -(pup @ up) =V - ((77 + 1) {VUD + (VUD)TD —Vp
+ A/'Fp + Af’Ffr + '\/’pgb)e(T - Tref) 3 (11)

v - porosity (fraction of fluid in the structure)
up = vu - Reynolds-averaged Darcy velocity vector field
¢ - turbulent viscosity (only used for turbulent flows)

- F, - volumetric linear momentum sources (e.g pu IS S

- F4 - volumetric linear momentum sources and sir
fr pM(-:uD I pCuD.TgcuD . C/,.T;(’_UD . ’I’]DCUD 51, Pcp v I—(BCUD . |uD.in|SrBD)
7
- Z (IFp.lep.z - Sfr.chh) — Pﬁe(ACT - refST) = (0. (16)
z—1!
pGc? =0 (17)
Some of the reduced operators
u u u 1 u o u
= (¥ 9°)p L= <1/JD’ ;V' (vi°® ka)>
D
= ({° V- [V¢° + (V) ]),  Pii=(¥",7V¥),
u u u 52 F 4
<7/’ D 7/ D> sp‘z.i: <7/),‘D7’7 (r) P >
Fin |Fp.z| D
§ED — <¢;’D, u':" > Gl = (fz,'f’. Vv - z.‘j““:)p
Jean C. Ragusa il /




Projection-based ROM for MSR: Neutronics
y Balance of neutrons |

1 99

(1 - B)Xp,g =
v Y [DgVe] = Tighs + ———= > vg¥r by

Keff
g'=1

Ge G
= Z Zs.g’%gég’ + Xd.g Z )\fA/'Ci*: (18)
g'=1 i=1

- (g neutron scalar flux in group g € [1.....G.]

- (7 corrected delayed neutron precursor in group i € [1...,Gq4]| (computed from
real concentration as C* = C;/v)

Balance of delayed neutron precursors

%+V'[Uocf*] =V ([QJFE] VCI*)
ot PP

. Ge
+ ﬂ Z Vg’zf,g’gbg’ - )\i'YC,'* I € [0,...,Gd] (19)

keff g/ -1

Temperature-dependent group constants

The group constants in the neutron and precursor balance equations depend on the
temperature. It is handled by an interpolation between different data bases:

Z(r: T) ~ Z(I’, Trefspref) + 5FT (ﬁ -V Tref) + 5FD[)refBe (T - Tref) . (20)
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Projection-based ROM for MSR: Neutronics
y Balance of neutrons |

Ge
1 9¢ (1-8)xp.e
. o =V [DeVdg] = Tigg + e z:l Vgr X5 g bgr
g'=

Ge G
= Z Zs.g’%gég’ + Xd.g Z )\fA/'Ci*: (18)
g'=1 i=1

- (g neutron scalar flux in group g € [1.....G.]
- (7 corrected delayed neutron precursor in group i € [1...,Gq4]| (computed from

real concentration as C* = C;/7)

%+V'[Uocf*] =V ([QJFE] VCI*)

ot PP
+ 6,- Ge , . 85 (1 6))( Ge
Z g ¢ : ’ n - P.g Z ~
keﬂ: g/:1 < kg’v_ga_tig - V ° {ngasg} + Zf,gég — T 1I/gl Zf,glqsg/
g =

Temperature-dependent group constant

Ge Gy
: s o _ _ |
The group constants in the neutron and — E Ys g —»gPg — Xd.g E iy C >D =0, k=1,..r, (21)
temperature. It is handled by an interpc g'=1 i—1

Z(I’T) ~ Z(I’, Trefapref) + OFT (ﬁ

<¢f’*,ac" +V- {EDE,-*} -V ([ﬂ + ﬁ] vé*)
ot PP
3] Ge T ”*
i Z Vg Lf g Og + AiC; 7>D =0, k=1..rc (22)
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Projection-hased ROM for the MSR : Heat Transfer

Heat Transfer

To be able do determine the temperature of the system, a porous medium enthalpy
equation is solved:

