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WORK IN PROGRESS!



Why care for (or worry of) UNCLEs?

• When an extreme event occurs, one often hears: “it could have been 
worse”
• How worse?

• When President E. M. stated that cyclone Irma (2017) could not have 
been anticipated, was this true? (or what did that mean?)

• Can we anticipate/imagine events with a probability < 10!" with just 
a few decades of observations?
• Storylines
• Rare event algorithms
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General Mathematical Framework

Hypotheses
• We have a physical system (𝑋) with complex dynamics (e.g. climate 

system)
• We have (partial, finite, etc.) observations of 𝑋:  𝑓(𝑋(𝑡))
• The observed record value of observations 𝑓(𝑋 𝑡 ) is )𝑀#.
Questions
• How to obtain the maximum possible (unobserved) value of f(𝑋) ? 
• Is it an “inflated” version of )𝑀#?
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Climate Motivation

• The 2003 French heatwave had a probability < 10!$ (and is still the 
record for JJA temperature)
• Studying the physical properties of such an event require a fairly large 

sample of similar events (>1000 years)
• There are no observational records that are long enough to provide 

enough samples
• Such events can be outliers for Extreme Value Theory! (“Black Swans”)
• We need climate models! 
• What kind?
• How to use them?
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Simulation of rare/extreme events

• Model or Dynamical system: 𝑋(𝑡) :  %#
%&
= 𝐹(𝑋)

• Chaotic, multivariate, high-dimensional

• Scalar observable 𝑇(𝑡) of the system 𝑋
• 𝑇 𝑡 = 𝑓(𝑋 𝑡 )

• How to simulate trajectories of 𝑋 that maximize 𝑇 ' = ∫(
' 𝑇 𝑡 𝑑𝑡

over a given period 𝑃 of time?
• max 𝑇 ! ? (e.g. max average summer temperature: 𝑃 = 90 days)
• Simulate trajectories of 𝑋 for which ℙ 𝑇 ! > 𝑇"#$" > 𝛼"#$"
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Brute force methods

Simulating the system
• Monte Carlo simulations of 𝑋 to obtain a very large sample of 𝑇

(larger than observation length)
• Empirical computation of probabilities of extreme values
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Brute force methods

• Large ensemble simulations
• Weather@Home: simulate 10% summers with a GCM, to obtain a handful of 

2003-like heatwaves, or 100 centennial heatwaves
• Most (i.e. 9900) trajectories are “normal” summers and can be dumped

• How to simulate 100 centennial heatwaves for the cost of 100 
trajectories?
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Rare Event Algorithms (1)

• Consider a physical system, e.g.: %#
%&
= 𝐹(𝑋)

• Procedure to guide trajectories towards high values 
of 𝑇 𝑡 = 𝑓(𝑋 𝑡 ) ?
• Rare event algorithms
• Evaluate the probability of events from ensemble of 

optimal simulations
• Simulate many low probability events
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Fig. 2. (A) The red color marks the area of Europe over which the tempera-
ture is averaged. (B) Time series of European surface temperature anomaly,
6 h (light blue) and 90 d running mean (dark blue), during 360 d and 1,000
y (Inset). The red triangles and circles feature one local maximum of the
temperature anomalies, as an example of a 2 K heat wave lasting 90 d.

tail of the probability distribution function (PDF) of a , denoted
P(a,T ).

The instantaneous TS has SD � ⇡ 1.6 K and is slightly skewed
toward positive values. Its autocorrelation time is ⌧c ⇡ 7.5 d,
which is the typical time for synoptic fluctuations (at a scale of
about 1,000 km). An example of a time series of the 90-d aver-
aged Europe temperature anomaly is shown in Fig. 2B.

Importance Sampling and Large Deviations of

Time-Averaged Temperature

We first explain importance sampling, a crucial probabilistic con-
cept for the following discussion. We sample N independent and
identically distributed random numbers from a PDF ⇢ and want
to estimate �B , the probability to be in a small set B (Fig. 3A).
We will obtain about N �B occurrences in the set B , from which
we can estimate �B . An easy calculation (24) shows that the

relative error of this estimate is of the order of 1/
p
N �B . For

instance, if �B is of the order of 10�2, estimating �B with a rel-
ative error of 1% requires a huge sample size, of the order of
106. However, if we rather sample N random numbers X̃n from
the distribution ⇢̃ (see Fig. 3(a)), where ⇢(x ) = L(x )⇢̃(x ), with L

conveniently chosen, then the event may become common: this
is importance sampling. From the formula ⇢ = L⇢̃, we have the
estimate �̃B = 1

