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* Internal variability fundamentally limits

climate projections

Warmest
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) 3
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6 -5-4-32-1 01 2 3 45 6 * 45 model simulations with one
Temperature trend (°C per 55 years) climate model (=same phySiCS)

* 55 year temperature trend maps,
starting 2006

Figure 1] Range of future climate outcomes. a, December-Jan
Deser et al., 2012, Nat. Clim. Change
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Figure 1| Range of future climate outcomes. a, December-January-February (DJF) temperature trends during 2005-2060. Top panel shows the average

Deser et al., 2012, Nat. Clim. Change
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o Ny Cause 1 Cause 2
// * Internal variability: internal climate variation
Average Forced signal, pfefilc.:table, over time and space
modeled deterministically
q & * Forced response: Component that is
7N externally forced (e.g. Solar forcing,

Aerosols, GHGs)
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e ™ Noise, some predictability from memory, [l ©©* « 45 model simulations with one
Temperature trend (°C per 55 yea modeled prObabiIiStica"y er of model runs climate model (=same phySiCS)
Fi , + 55 year temperature trend maps,
gure 1| Range of future climate outcomes. a, ows the average

starting 2006

Deser etal., 2012, Nat. Clim. Change Figure Credit: Reto Knutti.
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Understanding abrupt winter climate change in Switzerland
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An abrupt winter climate change in Switzerland?

3 —
Global Change Biology
o _ ﬂ Global Change Biology (2016) 22, 682-703, doi: 10.1111/gcb.13106
f\n Global impacts of the 1980s regime shift
1 [ PHILIP C. REID"??, RENATA E. HARI*, GREGORY BEAUGRAND'"®, DAVID M.
LIVINGSTONE®, CHRISTOPH MARTY®, DIETMAR STRAILE”, JONATHAN
Regime shift of snow days in Switzerland
Christoph Marty'

Received 19 March 2008; revised 15 April 2008; accepted 7 May 2008; published 17 June 2008,

-1 [1] The number of days with a snow depth above a [3] This work

- ISSN: 2044-2041 (Print) 2044-205X (Online) Journal homepage: http//www.tandfonline.com/lol/tinw

Cold Season Temperature Anomaly [°C]
o
|

-2 — The physical impact of the late 1980s climate
regime shift on Swiss rivers and lakes
Ryan P. North, David M. Livingstone, Renata E. Hari, Oliver Koster, Pius
—3 LI L L LI IR BRI ILNLEL L LB Niederhauser & Rolf Kipfer
1950 1970 1990 2010
Years
ETHzurich
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An abrupt winter climate change in Switzerland?

A n Tages o duseiger

1 - [ Ade Schnee

ZEITZLONLINE

Ginther Aigmer

"'Skisport wird zum Luxus”

Die Winter in den Alpen sind kilter geworden - dennoch haben manct
Wo ist es noch schneesicher? Wie viele Schneetage 33 Schweizer Orte in Skigebiete keine Zukunft. Warum? Ein Gespriich mit dem Skit
den letzten 30 Jahren verloren haben Experten Ginther Aigner
Patrich Vegeli und Mart Brupbaches Intersktry Team
Von Uwe Jean Heuser
29. Dezember 2018, 00:00 Uhr Klima
-
Schneewar’s
1 _ Langzeitstudien zeigen, dass in den Alpen und auch im (ibrigen Europaimmer
weniger Schnee liegen bleibt. Das ist nicht nur fiir Wintersportler ein Problem.

Cold Season Temperature Anomaly [°C]
o
|

—3 lllIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIII
1950 1970 1990 2010

Years

ETHzirich

Bleiben die Alpen auch zukiinftig weill?

wird es

Spektrum

und kein Ende in Sicht: Das legt eine W

n den Bergen tatsachlich gegen den Trend k

freas Frey ist Wissenschaft sliet in Frit
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Dynamical adjustment

* Internal variability fundamentally limits
circulation and temperature

e Dynamical component i . L
anomalies in month x Y P Thermodynamical component climate projections

T =  Strong implications for interpretation of
Y L ;-@ L L Y regional climate trends
\ N \

» Dynamical adjustment: extraction of

Figure Courtesy: Dr. Anna Merrifield regional climate signals using circulation

information

Sippel et al., 2019, Journal of Climate, 32,
5677-5699.
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Dynamical adjustment

Internal External  Internal variability fundamentally limits
Variability Forcing (F) climate projections
dynamical « Strong implications for interpretation of
internal

regional climate trends

Atmospheric
Circulation X
(SI—Panom)

» Dynamical adjustment: extraction of

regional signals using circulation

information

Target Variable Y
(Precip., Temp.)

