Spatio-Temporal Deep Neural Networks for Extreme Event Detection

Miguel-Ángel Fernández-Torres

<u>miguel.a.fernandez@uv.es</u> <u>https://miguelangelft.github.io/</u>

Image and Signal Processing - ISP

Contents

- 1. Extreme Event Detection using DNNs
- 2. Deep Neural Networks (DNNs)
 - From Regression to Neural Networks
 - Multi-Layer Neural Networks
 - Feedforward Propagation
 - Activation Functions
 - "How to Train your (Deep) Neural Network"
- 3. Space: Convolutional Neural Networks (CNNs)
 - Fully Connected vs. CNNs
 - Architecture Design

- 4. Time: Recurrent Neural Networks (RNNs)
 - NNs vs. RNNs
 - Types of RNNs
 - LSTMs
- 5. Spatio-Temporal DNNs
 - CNN + RNN
 - Convolutional LSTM
 - 3D Convolution

References

1. Extreme Event Detection using DNNs

Extreme Event Detection using DNNs

- From classical Machine Learning/Computer Vision to <u>Deep Learning</u>
- → From feature engineering (extraction + selection) to <u>feature learning</u>
- Spatial/temporal/spatio-temporal <u>hierarchical representations</u> from 1D/2D/3D data to classifier/regressor.
- Each layer extract features from the output of the previous layer.
- End-to-End Learning: Train all layers jointly.

2. Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs)

Neuron Model: Biological vs. Computational Neuron

From Linear Regression to Neural Networks

• Linear regression: Single-layer neural network

- o Pre-activation: $a(\mathbf{x}) = \sum_i w_i x_i + b = \mathbf{w}^T \mathbf{x} + b$
- Activation: $h(\mathbf{x}) = g(a(\mathbf{x})) = g(\sum_i w_i x_i + b)$
- Fully-connected/dense layer: Every input connected to every output

• Classification/Softmax regression: Single-layer neural network

$$\hat{y} = softmax(\mathbf{W}\mathbf{x} + \mathbf{b}) \quad y \in \mathbb{R}^C, \mathbf{x} \in \mathbb{R}^L, \mathbf{W} \in \mathbb{R}^{C \times L}, \mathbf{b} \in \mathbb{R}^C$$

Output layer

Input layer

 x_1 x_2 x_3 x_4

- \circ *L* features or descriptors **x**
- C classifiers, one per category, evaluated in parallel
- \circ Objective: Given training set, learn W (weights or parameters) and \mathbf{b} (bias term)
- Once weights are learned, the set of training data can be discarded
- \circ Predicted scores for each class $\widehat{\boldsymbol{y}}$

Multi-layer Neural Network – Feedforward Propagation

$$\mathbf{a}^{(1)}(\mathbf{x}) = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
 $\mathbf{a}^{(2)}(\mathbf{x}) = \mathbf{W}^{(2)}\mathbf{h}^{(1)}(\mathbf{x}) + \mathbf{b}^{(2)}$ $\mathbf{a}^{(L)}$

$$\mathbf{h}^{(1)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(1)}(\mathbf{x}))$$
 $\mathbf{h}^{(2)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(2)}(\mathbf{x}))$

$$\mathbf{h}^{(2)}(\mathbf{x}) = \mathbf{g}\left(\mathbf{a}^{(2)}(\mathbf{x})\right)$$

$$\mathbf{a}^{(L+1)}(\mathbf{x}) = \mathbf{W}^{(L+1)}\mathbf{h}^{L}(\mathbf{x}) + \mathbf{b}^{(L+1)}$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{o}\left(\mathbf{a}^{(L+1)}(\mathbf{x})\right)$$

Why Deep Neural Networks?