N

PN
n=1 L

⇣
X̃n

⌘
1B

⇣
X̃n

⌘
, where 1B is the indi-

cator function of the set B . If the rare event is actually common
for ⇢̃, this estimate gives a relative error of order 1/

p
N (see (24)

for a precise formula). Then, in order to estimate �B with a rel-
ative error of 1%, we need a sample size of order of 104; this is
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Fig. 3. (A) We want to estimate the probability to be in the set B, for
the model PDF ⇢(x). We are able to sample instead from the PDF ⇢̃(x) for
which the rare event becomes common. We know the relation L = ⇢/⇢̃ and
can recover the model statistics ⇢, from the importance sampling ⇢̃. (B) PDF
of the time-averaged temperature a (T = 90 d) for the model control run
(black) and for the algorithm statistics with k = 50, illustrating that the
algorithm performs importance sampling and that +2 K heat waves become
common for the algorithm while they are rare for the model.
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Example of Rare Event Algorithm (2)

• Select N initial conditions of the 
system X(t), and an observable T(t) 
to be optimized
• Run trajectories from 𝑡! to  𝑡"
• “kill” alpha trajectories for which 

T(t) is lowest
• Replace them with random 

perturbations of the remaining 
ones
• Repeat the procedure until 𝜏 (i.e. K 

times)

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories
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Features of Rare Event Algorithm (3)

• Probability of final N trajectories after K iterations:

• Note 1: Darwinian procedure
• Note 2: Optimal trajectories satisfy the system’s equations of 𝑋(𝑡)
• Note 3: You must know the equations of the system!
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atmosphere during extreme heat wave events. Fig. 5A shows
the temperature and the 500-hPa geopotential height anomalies,
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Fig. 5. (A) Northern Hemisphere surface temperature anomaly (colors)
and 500-hPa geopotential height anomaly (contours), conditional on the
occurrence of heat wave conditions 1

T

R T
0 A(xn(t))dt > a, with T = 90 d

and a = 2 K, estimated from the large deviation algorithm. (B) North-
ern Hemisphere anomaly of the averaged kinetic energy for the zonal
velocity at 500 hPa conditional on the occurrence of heat wave condi-
tions E

h
KE500 | 1

T

R T
0 A(xn(t))dt > a

i
, with T = 90 d and a = 2 K, estimated

from the large deviation algorithm, with respect to the long-time average
E [KE500] computed from the control run.

conditioned on the occurrence of a 90-d 2 K heat wave (com-
posite statistics). Those conditional statistics are reminiscent of
the teleconnection pattern maps sometimes shown in the climate
community. However, while usual teleconnection patterns are
computed from empirical orthogonal function (EOF) analysis,
and thus describe typical fluctuations, our extreme event condi-
tional statistics describe very rare flows that characterize extreme
heat waves. Those global maps are a unique way to consider rare
event and atmosphere fluctuation statistics, which is extremely
interesting from a dynamical point of view.

By definition, as we plot statistics conditioned on a =
1
T

R T

0
A(xn(t))dt > 2K, with T =90 d, Fig. 5A shows a warming

pattern over Europe. The geopotential height map also shows
a strong anticyclonic anomaly right above the area experiencing
the maximum warming, as expected through the known positive
correlation between surface temperature and anticyclonic condi-
tions (34). A less expected and striking result is that the strong
warming over Europe is correlated with a warming over south-
eastern Asia and a warming over North America, both with sub-
stantial surface temperature anomalies of order of 1 K to 3 K,
and anticorrelated with strong cooling over Russia and Green-
land, of the order of -1 K to -2 K. This teleconnection pattern is
due to a strongly nonlinear stationary pattern for the jet stream,
with a wavenumber 3 dominating the pattern, as is clearly seen
from the geopotential height anomaly. In Fig. 5B, the anomaly
of the kinetic energy gives a complementary view: Over Europe,
the succession of a southern blue band (negative anomaly) and
a northern red band (positive anomaly) should be interpreted as
a northward shift of the jet stream there. Strikingly, over Green-
land and North America, the jet stream is at the same position
(but it is more intense) for the large deviation algorithm statis-
tics as for the control run, while it is shifted northward over
Europe and very slightly southward over Asia. This is related
to the strong southwest–northeast tilt of the geopotential height
anomalies over the Northern Atlantic. The extended red area
(positive anomaly of kinetic energy) over Asia is rather due to
a more intense cyclonic activity there, than to a change of jet
stream position.

