

Simulation of UNprecedented Climate Events (UNCLEs)

Pascal Yiou

With: Flavio Pons, Aglaé Jézéquel, Robin Noyelle, Davide Faranda, Camille Cadiou

LSCE, LMD & IPSL

WORK IN PROGRESS!

Why care for (or worry of) UNCLEs?

- When an extreme event occurs, one often hears: "it could have been worse"
 - How worse?
- When President E. M. stated that cyclone Irma (2017) could not have been anticipated, was this true? (or what did that mean?)
- Can we anticipate/imagine events with a probability $< 10^{-N}$ with just a few decades of observations?
 - Storylines
 - Rare event algorithms

IPS

General Mathematical Framework

Hypotheses

- We have a physical system (X) with complex dynamics (e.g. climate system)
- We have (partial, finite, etc.) observations of X: f(X(t))
- The observed record value of observations f(X(t)) is $\widehat{M_X}$.

Questions

- How to obtain the maximum possible (unobserved) value of f(X) ?
- Is it an "inflated" version of $\widehat{M_X}$?

PS

Climate Motivation

- The 2003 French heatwave had a probability $< 10^{-3}$ (and is still the record for JJA temperature)
- Studying the physical properties of such an event require a fairly large sample of similar events (>1000 years)
- There are no observational records that are long enough to provide enough samples
- Such events can be outliers for Extreme Value Theory! ("Black Swans")
- We need climate models!
 - What kind?
 - How to use them?

Simulation of rare/extreme events

- Model or Dynamical system: X(t) : $\frac{dX}{dt} = F(X)$
 - Chaotic, multivariate, high-dimensional
- Scalar observable T(t) of the system X

• T(t) = f(X(t))

- How to simulate trajectories of X that maximize $\langle T \rangle_P = \int_0^P T(t) dt$ over a given period P of time?
 - max $\langle T \rangle_P$? (e.g. max average summer temperature: P = 90 days)
 - Simulate trajectories of X for which $\mathbb{P}(\langle T \rangle_P > T_{high}) > \alpha_{high}$

Brute force methods

Simulating the system

- Monte Carlo simulations of X to obtain a very large sample of $\langle T \rangle$ (larger than observation length)
- Empirical computation of probabilities of extreme values

Brute force methods

- Large ensemble simulations
 - Weather@Home: simulate 10⁴ summers with a GCM, to obtain a handful of 2003-like heatwaves, or 100 centennial heatwaves
 - Most (i.e. 9900) trajectories are "normal" summers and can be dumped
- How to simulate 100 centennial heatwaves for the cost of 100 trajectories?

• Procedure to <u>guide</u> trajectories towards <u>high</u> values of T(t) = f(X(t)) ?

a (K)

-6

• <u>Rare event</u> algorithms

Rare Event Algorit

XAID

- Evaluate the probability of events from ensemble of optimal simulations
- Simulate <u>many</u> low probability events

• Consider a physical system, e^{-e} , e^{-e} , g^{-120} , a_{-60} , $a_{$

a (K)

250

750

120

time (years)

1000

180

В 16 CTRL LONG 1.4 k50 1.2 0.6 0.4 0.2 -2 -3 2 -1 0 З a (K)

(from Ragone et al., PNAS, 2017)

Example of Rare Event Algorithm (2)

- Select N initial conditions of the system X(t), and an observable T(t) to be optimized
- Run trajectories from t_0 to t_1

XAID

- "kill" alpha trajectories for which T(t) is lowest
- Replace them with random perturbations of the remaining ones
- Repeat the procedure until τ (i.e. K times)

(from Ragone et al., PNAS, 2017)

Features of Rare Event Algorithm (3)

• Probability of final N trajectories after K iterations:

$$p = \left(1 - \frac{\alpha}{N}\right)^{\kappa}$$

- Note 1: Darwinian procedure
- Note 2: Optimal trajectories satisfy the system's equations of X(t)
- Note 3: You must know the equations of the system!

