VNIVERSITAT
DGVALENCIA

Spatio-Temporal
Deep Neural Networks
for Extreme Event Detection

Miguel-Angel Fernandez-Torres

miguel.a.fernandez@uyv.es
https://miguelangelft.github.io/

Image an_d Signal (LQQ’(L(Q
Processing - ISP > O
. cs)QO Q@
= (¢ .] PROCESSING Q}% ’O\}
Q. @7@ LABORATORY NP
&
2
®

mailto:miguel.a.fernandez@uv.es
https://miguelangelft.github.io/

Contents

1. Extreme Event Detection using DNNs 4. Time: Recurrent Neural Networks (RNNs)
2. Deep Neural Networks (DNNs) * NNsvs. RNNs

* From Regression to Neural Networks * Types of RNNs

Multi-Layer Neural Networks * LSTMs

 Feedforward Propagation 5. Spatio-Temporal DNNs

e Activation Functions « CNN + RNN

 “How to Train your (Deep) Neural Network” Convolutional LSTM
3. Space: Convolutional Neural Networks (CNNs) * 3D Convolution

* Fully Connected vs. CNNs References

* Architecture Design :.

PyTorch

1. Extreme Event
Detection using DNNs

|
-~

Source: Mahecha et al., 2020

Extreme Event Detection using DNNs

Spatial/Temporal/Spatio-Temporal Data Representation +
Machine Learning Algorithm (Classification / Regression)

Climate variables,
satellite imagery,
location-aware data, etc.

D))
1Dé) Za?g 3D I::)[Layer 1 >[Layer 2 :>[Layer ... :>[Layer N
Y, _ J

N

* From classical Machine Learning/Computer Vision to Deep Learning
— From feature engineering (extraction + selection) to feature learning

=

Output

——»

2010-06-0V

2010-06-30

.~ 2010-07-24
time

Extreme event detection

Classifier/
Regressor

* Spatial/temporal/spatio-temporal hierarchical representations from 1D/2D/3D data to classifier/regressor.

* Each layer extract features from the output of the previous layer.
* End-to-End Learning: Train all layers jointly.

2. Deep Neural Networks
(DNNs)

4
s

Deep Neural Networks (DNNSs)

Neuron Model: Biological vs. Computational Neuron

input signals toward cell body

X1 Wy
synapse

axon from a neuron

L
y=f(§}w@+b)
j=1

f >

output axon

cell body

L
ZWij'Fb
=

dendrite

activation
function

synhapses
output signals from cell body

cell body nucleus

From Linear Regression to Neural Networks

* Linear regression: Single-layer neural network

o Pre-activation: a(x) = Y, w;x; + b =w'x+b
o Activation: h(x) = g(a(x)) = g(&;wix; + b)

o Fully-connected/dense layer: Every input connected to every output

Output layer

y = softmax(Wx+b) ye R xeRWeR, beRE

o L features or descriptors X

o C classifiers, one per category, evaluated in parallel
o Objective: Given training set, learn W (weights or parameters) and b (bias term)
o Once weights are learned, the set of training data can be discarded

o Predicted scores for each class ¥

Input layer

Multi-layer Neural Network - Feedforward Propagation

w@® w®@) w L+
X a® || W a® || h® alltD | f(x)
b b pL+D)
a(l) (X) — W(l)x + b(l) a(z) (X) _ W(z)h(l) (x) n b(z) a(L+1) (X) — W(L+1)hL(X) + b(L+1)
— (L+1)
hD) = g (a V() h® @) = g (a@ () o) = o (a0

Why Deep Neural Networks?
* There are functions you can compute with “deep” NNs that

shallower NNs would require exponentially more hidden units () torch.nn.Linear
* More layers, less hidden units per layer

* Hierarchical representations: From less to more abstract concepts

ACtivation FunCtionS O nn.Sigmoid | nn.Tanh | nn.RelLU

* A Neural Network Playground: https://playground.tensorflow.org/ e D © e

* A neural network solves linear problems e - =
* Non-linear problems <——

o Designing more suitable features (e.g. polynomial features).
o Building more complex networks, combining several neurons.
o Activation functions

Linear Logistic or Sigmoid Hyperbolic tangent
g(0) = x 1 g(x) = tanh(x) L
g(x) = g(x) = max(0, x)

1+e*

2.0

1.5 — tanh

] P 1.0 3
05
0.0 2
o |
-0.5
/ -1.0
1

-2.0

Binary classification, Multi-class classification - Softmax Most hidden layers

9

https://playground.tensorflow.org/

“How to Train your (Deep) Neural Network”

Loss Function, cost function, objective [

* Quantitatively determines how accurate the output of the model is.