Inspection of the time series of the daily temperature shows
that along the long duration of heat waves, the synoptic fluctua-
tions on timescales of weeks are still present (Fig. 2B). The tem-
perature is thus fluctuating with fluctuations of order of 5–10 �C,
as usual, but they fluctuate around a larger temperature value
than usual. This is also consistent with the northward shift of the
jet stream over Europe, but does not seem to be consistent with
a blocking phenomenology as hypothesized in many other pub-
lications. This calls for using similar large deviation algorithms
with other models and other setups to test the robustness of the
present observation.

Conclusions

We have demonstrated that rare event algorithms, developed
using statistical physics ideas, can improve the computation of
the return times and the dynamical aspects of extreme heat
waves. One of the future challenges in the use of rare event algo-
rithms for studying climate extremes will be to identify which
algorithms and which score functions will be suitable for each
type of rare event. We anticipate that this tool will make avail-
able a range of studies that have been out of reach to date.
First, it will pave the way to the use of state of the art climate
models to study rare extreme events, without having to run the
model for unaffordable times. The demonstrated gain of sev-
eral orders of magnitude in the sampling efficiency will also help
to make quantitative model comparisons, to assess on a more
quantitative basis the skill to predict extreme events, for the
existing models. It will also make available a range of dynami-
cal studies. As an example, having a high number of heat waves
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Application to Heatwave simulation (4)

• Ensembles of extreme 
heatwaves by “pushing” towards 
high temperatures:
• F. Ragone et al. (PNAS, 2017)

• Simulate a climate model 
(PLASIM) so that European 
temperature is optimized
• “Regular” control simulation vs. 

AMS simulations for extremes

10-1 100 101 102 103 104 105 106 107

return time (years)

0

0.5

1

1.5

2

2.5

3

an
om

al
y 

(K
)

CTRL
algorithm

P. Yiou, XAIDA school@Trieste, 30 June 2022 11

Return level plots

Teleconnections during 
extreme summers

(from Ragone et al., PNAS, 2017)



Properties & Caveats

• Control of the return period/probability through 𝛼
• No seasonal cycle
• Requires some adjustments (Ragone et al., GRL, 2021)

• Must simulate the equations of the full system
ØHow to transpose this into a Stochastic Weather Generator (SWG) 

framework?
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Analogues and Importance Sampling

• Adapting Analogue Stochastic Weather Generator to maximize 
summer temperature
• Reshuffling analogues of circulation with weight towards highest 

temperatures

• Static WG: 
• warmest summer that could have been, with the same atmospheric 

circulation

• Dynamic WG:
• warmest summer that could have been
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Day d,
Year y

d,y

d±30,y’≠y

Climate observable
(Temperature)

Corresponding circulation 
(Z500 detrended)

N best analogues

1
2

N

N

2
1

Similar to

?

Procedure
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Analog Stochastic Weather Generator
Random selection of Z500 analogs (among
𝐾 = 20 analogs), with weights that are 
proportional to the rank of the corresponding
day temperature:

𝑤! = exp(−𝛼 rank(𝑇!))

Simulation of ensembles of trajectories that optimize average 
temperature (e.g. during a season, JJA)

Return period of ensemble is proportional to 𝜶
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Importance sampling with SWG
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Analog Stochastic Weather Generator

• The analog SWG is a Markov chain of temperatures with hidden states 
(Z500)
• The rare event algorithm (importance sampling) modifies the 

probabilistic properties of the ”basic” Markov chain (when 𝛼 = 0) in 
order to sample realistic trajectories that lead to high temperatures
• Its range of application is for ”long lasting” events
• The integration time of trajectories has to be large with respect to the 

integration time step
• Same constraint as for the paper of Ragone et al. (2017)
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Features & challenges

• Variation of a Darwinian mechanism
• favor the strongest (Yiou and Jézéquel 2019) vs. eliminate the weakest 

(Ragone et al. 2017)

• Parameters to be optimized!
• Large-scale predictors in analog pre-computation (Z500, Z500 & RH?, Z500 & 

SLP?)
• Which region?