Ge
0 T
”Yg‘;p + V  (uppcy T) =V - (v [k + cpae] VT) = hAY(T — Tex) + ’YZ Zpge

g=1

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection-hased ROM for the MSR : Heat Transfer

Heat Transfer

To be able do determine the temperature of the system, a porous medium enthalpy
equation is solved:

Ge
0 T
ngp + V  (uppcy T) =V - (v [k + cpae] VT) = hAY(T — Tex) + FYZ Zpge

g=1

Ovpc, T B
< v, /Ygip + V - (uppc, T) =

Ge
v. (fy[k/ +6al VT) — AT ~ To) 47 zp,g¢g>, k=1,..rr

g=1
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MSRE ROM: some results

Results - Molten Salt Reactor Experiment

m| Pipe 1 | I Pump | | Heat exchanger |

80 02 04/ 06

Test case for neutronics-heat tr.

2.1
DEIM
2.0
B 2D axysymmetric model .y
(Jun Shi, UC Berkeley) '
Fixed (precomputed) up, a: i T
Number of cells: 38,562 S ”4

12

—_
[\

Energy groups: 2

1d Downcomer
| wall

Precursor groups: 6

Velocity Magnitude (Z)
(o] =t
oo o

Porous media: Core, Top/bottom

plenum, Heat exchanger 06 -
B FOM Solver: GeN-Foam (EPFL) s Al
B ROM Solver: GeN-ROM (TAMU) s
+-0.2
0.0

+—1-04
0.8

vcall w. iInayuoa ICAAS AXLIVI INULITaAl Cliyliecel iy



MSRE ROM: some results

Examples of Basis Functions

19.5
12.1 9 116
16.0 50
10.0 '
12.0
4.0
R 8.0
8.0
— 0.0
_ Q& e
6.0 40 = R
4.0
4.0 0.0
. 8.0
4.0
2.0 -12.0
0.0 -9.3 =16.2
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MSRE ROM: some results

Results - Molten Salt Reactor Experiment
Uncertain parameters (6 total);
Parameters gat exchanger (Ay,h, Text), Prandtl number (Pr), Reactor

power (Py,), Thermal expansion coefficient (/e)
B Number of snapshots: 20
B Number of test samples: 30
B Error definition: ex = || Xrom — Xrom||12/|| Xroml| 2

Field Rank Field Rank

max(Akeg) (pcm)  max(ey,) (%)

¢1 4 Cy 4

@2 4 o 4 0.36 0.001

Ct 3 Ce 4

&y 3 T 5 max(ecy) (%) max(er) (%)
G 4 VT 4 0.001 0010

< Single-run speedup: 3,000 >
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MSRE ROM: performing UQ with ROM

Results - Molten Salt Reactor Experiment

B Quantity of Interest: Effective multiplication factor (kesf)

B Propagating uncertainties from model parameters to Qol (Monte Carlo)
B Sobol Index analysis: contributions to the variance of the Qol

B Overall speedup: 1,300 (including training)

0.7 HE First order
Total

0.002

Probabilit
Sobol Index
=]

=

=

=1

S

(] [a=]
o —
., 1R
P}.

1.0225  1.0250  1.0275  1.0300 1.0325 1.0350 1.0375
Feaft

Thx

X
..3’ h
P
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MSFR ROM: some results

Results - Molten Salt Fast Reactor

B Three examples considered:
e zero-power steady-state 0 02 04 06 08 1 12 14 16 1§ 2 22
e zero-power transient o - '
e nominal-power steady-state

B Number of cells: 16,140
B Number of energy groups: 6
B Number of precursor groups: 8
B Porous medium zones:

e Pump (red): volumetric momentum source

e Heat exchanger (blue): flow resistance,

volumetric heat sink

B Full-Order Solver: GeN-Foam (EPFL) o D .
B Reduced-Order Solver: GeN-ROM (TAMU) ~ ° ™ "% b miem o