Sippel et al., 2019, Journal of Climate, 32,
5677-5699.
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Dynamical adjustment

Statistical model: Regularized linear regression

Internal ( External " A
Variability Forcing (F) Yx = f(X) ~ Xy
——
dynamical linear approximation
internal IE? _y_ Vx
Stat. I;frerence
Atmospheric
Circulation X B8 _
(SLP,om) 4% = argmin{ RSS}
7 p
o (+ gelastionet _ aramin{RSS +A Y (1 — )} + )}
= QO 2 g =1
0% ’
TR
7

Target Variable Y
(Precip., Temp.)

Hastie et al. (2009) Elements of statistical
learning.
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Dynamical adjustment

* Internal variability fundamentally limits

climate projections

1e-05
 Strong implications for interpretation of
regional climate trends
56-06
* Dynamical adjustment: extraction of
- 0e+00

regional signals using circulation

Ridge coefficients

information
-5e-06
 Statistical learning method (regularized
regression) to encapsulate the circulation

information into a statistical model

0° 20°E

Sippel et al., 2019, Journal of Climate, 32,
5677-5699.
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Understanding abrupt winter climate change in Switzerland

ETHzirich

—
Cold Season Temperature Anomaly 'C]
o —

-3

Switzerland

| R (Orig. Pred ; devunded) = 0.77
SRS BT PULELES BLUIREIEE] EIRELEL AR a s L
1950 1960 1970 1980 1990 2000 2010 2020

At regional scales, circulation-induced
variability explains a large fraction of

temperature variability

Sippel et al., 2019, Environmental
Research Letters, 15, 094056.
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Understanding abrupt winter climate change in Switzerland

Switzerland
(b) 4 .
o
g » Atregional scales, circulation-induced
g variability explains a large fraction of
§ T
H temperature variability
5
§ * Residuals of circulation-induced variability
p: ol e Ll =077 . .
00 RO N T M0 € ool reveal a smooth (thermodynamical) signal of
1950 1960 1970 1980 1990 2000 2010 2020
() change
3
g e : .
3 5 ot
§ : AT
< 1 ‘ ‘ﬁ i '4 A AR
gg a \ “"A\‘ l‘ \ \ "‘ \‘ A J':‘* 'I \ »
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3 -2 = Original time series
o — Prediction: Circulation
— Residuals
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1950 1960 1970 1980 1990 2000 2010 2020
Sippel et al., 2019, Environmental
Research Letters, 15, 094056.
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Understanding dynamical and thermodynamical drivers of extreme event
trends

Tx1day trend (1951-2021; GHCNDEX) Strongly contrasting trends in

temperature extremes between CEU

and the Midwest US

* Dynamical adjustment with

detrended z500 geopotential height

predictors

-0.10 -0.05 0.00 0.05 0.10

XAIDA work by
Jitendra Singh (see Poster).
XAIDA |
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Understanding dynamical and thermodynamical drivers of extreme event

trends
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B CHIRPS (1983-2016)

Strongly contrasting trends in
temperature extremes between CEU
and the Midwest US

Dynamical adjustment with
detrended z500 geopotential height
predictors

Circulation has contributed to CEU
temperature extremes — but
dampened in Midwest US
Thermodynamical trends are better

aligned

XAIDA work by
Jitendra Singh (see Poster).
XAIDA |
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Summary Part 1

* The apparent climate regime shift in
Switzerland and in Europe can be explained
as a combination of unusual atmospheric
circulation combined with a smooth forced
thermodynamical trend

« Trends in temperature extremes contrast
strongly between Central Europe and
Midwest US. At least part of the
discrepancy can be reconciled by different

influences of atmospheric circulation

ETH:zurich Sebastian Sippel - Climate Attribution 22.06.22 18



Agenda

1. Introduction: Internal variability vs. forced response

2. Understanding circulation-induced components or recent change
3. Robust detection of forced warming in the presence of potentially large

climate variability

4. Conclusions
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Density
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Low SD models
SD

High SD models

~

[
-0.5

[
0

I
0.5

50-year Linear Trends (°C)

« Are external causal factors at play in the climate

system?
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Density

..