PS

Application to Heatwave simulation (4)

- Ensembles of extreme heatwaves by "pushing" towards 2 high temperatures:
 - F. Ragone et al. (PNAS, 2017)
- Simulate a climate model (PLASIM) so that European temperature is optimized

XAID

• "Regular" control simulation vs. AMS simulations for extremes

0.5

Properties & Caveats

- Control of the return period/probability through α
- No seasonal cycle
 - Requires some adjustments (Ragone et al., GRL, 2021)
- Must simulate the equations of the full system
- How to transpose this into a Stochastic Weather Generator (SWG) framework?

Analogues and Importance Sampling

- Adapting Analogue Stochastic Weather Generator to maximize summer temperature
 - Reshuffling analogues of circulation with weight towards highest temperatures
- Static WG:
 - warmest summer that could have been, with the same atmospheric circulation
- Dynamic WG:
 - warmest summer that could have been

IPSL

P. Yiou, XAIDA school@Trieste, 30 June 2022

(Jézéquel et al., Clim. Dyn., 2018)

IPSL

Analog Stochastic Weather Generator

Random selection of Z500 analogs (among K = 20 analogs), with weights that are proportional to the rank of the corresponding day temperature:

 $w_k = \exp(-\alpha \operatorname{rank}(T_k))$

Simulation of ensembles of trajectories that optimize average temperature (e.g. during a season, JJA)

Return period of ensemble is proportional to α

XAID

) Importance sampling with SWG

XAIDA

Analog SWG: Markov chain with "hidden states" (Z500)

IPSL

Analog Stochastic Weather Generator

- The analog SWG is a Markov chain of temperatures with hidden states (Z500)
- The rare event algorithm (importance sampling) modifies the probabilistic properties of the "basic" Markov chain (when $\alpha = 0$) in order to sample realistic trajectories that lead to high temperatures
- Its range of application is for "long lasting" events
 - The integration time of trajectories has to be large with respect to the integration time step
 - Same constraint as for the paper of Ragone et al. (2017)

IPS

Features & challenges

- Variation of a Darwinian mechanism
 - favor the strongest (Yiou and Jézéquel 2019) vs. eliminate the weakest (Ragone et al. 2017)
- Parameters to be optimized!
 - Large-scale predictors in analog pre-computation (Z500, Z500 & RH?, Z500 & SLP?)
 - Which region?
- How to use climate model simulations, e.g. for future climates?
- What "observable" to consider, especially for compound events?

Connexion with the "Committor Function"

- Source set: \mathcal{A} , target set: B ($\mathcal{A} \cap \mathcal{B} = \emptyset$), realization of system X(t)
- **Committor function**: probability that X(t) reaches \mathcal{B} after leaving \mathcal{A} within lead time τ :
 - $\phi(X_0; \mathcal{A}, \mathcal{B}, \tau) = \mathbb{P}(X(t) \in \mathcal{B}, t \in (t_0, t_0 + \tau] | X_0 = X(t_0) \in \mathcal{A})$
- If the target set ${\mathcal B}$ is a heatwave with probability $p_{\mathcal B} \ll 1$,
- Ais a set of "normal" initial conditions,
- \blacktriangleright we want to optimize $\phi(X_0; \mathcal{A}, \mathcal{B}, \tau)$, i.e. identify initial conditions and trajectories that lead to \mathcal{B} with a probability $p \gg p_{\mathcal{B}}$

PS

Duality with "Ensemble Boosting"

- Ensemble boosting (S. Sippel, E. Fischer, et al.):
 - for a given system X(t) and a target set \mathcal{B} (with low probability), determine a set of initial conditions \mathcal{A} for for which the <u>committor function</u> is maximum (within a lead time τ)
 - Find argmax of committor function ϕ
 - Then "replay" perturbed trajectories from ${\mathcal A}$
- Importance sampling:
 - for a given system X(t) and a target set \mathcal{B} (with low probability), how to reach \mathcal{B} from any initial condition \mathcal{A} ?
 - Estimate committor function ϕ

nstantons and extreme events

Anna Karenin (L. Tolstoï): "Happy families are all alike; every unhappy family is unhappy in its own way"

- If climate extreme/rare events (e.g. heatwaves) are like "happy families", is their pathway unique?
- Theory of *instantons* (Freidlin and Wentzell, 1984): if set \mathcal{B} has sufficiently low probability, there is only one way to reach it, which is provided by optimizing a committor function
- Is this true? Caveats? Counterexample?