Jean C. Ragusa Texas A&M Nuclear Engineering



MSFR ROM: some results

Results - Molten Salt Fast Reactor

B /ero- power assu mption: buoyancy effects and the temperature-dependence of
the ne FOUT ants.are not considered

= cross sections (+ 10% around the nominal values)
e Pumping force in the momentum equation

B Number of snapshots: 20
B Number of test samples: 30
B Error definition: ex = HXFOM — XROMHB/HXFOMHL?

ax(Aker) max(ey) Max(ecr)  max
(pcm) (%) (%) (%)
0.93 0.05 0.28 0.68

max(ABer) max(egbg) max(ecg_*) max(e,)

(pcm) (%) (%) (%)

0.30 0.03 o.ZE%/‘y/
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MSFR ROM: some results

Results - Molten Salt Fast Reactor

B Used basis functi ' mterest: 1-10

Field Rank Field Rank Field Rank Field Rank Field Rank
b1 3 C; 2 P! 3 cl* 2 up 3
b 3 C; 3 ] 3 cl 3 p 1
b3 3 C; 3 ! 3 chr 4 Fr 3
ba 3 C: 5 1 3 ci* 5 e 10
b5 3 G 6 ; 3 cl 6 o 10
be 3 C; 5 I 3 ch* 5
Cy 2 C; 5 ch* 2 Cl* 5

Jean C. Ragusa Texas A&M Nuclear Engineering



MSFR ROM: some results

Results - Molten Salt Fast Reactor

B Quantities of interest:
e Effective multiplication factor (kesf)
e Effective delayed neutron fraction ()
B Propagation of uncertainties: Monte Carlo approach with 50,000 samples

B Speedup in the UQ including training: approximately factor of 2,000

0.040 0.040
0.035 0.035
0.030 0.030
0.02! 0.025

Probability
2

0.017 0.015
0.010 0.010
0.00: 0.005
0.000 0.000
0.875 0.900 0925 0.950 1};(2:;5 1.000  1.025 1.050 1.075 0.00100 0.00105 0.00110 i‘“l).(][lllﬁ 0.00120 0.00125

Texas A&M Nuclear Engineering
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MSFR ROM: some results

Results - Molten Salt Fast Reactor

B Buoyancy effects and the temperature-dependence of the neutronics group

ants are considered
Uncertain parameters (23 total):
o Difftrstomeceeffre —Tission and removal cross sections (& 10% around the

nominal values)
e Pumping force, external coolant temperature, Heat transfer coefficient,
Pr-number, thermal expansion coefficient

B Number of snapshots: 30
B Number of test samples: 20

max(Aker) max(eg) Max(ecr)

(pcm) (%) (%)
0.10 0.40 0.38
max(eu, ) max(e,)  max(er)
(%) (%) (%)
0.21 0.16 0.13
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Results - Molten Salt Fast Reactor

B Used basis functions per field of interest: 2-18 (more than the zero-power
scenario)
B Acceleration: approximately 1 x 10* — 2 x 10*

Field Rank Field Rank Field Rank Field Rank Field Rank
o1 15 D6 16 C 16 p 2 log(T) 6
P2 15 Cy 9 Co 17 F: 4
O3 14 G 11 G 18 Nt 8
o 15 s 12 Cs 17 o 8
s 15 Cs 14 up 6 T 10

Jean C. Ragusa
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Reconstructed Flux (left) - Reconstruction Error (right)

2.0e+19 5.6e+15
1.8e+19 5.0e+15
1.6e+19 4.5e+15
1.4e+19 4.0e+15
_1.2e+19— — 3.5+ 15
e  3.0e+15 o
> 1.0e+19 §
< 2.5e+15 &
8.0e+18 |
2.0e+15 =
6.0e+18 —
1.5e+15
4.0e+18
1.0e+15
2.0e+18 5.0e+14
5.3e+14 0.0e+00
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Reconstr. Temperature (left) — Reconstr. Error (right)

