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Agenda

1. Introduction: Internal variability vs. forced response

2. Understanding circulation-induced components or recent change

3. Robust detection of forced warming in the presence of potentially large 

climate variability

4. Conclusions
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Deser et al., 2012, Nat. Clim. Change

• Internal variability fundamentally limits 

climate projections

• 45 model simulations with one 
climate model (=same physics)

• 55 year temperature trend maps, 
starting 2006
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Deser et al., 2012, Nat. Clim. Change

• Internal variability: internal climate variation 

over time and space

• Forced response: Component that is 

externally forced (e.g. Solar forcing, 

Aerosols, GHGs)

• 45 model simulations with one 
climate model (=same physics)

• 55 year temperature trend maps, 
starting 2006

Figure Credit: Reto Knutti.
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Understanding abrupt winter climate change in Switzerland
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An abrupt winter climate change in Switzerland?
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• Internal variability fundamentally limits 

climate projections

• Strong implications for interpretation of 

regional climate trends

• Dynamical adjustment: extraction of 

regional climate signals using circulation 

information

Dynamical adjustment

Sippel et al., 2019, Journal of Climate, 32, 
5677-5699.

Figure Courtesy: Dr. Anna Merrifield
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• Internal variability fundamentally limits 

climate projections

• Strong implications for interpretation of 

regional climate trends

• Dynamical adjustment: extraction of 

regional signals using circulation 

information

Dynamical adjustment

Sippel et al., 2019, Journal of Climate, 32, 
5677-5699.
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Dynamical adjustment

Statistical model: Regularized linear regression

Hastie et al. (2009) Elements of statistical 
learning.
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• Internal variability fundamentally limits 

climate projections

• Strong implications for interpretation of 

regional climate trends

• Dynamical adjustment: extraction of 

regional signals using circulation 

information

• Statistical learning method (regularized 

regression) to encapsulate the circulation 

information into a statistical model

Dynamical adjustment

Sippel et al., 2019, Journal of Climate, 32, 
5677-5699.
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Understanding abrupt winter climate change in Switzerland

• At regional scales, circulation-induced 

variability explains a large fraction of 

temperature variability

Sippel et al., 2019, Environmental 
Research Letters, 15, 094056.
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Understanding abrupt winter climate change in Switzerland

• At regional scales, circulation-induced 

variability explains a large fraction of 

temperature variability

• Residuals of circulation-induced variability 

reveal a smooth (thermodynamical) signal of 

change

Sippel et al., 2019, Environmental 
Research Letters, 15, 094056.
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Understanding dynamical and thermodynamical drivers of extreme event 
trends

(0C/year)

Tx1day trend (1951-2021; GHCNDEX)

XAIDA work by
Jitendra Singh (see Poster).

• Strongly contrasting trends in 

temperature extremes between CEU 

and the Midwest US

• Dynamical adjustment with 

detrended z500 geopotential height 

predictors
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Understanding dynamical and thermodynamical drivers of extreme event 
trends

XAIDA work by
Jitendra Singh (see Poster).

• Strongly contrasting trends in 

temperature extremes between CEU 

and the Midwest US

• Dynamical adjustment with 

detrended z500 geopotential height 

predictors

• Circulation has contributed to CEU 

temperature extremes – but 

dampened in Midwest US

• Thermodynamical trends are better 

aligned 
Circulation trend Thermodynamical Trend Total Trend

CESM LE CHIRPS (1983-2016)CPC
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Summary Part 1

• The apparent climate regime shift in 

Switzerland and in Europe can be explained 

as a combination of unusual atmospheric 

circulation combined with a smooth forced 

thermodynamical trend

• Trends in temperature extremes contrast 

strongly between Central Europe and 

Midwest US. At least part of the 

discrepancy can be reconciled by different 

influences of atmospheric circulation
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Agenda

1. Introduction: Internal variability vs. forced response

2. Understanding circulation-induced components or recent change

3. Robust detection of forced warming in the presence of potentially large 

climate variability

4. Conclusions



• Are external causal factors at play in the climate 

system?
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Tabassi et al., 2019, NISTIR.
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𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)

25

Image Credit: 
Eniko Székely

target metric 
(forced response 
proxy)

global annual temperature maps

Y

Detection of climate change using 
statistical learning



𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)

26

Y

26

“Fingerprint”	 ,𝛽

Sippel et al., 2020, 
Nat Clim Change. 
doi:10.1038/s415
58-019-0666-7

Detection of climate change using 
statistical learning
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Y

𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)
LFV = Low-frequency internal variability

Detection of climate change using 
statistical learning
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Goal: Good prediction accuracy even under changed 
distributions (of multi-decadal internal variability) (“distributional 
robustness”).

Observational Distribution (𝑥, 𝑦)~𝑃 (“Standard regression”):
(𝛽 = argmin! 𝔼(#,%)~([𝑙(𝑦, 𝑓! 𝑥 ]

Class of distributions (𝑥, 𝑦)~𝑄 where 𝑄 ∈ 𝒬: 
(𝛽 = argmin! sup)∈𝒬 𝔼(#,%)~)[𝑙(𝑦, 𝑓! 𝑥 ]

Meinshausen, N., 2018, IEEE Data Science Workshop.

Robust detection under potentially large variability

28

Y

𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)
LFV = Low-frequency internal variability



Analogy “Distributional robustness”: Which bike should I take on holiday?

Training @ home

Road bike on road Mountain bike in forest

29



Training @ home

Road bike on road Mountain bike in forest

Road bike in forest Mountain bike on road
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Analogy “Distributional robustness”: Which bike should I take on holiday?



Training @ home

Road bike on road Mountain bike in forest

Road bike in forest Mountain bike on road

Solution: Optimize bike 
characteristics to perform well 
under many different 
circumstances…

Cross bike on snow…

31

Analogy “Distributional robustness”: Which bike should I take on holiday?