* Objective: Minimize empirical risk /(0):

N = Number of training samples

x; = Input i features or descriptors

y; = Ground-truth (GT) value, label for input i
6 = Network architecture weights

1
arg;nin](@) = arg;nin Nz l(f(x;;0),y;)

* Some well-known loss functions:
 Classification: Cross-Entropy Loss, Hinge Loss (Support Vector Machine)
* Regression: L1 Norm or Mean Absolute Error, L2 or Mean Squared Error

C:) torch.nn.CrossEntropyLoss | torch.nn.MultiMarginLoss
torch.nn.L1Loss | torch.nn.MSELoss

10

“How to Train your (Deep) Neural Network”

Regularization Techniques

* L2 regularization: Q(0) = ||w||3
* L1 regularization: Q(0) = [|w]|;
* Data Augmentation

* Early Stopping

Errors

* Dropout

Underfitting | Good Model

® Error on training data
®° Error on validation data

Overfitting

11

“How to Train your (Deep) Neural Network”

Optimization and Backpropagation

* Optimization: Find network weights q to minimize
the error between true and estimated labels of
training examples:

1
1©) ==) Uf(x;6),y®)
t

 Backpropagation:
o Compute the gradient of the loss function w.r.t. Vil
parameters, from output to input layers

o Update weights by gradient descent:

] :
0«0 — a% a = Learning rate

Adapted from: Svetlana Lazebnik

12

“How to Train your (Deep) Neural Network”

Optimization and Backpropagation

* Learningrate:

o A learning rate a that is too large can cause the
model to converge too quickly to a suboptimal
solution...

o whereas a learning rate that is too small can cause
the process to get stuck
 Stochastic Gradient Descent (SGD):

o Compute the weight update w.r.t. one training it -
example at a time... oo i, r e N

o or a small batch of examples: Mini-batch SGD

o Cycle through training examples in random order
in multiple epochs

Adapted from: Svetlana Lazebnik

O torch.optim.SGD | torch.optim.RMSprop | torch.optim.Adam |

13

3. Space: Convolutional
Neural Networks (CNNs)

4
s

Space: Convolutional Neural Networks (CNNs)

Example: 100x100px images
- Spatial correlation/filtering is local

Input o SNy - 1 locally connected hidden layer with a filterbank:
Output AN - Spatial filter size 10x10
\ N \ - 100-1000 filters
SN - 1 fully connected output layer
SN Complexity: ~10k-100k parameters, more efficient!!
v e The number of parameters
Image pixels

does not depend on the input
size! (less prone to overfitting)

Fully Connected NNs

Example: 100x100px images * Inspired by Hubel and Wiesel

- 1 fully connected hidden layer: 10k neurons (1 per pixel) (1962): Neurons are sensitive to
- 1 fully connected output. simple patterns of light
Complexity: ~100M parameters (oriented edges, color blotches)

15

CNN Architecture Design

Input = Ax[Bx[CONV - RelLU] - POOL?] - Cx[FC - RelLU] - FC = Output

= |nput

= Sequence of A blocks of B CONV layers with ReLU (or other) activations, sometimes
followed by a POOL layer.

Stack of C FC layers.

Last FC layer holds the output predicted values.

= Qutput

(:) torch.nn.Conv2d | torch.nn.MaxPool2d | torch.nn.ReLU | torch.nn.Linear

16

Convolutional Layer (CONV) (') torch.nn.convad

= |nput: 3D volume (width, height and depth)
Set of filters with learnable weights
= Spatially slided along width and height of channels
or spatial maps stacked on depth
= Filter or kernel size F = Receptive field of the neuron
Output: 3D volume
= Number of filters U
— Depth or number of output channels
= Stride S or down-sampling factor
— Spatial size of the output
= Bigger strides, smaller output volumes
= Zero-padding to vary the output spatial size

17

Convolutional Layer (CONV)

__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
3
wliz+0b

Source: CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University

™~ 1 number:

18

Convolutional Layer (CONV)

__— 32x32x3 image

5x5x3 filter
=

——0

convolve (slide) over all

32

spatial locations

activation map

28

28

1

Source: CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University

19

Convolutional Layer (CONV)

consider a second, green filter...