1267.9 2.74
1240 2.60
2.40
1200 590
1160 2.00
~1.80

1120 —
~1.60
< 1080 — - 1.40
= 1.20

1040

1.00
1000 — ~0.80
960 0.60
0.40
920 0.20
883.2 0.00

<
-
S

5
&
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Reconst. Velocity (left) - Reconstruction Error (right)

3.2 5.2¢-03

3.0

2.8 4.5e-3

2.6

2.4 4.0e-3
2.9
L w 3.5e-3 .
E 2.0 — g
g 18 — d 30e3 E
g L6 2.5¢-3 5—

e | o)

é%o 1 4 Q:?Q
'z 1.2 2.0e3 =
S 1.0 -

0.8 l 1.5¢-3

0.6 1.0e-3

0.4

0.2 5.0e-4

0.0 7.5e-06
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Model-order Reduction: huge speed ups

B Quantities of interest:

e Effective multiplication factor (kef)

e Maximum temperature of the system (Tax)
B Propagation of uncertainties: Monte Carlo approach with 50,000 samples
B Speedup in the UQ including training: approximately factor of 1,500

0.030

0.025
0.025

0.020
0.020

0.015
0.015

Probability
Probability

0.010
0.010

0.00

o

0.005

0.000 - 0.000
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1200 1220 1240 1260 1280 1300 1320 1340 1360
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Graphical User Interface Demo

0.023720 Effective multiplication factor (keff):  0.969448
[ 6.899700 Field to plot: T

AR AR AR AR AR RS AR AR AR R AR R AR AR A KRR RARRAR Sigma_r_1

. 0.015789
keff = 0.9694484165684509 ¥ 2L : | o
keff= 0.9700137171167494 = Sigma_r 2 3952400 “| Q”| ”M ‘*’l Q\E/
keff = 0.9751719144347487 5 0.010024 = I
keff = 0.9626434307403274 T 1774100
keff= 0.9751719144347446 Sigma_r_3 =
keff = 0.9638177215906135 i 0.012084

keff = 1.055890102017915 I Sigma. ¢ 4 1.983400
keff = 1.0658901020179159 , 0.011534 St =
keff = 1.054903141153652 iz N

keff = 1.0651933582785078 Sigma_r_5

1.637700

keff = 0.9694484165684513 X 0.011038 [l

keff = 0.968729762078431 3.566300
keff = 0.9751719632664815 CIE]
keff = 0.9751719144347482 nuSigma f 1 80000.000000
keff = 0.9740146243738615 Fo S0
keff = 0.9626979004672906 SN 2

keff = 0.9740146243738533 e 900.000000
keff = 0.9694484165684514 e = r

—

' alpha_HX 1000[0_0_(_)_00000
] nuSigma f 4 0 [‘:3_2_&5360
‘SONe 1 beta_th 0.000200
1.466770

— P 8.000000

r —

4.758780 T

Tl

Sigma_r_6

nuSigma_f 3

[Coad

nuSigma_f 5

‘Reset

nuSigma_f 6
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MSFR: What do some basis functions look like?
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Outline

1. High-performance computing (HPC)

A. Some history
B. Some well-recognized software used in nuclear engineering
C. A few application examples

2. Fast Data-driven Surrogate Models

A.  Motivations for parametric Reduced-Order Modeling (ROM)
B. What is model-order reduction?
Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics

A.  Projection-based ROM for LWR neutronics

B. Projection-based ROM for Molten Salt Reactor Applications
i, Methods
. Examples (MSFR / MSRE)

‘ 4. Reduced-Order Models for Transport
5. Summary and Outlook
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Brief review of linear Boltzmann transport

Neutral-particle transport: losses = gains

(- V +oi(r, E) U(r,Q,E) :/ dQ’/dE’ os(r, Q- Q E — E)U(r,Q, E') + Sxed(r, Q. E)
4

W(r,Q, F) = angular “flux”
@ neutral particles = neutrons; photons; coupled neutrons/photons
@ can be amended to include time dependence, production from fission