— Low SD models
SD

High SD models

~

-0.5 0 0.5 1

50-year Linear Trends (°C)

Are external causal factors at play in the climate
system?

It “is virtually certain that internal climate
variability alone cannot account for the observed
global warming since 1951" (IPCC 2013).

... but: “the robustness of D&A of global-scale
warming is subject to models correctly simulating

internal variability” (IPCC 2013).
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# Models

15

—_
(@)

SD(cmip5) = 0.103 High SD models

SD(cmip6) = 0.137 CMCC-CM2-SR5
CNRM-CM6-1-HR
EC-Earth3

EC-Earth3-Veg-LR
BCC-CSM2-MR
EC-Earth3-Veg
CNRM-ESM2-1
bcc-csm1-1-m
GFDL-CM3

L
3

0.4

0.1 0.2 0.

SD of 50—year Linear Trends (°C)

Are external causal factors at play in the climate
system?

It is virtually certain that internal climate variability
alone cannot account for the observed global
warming since 1951 (IPCC 2013).

... but: “the robustness of D&A of global-scale
warming is subject to models correctly simulating
internal variability” (IPCC 2013).

Multidecadal variability is uncertain and highly

variable across climate models.
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Tabassi et al.,

“airliner”

2019,

NISTIR.

Are external causal factors at play in the climate
system?

It is virtually certain that internal climate variability
alone cannot account for the observed global
warming since 1951 (IPCC 2013).

... but: “the robustness of D&A of global-scale
warming is subject to models correctly simulating
internal variability” (IPCC 2013).

Multidecadal variability is uncertain and highly
variable across climate models.

Care is needed in (climate) applications of
statistical and machine learning, because learned

relationships are not per se causal.
23



15 - SD(cmip5) = 0.103
SD(cmip6) = 0.137

—
o
l

# Models

0 0.1 0.2 0.3 0.4

Standard deviation of 50-year linear trends
(°C) in preindustrial control simulations

Example: climate model structural uncertainty.

NISTIR.

Are external causal factors at play in the climate
system?

It is virtually certain that internal climate variability
alone cannot account for the observed global
warming since 1951 (IPCC 2013).

... but: “the robustness of D&A of global-scale
warming is subject to models correctly simulating
internal variability” (IPCC 2013).

Multidecadal variability is uncertain and highly
variable across climate models.

Care is needed in (climate) applications of
statistical and machine learning, because learned

relationships are not per se causal.
24



Detection of climate change using
statistical learning

&Y

~ 7~
~ -

X = temperature map (e.g., annual)
Y = forced response metric

B = set of regression coefficients
("fingerprint”)

Y e R"

target metric
(forced response

proxy)

X e R

B € RP

global annual temperature maps

fingerprint

Image Credit:
Eniko Székely
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Detection of climate change using Fingerprint”
statistical learning — »

Temperature coefficients (x107%)

I| | _
<0 0.4 0.8 1.2 >1.6
[
- Predictors (mean included): Temp.
. 1.0 Reanalysis avg., daily predictions &
($) | — Reanalysis avg., AGMT ?_
. B . 2 g
N ™=
;ol’ 0.5 | é,:
[e)) =
X = temperature map (e.g., annual) - °
Y = forced response metric 2 oot B ALIARETYY i
. .« . [
B = set of regression coefficients 5
l/_[_" . n «©
Ingerprint o
(“tingerp ) % -0.5 H
Sippel et al., 2020, g
Nat Clim Change. §
doi:10.1038/s415 —1.0 e e |
58-019-0666-7 | — ) —




Detection of climate change using
statistical learning

15 — SD(cmip5) =0.103
SD(cmip6) = 0.137

—
o
I

# Models

L0 )

~ 7~
~ -

X = temperature map (e.g., annual)
Y = forced response metric o _

. f . ffici Standard deviation of 50-year linear trends
p = set of regression coefficients (°C) in preindustrial control simulations
("fingerprint”)
LFV = Low-frequency internal variability

0 0.1 0.2 0.3 0.4

Example: climate model structural uncertainty.
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Robust detection under potentially large variability

LG A1)

~ -~
~ . -

X =temperature map (e.g., annual)

Y = forced response metric

B = set of regression coefficients
("fingerprint”)

LFV = Low-frequency internal variability

Goal: Good prediction accuracy even under changed

distributions (of multi-decadal internal variability) (“distributional
robustness”).