/ 32x32x3 |mage activation maps

5x5x3 filter
=
@>@ N

convolve (slide) over all
spatial locations

32 / 28

Source: CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University

Convolutional Layer (CONV)

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

LAV

6

28

28

We stack these up to get a “new image” of size 28x28x6!

Source: CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University

21

Pooling Layer (POOL) -« torch.nn.MaxPool2d

torch.nn.AvgPool2d

= Pooling: Fusing information from nearly locations
= Types:
= Max pooling: Stimuli competition, only the strongest survives.
In bottom/medium layers
= Average pooling: Used more in top layers
* |nvariance against small translations/shifts
= No parameters!

MAX POOLING
Single depth slice
111124
max pool with 2x2 filters
56 |78 and stride 2 6 | 8
3/211]0] 3|4
112 |3 |4

22

Summary: CNN Pipeline (') torch.nn.convad
1t

‘ Feature maps]

3

Spatial pooling

{}

Non-linearity

Convolution
(Learned)

[Input Image J

Source: R. Fergus, Y. LeCun

23

Summary: CNN Pipeline
{r

‘ Feature maps]

i

[Spatial pooling]

Convolution
(Learned)

{}

[Input Image]

Source: R. Fergus, Y. LeCun

ReLU
max (0,)

Source: Stanford 231n

24

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

. - - -« torch.nn.LeakyRelLU
Summary: CNN Pipeline oo o

[Spatial pooling]
Leaky ReLU)
max(0.1x, x)
(Learned)

‘ Feature maps] RelLLU
4 max (0,)
[Convolution }
ELU
{} T x>0
[Input Image] ale® —1) z<0 - - 10
Source: R. Fergus, Y. LeCun Source: Stanford 231n

25

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

. torch.nn.MaxPool2d
Torch.nn.AvgPool2d

Summary: CNN Pipeline
1t

‘ Feature maps]

Spatial pooling

[Non-linearity]

-

Convolution
(Learned)

{}

[Input Image]

Source: R. Fergus, Y. LeCun Source: Stanford 231n

26

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

. torch.nn.MaxPool2d
Torch.nn.AvgPool2d

Summary: CNN Pipeline
1t

‘ Feature maps]

Spatial pooling

[Non-linearity]

-

Convolution
(Learned)

{}

[Input Image]

Source: R. Fergus, Y. LeCun Source: Stanford 231n

27

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf

4. Time: Recurrent Neural
Networks (RNNs)

2
40

Time: Recurrent Neural Networks (RNNs)

Neural Networks (NNs) Recurrent Neural Networks (RNNs)
output output
hidden layer hidden state loop
input input

observed . to be estimatedO

29

Types of Recurrent Neural Networks

one to many

1 input,
N outputs

e.g. Event description
Image/Feature map
- Sequence of words

many to one

N inputs,
1 output

e.g. Event recognition
Time/Space-time series
- Class(es)

many to many many to many

N inputs, N inputs,
M outputs N outputs

e.g. Event detection/forecasting
Time/Space-time series
- Time/Space-time series for event detection/forecasting

30

The Problem of Long-Term Dependencies

Recurrent Neural Networks (RNNs) Long Short-Term Memory (LSTM) Networks
0 @) i & Q) 6.
, T 1 t T 1
| | ; H___ - ——
A [T A a Al a7
| i_ T . 1 ‘WI — 7 ’
&) &) &) (x) &)

Designed to alleviate the problem of
vanishing and exploding gradients

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

31

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

f

cell state @ (X)

2N G

oo
hidden state @ '

&

o® Ganh>
X o (X)
tanh | | O |

input

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

()
©

O torch.nn.LSTM

32

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

Cell state

Ci_1 Ci e “Conveyor belt”

Uninterrupted gradient flow

* LSTMs add or remove info to cell state.

* Infois regulated by gates.