@ can be amended (Boltzmann-Fokker-Planck) for charged particles and coupled charged particles/photons

@ | 6-dimensional phase-space | space(r,3)+energy(F,1)+angle(£2,2)

, , - irecti Discontinuous Finite
Vi@ 1 e Discrete Directions ( _
v

—H Iydll
"

n (barms)

Cross sectio

_ Coupled G X Ngirs X Neells
Coupled G equations. Coupled G x Nyj, equations. equations.
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Solution Techniques for LBT

Solving the Linear Boltzmann/Radiation Transport Equation

Basic unit of work: LY = ¢t

Solve
(Q -V + Ut(r)) \IJ(T: Q) = ({ext}scatt

N "

—L

for each direction, for each energy group, as many times as needed for convergence

Performing L—! by sweeping the mesh is matrix-free

S

Formidable computational problem:
@ Space: N, x N, x N. cells (say 100 x 100 x 100 = 1 million spatial cells)
@ Angle: 50 - 5,000 directions (say 1,000)
@ Groups: several dozens and up (say 100)

@ 8 spatial degrees of freedom/cell (discontinuous finite elements)

e Total: about 1 trillion (10*2) unknowns, (figures > 1 trillion are not infrequent ... )

Key Points:

o Radiation transport is a linear problem | Az = b

@ The number of unknowns per vertex of a mesh is gigantic (> 10, 000)

@ Due to the size of the problem, matrix A is not available (not built nor stored) D




Motivations for parametric reduced-order models for

radiation transport

@ Functionals of the computed solution:

Qol:/ dE dB’r‘Q(r,E)/ dQ W (r, E, Q)
0 Rol 47

@ Examples: dose, dose rates, fluence, fluence rates, radiation fluxes through boundaries, SREMP and
SGEMP fields. !

Sources of Uncertainty in Qols for NWrE:

© Source position (altitude, slant).

@ Source spectrum (fraction of fission spectrum + fusion spectrum, for n and ~).
© Air Humidity (in addition to air density variation wrt to z).
©Q Ground Composition.

© Location and orientation of Rol (Region of Interest).|

= Multi-query problems to investigate input parameter space

= Boltzmann simulation models are computationally expensive and may not meet
mission needs.

= - Need faster but accurate surrogate models

Jean C. Ragusa Texas A&M Nuclear Engineering



Examples of target applications

:1md

Source

~168,000 Polyhedral cells

Photon Group 1

1 m thickness

Shield

:1m3

ROI

ineering

Texas A&M Nuclear Eng
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NWTrE and Urban Modeling

Discretization

Spatial cells: 136,633
Vertices per cell: ~19
Energy groups: 116
Angles: 512

DoFs: 160 B

Jean C. Ragusa
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Terrain Geometry

Topographical surface map

= Polyhedral mesh NW source \
e \ 7
————
< ) e

s ‘,,/, < X

- ( e, 2 i . o\
LAt~

Y4 \) 7

‘*l" AT

= 512 angles

= 1 group problem
= ~170 M angular unknowns

= 78,113 nodes, 14,864 cells
= Sweep time 43 seconds

S — = 6 processors
= ParMETIS partitioning

Jean C. Ragusa Texas A&M Nuclear Engineering



Projection approach (to be skipped)

Classical ROM approach (Proper Orthogonal Decomposition, POD)

e Offline stage:

© Investigate the solution space (exercise the Full-Order Model), —data-driven

Solve A(ji;)x; = b(p;) for @ € training set, ¢ = 1, .., M

© Accumulate FOM solution in snapshots

S = [ZIT]_. ey Ly ey Iﬂ-’[]

© Extract relevant information (Singular Value Decomposition)

r y
c IR.?’\ X M

S =UAVT U e RNVNXVN

©Q Compress (solution-space reduction, global bases are now known)

@ Online Stage:

U U, € RVX"

© Given a set of uncertain parameters @, seek solution as

© Solve small reduced system:

Q Reconstruct full solution

Jean C. Ragusa

with

r &< N

2 =U" = AU’ = b(0)
@ Perform (Petrov-)/Galerkin Projection (G: W = U, PG: W = AU)

wIAB)U,.c" =WTh6)

or

Texas A&M Nuclear Engineering "'




Non-intrusive ROM for Transport using Gaussian Processes

Source: 1m?