• How to use climate model simulations, e.g. for future climates?
• What “observable” to consider, especially for compound events?
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Connexion with the "Committor Function"

• Source set: 𝒜, target set: 𝐵 (𝒜 ∩ ℬ = ∅), realization of system 𝑋(𝑡)
• Committor function: probability that 𝑋 𝑡 reaches ℬafter leaving 𝒜

within lead time  𝜏:
• 𝜙 𝑋&;𝒜, ℬ, 𝜏 = ℙ 𝑋 𝑡 ∈ ℬ, 𝑡 ∈ 𝑡&, 𝑡& + 𝜏 𝑋& = 𝑋 𝑡& ∈ 𝒜)

• If the target set ℬ is a heatwave with probability 𝑝ℬ ≪ 1,
• 𝒜is a set of “normal” initial conditions, 
Øwe want to optimize 𝜙 𝑋(;𝒜, ℬ, 𝜏 , i.e. identify initial conditions and 

trajectories that lead to ℬ with a probability 𝑝 ≫ 𝑝ℬ
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Duality with ”Ensemble Boosting”

• Ensemble boosting (S. Sippel, E. Fischer, et al.): 
• for a given system 𝑋 𝑡 and a target set ℬ (with low probability), determine a 

set of initial conditions 𝒜 for for which the committor function is maximum 
(within a lead time 𝜏) 
• Find argmax of committor function 𝜙
• Then “replay” perturbed trajectories from 𝒜

• Importance sampling:
• for a given system 𝑋 𝑡 and a target set ℬ (with low probability), how to 

reach ℬ from any initial condition 𝒜?
• Estimate committor function 𝜙
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Instantons and extreme events

Anna Karenin (L. Tolstoï): “Happy families are all alike; every unhappy 
family is unhappy in its own way”
• If climate extreme/rare events (e.g. heatwaves) are like “happy 

families”, is their pathway unique?
• Theory of instantons (Freidlin and Wentzell, 1984): if set ℬ has 

sufficiently low probability, there is only one way to reach it, which is 
provided by optimizing a committor function
• Is this true? Caveats? Counterexample?
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Summer 2021 in North West America

−125°

−125°

−120°

−120°

−115°

−115°

45° 45°

50° 50°

−10 −8 −6 −4 −2 0 2 4 6 8 10

5600

5
6
0
0

5700

5700

5800

5800

−170°

−170°

−160°

−160°

−150°

−150°

−140°

−140°

−130°

−130°

−120°

−120°

−110°

−110°

−100°

−100°

−90°

−90°

−80°

−80°

30° 30°

40° 40°

50° 50°

60° 60°

70° 70°

−110 −90 −70 −50 −30 −10 10 30 50 70 90 110
0 20 40 60 80

15
20

25
30

35

Days since 1 June 2021

TX

Seasonal cycle
Obs

P. Yiou, XAIDA school@Trieste, 30 June 2022 22

TX anomalies Z500 (+ JJA anomalies)

ERA5 (from climate explorer)



Record breaking/shattering?
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Return levels from GEV fits of TX1d, TX30d, TX60d

Out of the distribution event (Gaussian and GEV)?



Challenge

• For short or longer time scales the Summer 2021 is a record:
• Outside of N 𝜎 of distribution with a Gaussian hypothesis
• Outside of GEV fit

• If a Generalized Extreme Value distribution cannot reach such an 
event, can we do this with a model?

ØSimulate an outlier event with a statistical Markovian model 
(Stochastic Weather Generator: SWG) with a rare event algorithm
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Simulation set-up

• Z500 analogs of 2000-2021 in 
1950-1999 & 1971-2020
• Here: ERA5 (for T and Z500)

• TX averaged over W America
• Here: ERA5 [125-115W; 44-52N]

• Flavors of dynamic simulations:
• Initial condition: 15th June
• Using information on 2021
• No information on 2021 (even to 

simulate summer 2021)
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30 day Simulations
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Composite Z500 during 30 day simulations
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With 2021

Without 2021

• Slight enhancement of anticyclonic
patterns between 1950-1999 to 1971-
2020

• Strong enhancement of anticyclonic
pattern with 2021

• Extreme high temperatures necessitate
Omega shaped circulation



Conclusion

• Difficult to exceed 2021 temperature values in 1950-1999 without
information on 2021
• The increase of the pdf for extremes is larger than mean (local) 

climate change
• Necessity of Omega shaped Z500 pattern for extremely high 

temperatures
• Unique pathway to reach such an event (instanton)?
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Hackathon 09: Simulation of worst cases

• West Pacific Heatwave of 2021
• A heatwave around (continental) France 
• A heatwave in Paris during the 2024 Olympics
• Questions:
• Can we top or exceed the records with present day conditions?
• What is the atmospheric circulation during those heatwaves?
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Hackathon 09: Plan

• Precomputed analogs of Z500 or SLP (from reanalyses or CMIP6)
• Daily time series of temperatures
• Code (R and shell script) on github
• For windows-ers: please use the code provided on the ICTP dropbox
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