Observational Distribution (x, y)~P (“Standard regression”):

A

B = argming Ey ) p[L(y, fp ()]

Class of distributions (x, y)~Q where Q € Q:
B = argming supgeg E(xy)~o [l (Y, f5(x)]

Meinshausen, N., 2018, IEEE Data Science Workshop.
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Analogy “Distributional robustness”: Which bike should | take on holiday?

Training @ home

e,

Road bike on road J Mountain bike in forest J

29



Analogy “Distributional robustness”: Which bike should | take on holiday?

Training @ home

Road bike in forest Mountai be on road
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Analogy “Distributional robustness”: Which bike should | take on holiday?

Solution: Optimize bike
characteristics to perform well
under many different
circumstances...

Training @ home

Road bi

ountain bike on road

31



Robust detection under potentially large variability

LG A1)

~ -
~ . -

X =temperature map (e.g., annual)

Y = forced response metric

B = set of regression coefficients
(“fingerprint”)

LFV = Low-frequency internal variability
(= Anchor)

Anchor regression estimator*:

BY = argming | (I, =T (Y —=XB) 13 +y I T, (Y — XB) 113

Minimize Error Robustness w.r.t.
Anchor

y = “causal” regularization parameter that gives the strength of the

intervention on the anchor variable (encouraging orthogonality
with residuals)

* Rothenhausler et al. (2021), Anchor regression: heterogeneous data meets
Causality. Journal of the Royal Statistical Society, Series B.
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Robust detection under potentially large variability

LG A1)

~ -~
~ . -

X =temperature map (e.g., annual)
Y = forced response metric

B = set of regression coefficients
(“fingerprint”)

LFV = Low-frequency internal varic
(= Anchor)

Anchor regression estimator*:

BY = argming | (I, =T (Y —=XB) 13 +y I T, (Y — XB) 113

Minimize Error Robustness w.r.t.
Anchor

y = “causal” regularization parameter that gives the strength of the
intervention on the anchor variable (encouraging orthogonality
with residuals)

Standard regression (y = 1): Anchor regression (y > 1):

,\«\\h\

Train /
h/

Train Test

Residuals .
4

Residuals .
4

7
Anchor Anchor



Robust detection under potentially large variability

LG A1)

~ -
~ . -

X =temperature map (e.g., annual)

Y = forced response metric

B = set of regression coefficients
(“fingerprint”)

LFV = Low-frequency internal variability
(= Anchor)

Anchor regression estimator combined with L2 penalty:

BY = argming Il (I, =T =XB) 15 +y I T, (Y =XB) 5 + A 1| B 115

Minimize Error Robustness w.r.t. Avoiding
Anchor Overfitting

y = “causal” regularization parameter that gives the strength of the

intervention on the anchor variable (encouraging orthogonality
with residuals)

A = L2 regularization to handle multicollinearity and ensure
smoothness
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A train-test split of CMIP simulations: Experiment Design

# Models

14

12

10

Train
ACC
AWI
Can
CES
FGO
FIO
GIS
INM
MIR
MPI
MRI
CCSs
CSlI

Test

il dh

0.2

0.05

SD of Decadal Averages (°C)

0.25

« We split the CMIP archive into “low-variability”

(=training) and

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429.

models
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A train-test split of CMIP simulations: Results

Residual correlation with decadal internal variability

—_
o

0.8

0.6

0.4

0.2

0.0

50-year linear trends

Training Models
y=1 50-year trends

Detection
Fingerprints
o GMT
o MWP
A Ridge

—— Anchor regression
yin[1, 10°,
rin[1, 109

0.06

008 0.10 0.12 0.14 0.16 0.18 0.20

Root mean squared error [°C]

« We split the CMIP archive into “low-variability”
(=training) and models

* Traditional detection metrics such as global mean
temperature ("GMT") show a reasonable RMSE but

high residual correlation (training models)

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429.
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A train-test split of CMIP simulations: Results

Residual correlation with decadal internal variability

—_
o

0.8

0.6

0.4

0.2

0.0

50-year linear trends

« We split the CMIP archive into “low-variability”

Ideal objective vector

Training Models
50-year trends  Traditional detection metrics such as global mean

—— Anchor regression
yin[1,10°,
rin[1, 109

(=training) and models

temperature ("GMT") show a reasonable RMSE but

Detection high residual correlation (training models)
Fingerprints . . .

o GMT « Atrade-off arises for Anchor solutions that aim to
o MWP

A Ridge jointly minimize RMSE and res. Correlation (training

mod.)