~168,000 Polyhedral cells

— 4.2e+06

— 2.1e+02

le+b

100000

10000
0.1

1000 0.01

phi 030-avg

phi 030_err_avg

100

— 1.0e+00
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Non-intrusive ROM for Transport using Gaussian Processes

Source: 1m?

T

Recall, FOM:100 B unknows. 60 min on 320 processors

Coef evaluations: < 10 ms

Reconstruction (~writing to disk: 4 sec)

1

100000

10000

1000

100

10

1.0e+00

2.1e+02

Lmmniiie]

10

1

0.1

0.01

phi 030-avg

phi 030_err_avg

0.001

0.0001

1
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Outline

1. High-performance computing (HPC)

A. Some history
B. Some well-recognized software used in nuclear engineering
C. A few application examples

2. Fast Data-driven Surrogate Models

A.  Motivations for parametric Reduced-Order Modeling (ROM)
B. What is model-order reduction?
Sub-space learning in a nutshell (or a coconut shell)

3. Reduced-Order Models for Reactor Physics

A.  Projection-based ROM for LWR neutronics

B. Projection-based ROM for Molten Salt Reactor Applications
i, Methods
. Examples (MSFR / MSRE)

4. Reduced-Order Models for Transport

5. Summary and Outlook

Jean C. Ragusa Texas A&M Nuclear Engineering



High-level view of Model Order Reduction with subspace learning

Training
{QSI(P) 95((?}} LN
’ ’ (R) i)
_ {e] ,...,cf_,; } ’o‘ '0‘
*
( ) Ny x N, POD .
P1,P2,- s PN, —> FOM > - R x N, "
L Y, | o
— L
ml L 4
Prediction
R AR {él(pt)t”wé(;(p*)}
e, ey
POD %_‘
P Predict Basi _ .
PLsPsy - Py ———> ¢q(p*) — RxT asis Ny xT > = é(pt), .., b(p%)

Jean C. Ragusa
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High-level view of Model Order Reduction with subspace learning

Training

{é1(p), .-, dc(p)} (R) (R)

Ny x N POD
P1,P2s- -y PN, —> FOM > ’ R x N,

Today, the reduced coordinates were obtained by a projection process |
A x =b -> the reduced system A.c=b_ (code invasive)

This is not the only option. Non code-invasive possibilities include
learning the reduced coordinates with :

1. Gaussian Processes

2. Regression splines

3. Neural Networks

4. etc....

9 O/ oD 7 TS T VT TV O UT T =T T I oo 1Ty




What else is next in MOR?

Input Sinp‘ut Soutput Output
Cinput Code Cinterp
Flatten
U x8§
[rxn] [rxy]

[dxdxn] [mxn] [mxy] [dxdxn]

L ) L )

A A
SVD + truncation Reconstriction
L ) L )
A h
Encoder Decoder
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What else is next in MOR?

Deep autoencoders
Inp! Input layer Code Output layer

-
.
-
*

X1

[dxd

Encoder henc('Qeenc) Decoder hdec(';gdec)

X = hdec('§ Bdec) o henc (X; Oenc)
If X =~ x for parameters 0., & = hgec(; @) produces an accurate manifold
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Conclusions

= HPC for nucl. sci. engr. applications

= [ntro to parametric reduced-order modeling
Data-driven subspace discovery

= Applications to reactor physics (LWRs & MSRs)

= Applications to particle transport

jean.ragusa@tamu.edu
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https://qitlab.com/peter.german/gen-rom

About GeN-ROM, now published
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https://gitlab.com/peter.german/gen-rom