* Gate: sigmoid + pointwise multiplication
operation

o — —
[

sigm(x) v

[e e I
() torch.nn.LSTM

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

33

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

Forget gate layer
What info to remove?

f fo=0(W;-[hy1,2:] + by)

O torch.nn.LSTM

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

34

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

Input gate layer
What info to add?

i = 0 (Wi lhe—1,2¢] + b;)
ét Ztanh(WC-[ht_l,a:t] + bo)

O torch.nn.LSTM

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

35

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

Ci_1 Ct Old cell state update

ffT %r‘%$ Cy = fir xCr_1 + 14 % ét

O torch.nn.LSTM

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

36

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM) Networks [Hochreiter et al., 1997]

Output

Ot — J(WO [ht—laxt] + bo)
hy = o4 * tanh (C})

O torch.nn.LSTM

Source: Colah’s Blog, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

37

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

5. Spatio-Temporal DNNs

4
40

Spatio-Temporal DNNs: CNN+RNN

Multi-frame features are temporally local ——

(e.g. 10 frames) ﬁ
Hypothesis: A global description would be
beneficial

Challenge: Model variable length sequences

with a fixed number of parameters 1) Conv Pooling 2) Late Pooling 3) Slow Pooling
Design choices: E——— —

= Modality: e

1) RGB

2) Motion estimation (e.g. optical flow)

3) RGB + motion estimation 4) Local Pooling 5) Time-domain convolution

= Features:

1) Hand-crafted

2) Extracted using CNN [Convolution Temporal Convolution

= Temporal aggregation:

1) Temporal feature pooling [1 Pooling [1 Softmax

2) RNN (e.g. LSTM, GRU)

Fully Connected

39

Convolutional LSTM [shi et al., 2015]

cell state

hidden state

LSTM cell

ConvLSTM cell

Cir-1]

ConvLSTM

a7l

ci

— |7

Source: https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

40

https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

Prediction

Convolutional LSTM [shi et al., 2015]

Encoding Network

ConvLST M,

ConvL ST_M:/ '

Con rLST_M, .
L |

I”pM /d/j"' / Forccasting Network

ConvLST M5

L.
.Copy. . .,
N

Figure 3: Encoding-forecasting ConvLLSTM network for precipitation nowcasting

Figure 8: (Larger Version) Two prediction examples for the precipitation nowcasting problem.
All the predictions and ground truths are sampled with an interval of 3. From top to bottom: input
frames; ground truth; prediction by ConvLSTM network: prediction by ROVER2.

41

3D Convolution: Embed Temporal Dimension to CNN

Previous work: 2D convolutions collapse temporal information

H —> k L — —

k .
e H “L
output K

- 1 output

)
(@) 2D convalution (b) 2D convolutien on multiple frames

Proposal: 3D convolution — learning features that encode temporal information

L

output

(€) 3D convolution

3D Convolution

Time

. torch.nn.Conv3d
torch.nn.MaxPool3d
torch.nn.AvgPool3d

Input Layer

3

Latitude

l Convolutional Layer

Source: Resuly’s Blog, http://resuly.me/
43

References

e (CS231 “Convolutional Neural Networks for Visual Recognition”. Stanford University.
http://cs231n.stanford.edu/index.html

* Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
 Zhang, A, Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342.

 Camps-Valls, G, Tuia, D., Zhu, X. X., & Reichstein, M. (Eds.). (2021). Deep learning for the Earth Sciences: A
comprehensive approach to remote sensing, climate science and geosciences. John Wiley & Sons.

* Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285.

» “Speech, audio, image, and video processing applications”. Universidad Carlos Ill de Madrid.
https://aplicaciones.uc3m.es/cpa/generaFicha?est=227&asig=15936&idioma=2

* Fernandez Torres, M. A. (2019). Hierarchical representations for spatio-temporal visual attention: modeling and
understanding. https://doi. org/10.1109/TCSVT. 2019.2909427.

* Colah’s Blog: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
* Andrej Karpathy Blog: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://cs231n.stanford.edu/index.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

References

» Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification
with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (pp. 1725-1732).

* Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine
learning approach for precipitation nowcasting. Advances in neural information processing systems, 28.

VNIVERSITAT
DGVALENCIA

Spatio-Temporal
Deep Neural Networks
for Extreme Event Detection

Miguel-Angel Fernandez-Torres

miguel.a.fernandez@uv.es
https://miguelangelft.github.io/

Image an_d Signal (LQQ’(L(Q
Processing - ISP > O
. cs)QO Q@
= (¢ .] PROCESSING Q}% ’O\}
Q. @7@ LABORATORY NP
&
2
®

mailto:miguel.a.fernandez@uv.es
https://miguelangelft.github.io/