I I I I I
006 0.08 0.10 0.12 0.14 O0.16

Root mean squared error [°C]

I
0.18 0.20

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429.
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A train-test split of CMIP simulations: Results

Residual correlation with decadal internal variability

—_
o

0.8

0.6

0.4

0.2

0.0

50-year linear trends

« We split the CMIP archive into “low-variability”

Ideal objective vector

Training Models

(=training) and models

50-year trends * Traditional detection metrics such as global mean

—— Anchor regression
yin[1, 10%,
Ain[1, 10°]

temperature ("GMT") show a reasonable RMSE but

Detection high residual correlation (training models)
Fingerprints . . .
o GMT  Atrade-off arises for Anchor solutions that aim to
o MWP - L . .
A Ridge jointly minimize RMSE and res. Correlation (training
< Anch

nener mod.)

I I
0.06 0.08 0.10

Root mean squared error [°C]

I I I
0.12 0.14 0.16

I
0.18 0.20

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429.
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A train-test split of CMIP simulations: Results

Residual correlation with decadal internal variability

—_
o

0.8

0.6

0.4

0.2

0.0

50-year linear trends

? Detection
_ s Fingerprints
o GMT
4 o MWP
o A Ridge
— % © Anchor
IR
* '<>./<>/47. Training models
Ideal objective vector Test models
50-year trends
I I I I I I
0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Root mean squared error [°C]

We split the CMIP archive into “low-variability”
(=training) and “high-variability” (=test) models
Traditional detection metrics such as global mean
temperature ("GMT") show a reasonable RMSE but
high residual correlation (training models)

A trade-off arises for Anchor solutions that aim to
jointly minimize RMSE and res. Correlation (training
mod.)

Distributional shift to high-variability (test) models
almost doubles RMSE for traditional detection
metrics, but RMSE increases more moderately for
anchor regression solutions

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429.
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A train-test split of CMIP simulations: Results (2)

Global Mean Temperature Anchor FP (0.5/0.5)
Sippel et al., 2021,
—— QObservations Science Advances 7,
_ _ eabh4429,
doi:10.1126/sciadv.a
bh4429.

e Y L

Train models — Train models
Test models Test models
I I I I I I
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
50-year linear trends (°C) 50-year linear trends (°C)

Climate change detection with anchor detection metric is much more robust to multi-decadal variability.
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How does the “fingerprint” differ in anchor regression?

Ridge regression Anchor regression

Ridge regression coefficients Anchor regression coefficients

: ] : — .

< -0.003 -0.0015 0 0.0015 > 0.003 < -0.003 -0.0015 0 0.0015 > 0.003

Anchor constraint-based fingerprint puts more negative weights on regions of multi-decadal internal

variability (PDO, AMO, etc.), to “counterbalance” positive weights.

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429. 41
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How does the anchor fingerprint differ?

A Simulated 1980-2014 temperature trend (CMIP6 average) B Observed 1980-2019 temperature trend (Berkeley Earth)

Trend (°C per 40 years) Trend (°C per 40 years)
_T : _ _ : ]—

<=3 -1.5 0 1.5 >3 <3 -1.5 0 1.5 >3

Anchor constraint-based fingerprint puts more negative weights on regions of multi-decadal internal

variability (PDO, AMO, etc.), to “counterbalance” positive weights

Sippel et al., 2021, Science Advances 7,
eabh4429, doi:10.1126/sciadv.abh4429. 42
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Summary Part 2

« Fingerprints to estimate the forced response using statistical learning techniques

in daily global temperature patterns since approx. 2012

* Akey limitation of D&A is that confidence estimates rely on a realistic simulation
of unforced multi-decadal variability. Robustness constraints (anchors) allow to
build D&A estimates that are robust also against potentially large multi-decadal

internal variability

* Encouraging robustness against possible uncertainties/distributional shifts using
anchor regression may prove useful for climate science more broadly (Extremes?

Distributional shifts across climate models and/or towards observations?)



Thank you for the attention!

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement 101003469.
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