- There are functions you can compute with "deep" NNs that shallower NNs would require exponentially more hidden units
- More layers, less hidden units per layer
- Hierarchical representations: From less to more abstract concepts

Activation Functions

nn.Sigmoid | nn.Tanh | nn.ReLU

- A Neural Network Playground: https://playground.tensorflow.org/
- A neural network solves linear problems
- Non-linear problems
 - Designing more suitable features (e.g. polynomial features).
 - Building more complex networks, combining several neurons.
 - Activation functions

Logistic or Sigmoid

$$g(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent $g(x) = \tanh(x)$

RELU g(x) = max(0, x)

Most hidden layers

Binary classification, Multi-class classification → Softmax

Loss Function, cost function, objective l

- Quantitatively determines how accurate the output of the model is.
- Objective: Minimize empirical risk $J(\theta)$:

$$\arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} l(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$

- $N \equiv$ Number of training samples
- $x_i \equiv \text{Input } i \text{ features or descriptors}$
- $y_i \equiv \text{Ground-truth (GT) value, label for input } i$
- $\theta \equiv \text{Network}$ architecture weights

- Some well-known loss functions:
 - Classification: Cross-Entropy Loss, Hinge Loss (Support Vector Machine)
 - Regression: L1 Norm or Mean Absolute Error, L2 or Mean Squared Error

torch.nn.CrossEntropyLoss | torch.nn.MultiMarginLoss
torch.nn.L1Loss | torch.nn.MSELoss

Regularization Techniques

- L2 regularization: $\Omega(\boldsymbol{\theta}) = \|\mathbf{w}\|_2^2$
- L1 regularization: $\Omega(\boldsymbol{\theta}) = \|\mathbf{w}\|_1$
- Data Augmentation
- Early Stopping
- Dropout

- Error on validation data

Optimization and Backpropagation

Optimization: Find network weights q to minimize the error between true and estimated labels of training examples:

$$J(\theta) = \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \theta), y^{(t)})$$

- Backpropagation:
 - Compute the gradient of the loss function w.r.t. parameters, from output to input layers
 - Update weights by gradient descent:

$$\theta \leftarrow \theta - \alpha \frac{\partial J}{\partial \theta}$$
 $\alpha \equiv Learning\ rate$

Optimization and Backpropagation

Learning rate:

- \circ A learning rate α that is too large can cause the model to converge too quickly to a suboptimal solution...
- whereas a learning rate that is too small can cause the process to get stuck

Stochastic Gradient Descent (SGD):

- Compute the weight update w.r.t. one training example at a time...
- o or a small batch of examples: Mini-batch SGD
- Cycle through training examples in random order in multiple epochs

3. Space: Convolutional Neural Networks (CNNs)

Space: Convolutional Neural Networks (CNNs)

Fully Connected NNs

Example: 100x100px images

- 1 fully connected hidden layer: 10k neurons (1 per pixel)
- 1 fully connected output.

Complexity: ~100M parameters

Example: 100x100px images

- Spatial correlation/filtering is local
- 1 locally connected hidden layer with a filterbank:
 - Spatial filter size 10x10
 - 100-1000 filters
- 1 fully connected output layer

Complexity: ~10k-100k parameters, more efficient!!

- The number of parameters does not depend on the input size! (less prone to overfitting)
- Inspired by Hubel and Wiesel (1962): Neurons are sensitive to simple patterns of light (oriented edges, color blotches)

CNN Architecture Design

Input
$$\rightarrow$$
 A×[B×[CONV \rightarrow ReLU] \rightarrow POOL?] \rightarrow C×[FC \rightarrow ReLU] \rightarrow FC \rightarrow Output

- Input
- Sequence of A blocks of B CONV layers with ReLU (or other) activations, sometimes followed by a POOL layer.
- Stack of C FC layers.
- Last FC layer holds the output predicted values.
- Output
- () torch.nn.Conv2d | torch.nn.MaxPool2d | torch.nn.ReLU | torch.nn.Linear

- Input: 3D volume (width, height and depth)
- Set of filters with learnable weights
 - Spatially slided along width and height of channels or spatial maps stacked on depth
- Filter or kernel size $F \rightarrow$ Receptive field of the neuron
- Output: 3D volume
 - Number of filters *U*
 - → Depth or number of output channels
 - Stride S or down-sampling factor
 - → Spatial size of the output
 - Bigger strides, smaller output volumes
 - Zero-padding to vary the output spatial size

consider a second, green filter...