Summer 2021 in North West America

XAIDA

Days since 1 June 2021

Record breaking/shattering?

Out of the distribution event (Gaussian and GEV)?

Return levels from GEV fits of TX1d, TX30d, TX60d

P. Yiou, XAIDA school@Trieste, 30 June 2022

IPSL

- For short or longer time scales the Summer 2021 is a record:
 - Outside of N σ of distribution with a Gaussian hypothesis
 - Outside of GEV fit
- If a Generalized Extreme Value distribution cannot reach such an event, can we do this with a model?
- Simulate an outlier event with a statistical Markovian model (Stochastic Weather Generator: SWG) with a rare event algorithm

Simulation set-up

- Z500 analogs of 2000-2021 in 1950-1999 & 1971-2020
 - Here: ERA5 (for T and Z500)
- TX averaged over W America
 Here: ERA5 [125-115W; 44-52N]
- Flavors of *dynamic* simulations:
 - Initial condition: 15th June
 - Using information on 2021
 - No information on 2021 (even to simulate summer 2021)

No change in analog distance pdf

P. Yiou, XAIDA school@Trieste, 30 June 2022

XAIDA Composite Z500 during 30 day simulations

- 100

80

40

80

60

40

- Slight enhancement of anticyclonic
- patterns between 1950-1999 to 1971-2020
- Strong enhancement of anticyclonic 20 pattern with 2021
 - Extreme high temperatures necessitate Omega shaped circulation

IPSL

- Difficult to exceed 2021 temperature values in 1950-1999 without information on 2021
- The increase of the pdf for extremes is larger than mean (local) climate change
- Necessity of Omega shaped Z500 pattern for extremely high temperatures
 - Unique pathway to reach such an event (instanton)?

Hackathon 09: Simulation of worst cases

- West Pacific Heatwave of 2021
- A heatwave around (continental) France
- A heatwave in Paris during the 2024 Olympics
- Questions:
 - Can we top or exceed the records with present day conditions?
 - What is the atmospheric circulation during those heatwaves?

Hackathon 09: Plan

- Precomputed analogs of Z500 or SLP (from reanalyses or CMIP6)
- Daily time series of temperatures
- Code (R and shell script) on github
 - For windows-ers: please use the code provided on the ICTP dropbox

- Jézéquel, A., Yiou, P. & Radanovics, S., <u>Role of circulation in European heatwaves using</u> <u>flow analogues</u>, Clim Dyn (2017) 50: 1145. <u>https://doi.org/10.1007/s00382-017-3667-0</u>
- Pfleiderer, P., Jézéquel, A., Legrand, J., Legrix, N., Markantonis, I., Vignotto, E., and Yiou, P.: Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators, Earth Syst. Dynam., 12, 103–120, 2021, https://doi.org/10.5194/esd-12-103-2021.
- Ragone, F., J. Wouters, and F. Bouchet, 2018: Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Nat. Acad. Sci., 115, 24–29.
- Ragone, F., and F. Bouchet, 2021: Rare event algorithm study of extreme warm summers and heatwaves over Europe. Geophys. Res. Lett., 48, e2020GL091197, https://doi.org/10.1029/2020GL091197
- Yiou, P., Jézéquel, A., 2019. Simulation of Extreme Heatwayes with Empirical Importance Sampling. Geosci. Model Dev. Discuss. 2019, 1–26. https://doi.org/10.5194/gmd-2019-16
- Yiou, P.: AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geosci. Model Dev., 7, 531-543, doi:10.5194/gmd-7-531-2014, 2014.