Anchor regression estimator*:

$𝛽! = argmin" ∥ 𝐼# − Π$ 𝑌 − 𝑋𝛽 ∥%% + 𝛾 ∥ Π$ 𝑌 − 𝑋𝛽 ∥%%

𝛾 = “causal” regularization parameter that gives the strength of the 
intervention on the anchor variable (encouraging orthogonality 
with residuals)

* Rothenhäusler et al. (2021), Anchor regression: heterogeneous data meets 
Causality. Journal of the Royal Statistical Society, Series B.

32

Robust detection under potentially large variability

Y

𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)
LFV = Low-frequency internal variability 
(= Anchor)

{

Minimize Error

{

Robustness w.r.t. 
Anchor
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Robust detection under potentially large variability

Y

𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)
LFV = Low-frequency internal variability 
(= Anchor)

{

Minimize Error

{

Robustness w.r.t. 
Anchor

Standard regression (𝛾 = 1): Anchor regression (𝛾 ≫ 1):



Anchor regression estimator combined with L2 penalty:

$𝛽! = argmin" ∥ 𝐼# − Π$ 𝑌 − 𝑋𝛽 ∥%% + 𝛾 ∥ Π$ 𝑌 − 𝑋𝛽 ∥%% + 𝜆 ∥ 𝛽 ∥%%

𝛾 = “causal” regularization parameter that gives the strength of the 
intervention on the anchor variable (encouraging orthogonality 
with residuals)

𝜆 = L2 regularization to handle multicollinearity and ensure 
smoothness

34

{

Minimize Error

{ {

Avoiding 
Overfitting

Robust detection under potentially large variability

Y

𝑋 = temperature map (e.g., annual)
𝑌 = forced response metric
𝛽 = set of regression coefficients 
(“fingerprint”)
LFV = Low-frequency internal variability 
(= Anchor)

Robustness w.r.t. 
Anchor
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Sippel et al., 2021, Science Advances 7, 
eabh4429, doi:10.1126/sciadv.abh4429.

A train-test split of CMIP simulations: Experiment Design

• We split the CMIP archive into “low-variability” 

(=training) and “high-variability” (=test) models
piControl
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eabh4429, doi:10.1126/sciadv.abh4429.

A train-test split of CMIP simulations: Results

• We split the CMIP archive into “low-variability” 

(=training) and “high-variability” (=test) models

• Traditional detection metrics such as global mean 

temperature (“GMT”) show a reasonable RMSE but 

high residual correlation (training models)

https://www.science.org/doi/10.1126/sciadv.abh4429
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A train-test split of CMIP simulations: Results

• We split the CMIP archive into “low-variability” 

(=training) and “high-variability” (=test) models

• Traditional detection metrics such as global mean 

temperature (“GMT”) show a reasonable RMSE but 

high residual correlation (training models)

• A trade-off arises for Anchor solutions that aim to 

jointly minimize RMSE and res. Correlation (training 

mod.)

https://www.science.org/doi/10.1126/sciadv.abh4429
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A train-test split of CMIP simulations: Results

• We split the CMIP archive into “low-variability” 

(=training) and “high-variability” (=test) models

• Traditional detection metrics such as global mean 

temperature (“GMT”) show a reasonable RMSE but 

high residual correlation (training models)

• A trade-off arises for Anchor solutions that aim to 

jointly minimize RMSE and res. Correlation (training 

mod.)
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A train-test split of CMIP simulations: Results

• We split the CMIP archive into “low-variability” 

(=training) and “high-variability” (=test) models

• Traditional detection metrics such as global mean 

temperature (“GMT”) show a reasonable RMSE but 

high residual correlation (training models)

• A trade-off arises for Anchor solutions that aim to 

jointly minimize RMSE and res. Correlation (training 

mod.)

• Distributional shift to high-variability (test) models

almost doubles RMSE for traditional detection 

metrics, but RMSE increases more moderately for 

anchor regression solutions

https://www.science.org/doi/10.1126/sciadv.abh4429
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Sippel et al., 2021, 
Science Advances 7, 
eabh4429, 
doi:10.1126/sciadv.a
bh4429.

A train-test split of CMIP simulations: Results (2)
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Climate change detection with anchor detection metric is much more robust to multi-decadal variability.

https://www.science.org/doi/10.1126/sciadv.abh4429
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Anchor constraint-based fingerprint puts more negative weights on regions of multi-decadal internal 

variability (PDO, AMO, etc.), to “counterbalance” positive weights.

Ridge regression Anchor regression

How does the “fingerprint” differ in anchor regression?

Sippel et al., 2021, Science Advances 7, 
eabh4429, doi:10.1126/sciadv.abh4429.

https://www.science.org/doi/10.1126/sciadv.abh4429
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How does the anchor fingerprint differ?

Anchor constraint-based fingerprint puts more negative weights on regions of multi-decadal internal 

variability (PDO, AMO, etc.), to “counterbalance” positive weights
Sippel et al., 2021, Science Advances 7, 
eabh4429, doi:10.1126/sciadv.abh4429.

https://www.science.org/doi/10.1126/sciadv.abh4429


Summary Part 2

• Fingerprints to estimate the forced response using statistical learning techniques 

in daily global temperature patterns since approx. 2012

• A key limitation of D&A is that confidence estimates rely on a realistic simulation 
of unforced multi-decadal variability. Robustness constraints (anchors) allow to 

build D&A estimates that are robust also against potentially large multi-decadal 

internal variability

• Encouraging robustness against possible uncertainties/distributional shifts using 
anchor regression may prove useful for climate science more broadly (Extremes? 

Distributional shifts across climate models and/or towards observations?)
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Thank you for the attention!
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