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Pooling Layer (POOL)

- Pooling: Fusing information from nearly locations
- Types:
 - Max pooling: Stimuli competition, only the strongest survives.
 In bottom/medium layers
 - Average pooling: Used more in top layers
- Invariance against small translations/shifts
- No parameters!

MAX POOLING

Single depth slice 1 1 2 4 5 6 7 8 3 2 1 0 1 2 3 4

6	8
3	4

-10 10

Source: R. Fergus, Y. LeCun Source: Stanford 231n

Source: R. Fergus, Y. LeCun Source: Stanford 231n

Source: R. Fergus, Y. LeCun Source: <u>Stanford 231n</u>

Source: R. Fergus, Y. LeCun Source: Stanford 231n

4. Time: Recurrent Neural Networks (RNNs)

Time: Recurrent Neural Networks (RNNs)

Neural Networks (NNs)

Recurrent Neural Networks (RNNs)

Types of Recurrent Neural Networks

Time/Space-time series

 \rightarrow Class(es)

Image/Feature map

→ Sequence of words

→ Time/Space-time series for event detection/forecasting

30

Time/Space-time series

The Problem of Long-Term Dependencies

Recurrent Neural Networks (RNNs)

Long Short-Term Memory (LSTM) Networks

Designed to alleviate the problem of vanishing and exploding gradients

Cell state

- "Conveyor belt"
- Uninterrupted gradient flow
- LSTMs add or remove info to cell state.
- Info is regulated by gates.
- Gate: sigmoid + pointwise multiplication operation

torch.nn.LSTM

Forget gate layer

What info to remove?

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate layer

What info to add?

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Old cell state update

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

5. Spatio-Temporal DNNs

Spatio-Temporal DNNs: CNN+RNN

- Multi-frame features are temporally local (e.g. 10 frames)
- Hypothesis: A global description would be beneficial
- Challenge: Model variable length sequences with a fixed number of parameters
- Design choices:
 - Modality:
 - 1) RGB
 - 2) Motion estimation (e.g. optical flow)
 - 3) RGB + motion estimation
 - Features:
 - 1) Hand-crafted
 - 2) Extracted using CNN
 - Temporal aggregation:
 - 1) Temporal feature pooling
 - 2) RNN (e.g. LSTM, GRU)

Convolutional LSTM [Shi et al., 2015]

LSTM cell

Source: https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7

Convolutional LSTM [Shi et al., 2015]

Figure 3: Encoding-forecasting ConvLSTM network for precipitation nowcasting

Figure 8: (Larger Version) Two prediction examples for the precipitation nowcasting problem. All the predictions and ground truths are sampled with an interval of 3. From top to bottom: input frames; ground truth; prediction by ConvLSTM network; prediction by ROVER2.

3D Convolution: Embed Temporal Dimension to CNN

Previous work: 2D convolutions collapse temporal information

Proposal: 3D convolution \rightarrow learning features that encode temporal information

3D Convolution

torch.nn.Conv3d
torch.nn.MaxPool3d
torch.nn.AvgPool3d

References

- CS231 "Convolutional Neural Networks for Visual Recognition". Stanford University. http://cs231n.stanford.edu/index.html
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
- Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342.
- Camps-Valls, G., Tuia, D., Zhu, X. X., & Reichstein, M. (Eds.). (2021). Deep learning for the Earth Sciences: A
 comprehensive approach to remote sensing, climate science and geosciences. John Wiley & Sons.
- Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.
- "Speech, audio, image, and video processing applications". Universidad Carlos III de Madrid. https://aplicaciones.uc3m.es/cpa/generaFicha?est=227&asig=15936&idioma=2
- Fernández Torres, M. Á. (2019). Hierarchical representations for spatio-temporal visual attention: modeling and understanding. https://doi.org/10.1109/TCSVT.2019.2909427.
- Colah's Blog: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Andrej Karpathy Blog: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

References

- Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732).
- Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28.

Spatio-Temporal Deep Neural Networks for Extreme Event Detection

Miguel-Ángel Fernández-Torres

miguel.a.fernandez@uv.es https://miguelangelft.github.io/

Image and Signal Processing - ISP

